Facebook
TwitterThe number of flights performed globally by the airline industry has increased steadily since the early 2000s and reached **** million in 2019. However, due to the coronavirus pandemic, the number of flights dropped to **** million in 2020. The flight volume increased again in the following years and was forecasted to reach ** million in 2025.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset contains information on air traffic passenger statistics by the airline. It includes information on the airlines, airports, and regions that the flights departed from and arrived at. It also includes information on the type of activity, price category, terminal, boarding area, and number of passengers
Air traffic passenger statistics can be a useful tool for understanding the airline industry and for making travel plans. This dataset from Open Flights contains information on air traffic passenger statistics by airline for 2017. The data includes the number of passengers, the operating airline, the published airline, the geographic region, the activity type code, the price category code, the terminal, the boarding area, and the year and month of the flight
License: Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) - You are free to: - Share - copy and redistribute the material in any medium or format for non-commercial purposes only. - Adapt - remix, transform, and build upon the material for non-commercial purposes only. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - You may not: - Use the material for commercial purposes.
File: Air_Traffic_Passenger_Statistics.csv | Column name | Description | |:--------------------------------|:------------------------------------------------------------------------------| | Activity Period | The date of the activity. (Date) | | Operating Airline | The airline that operated the flight. (String) | | Operating Airline IATA Code | The IATA code of the airline that operated the flight. (String) | | Published Airline | The airline that published the fare for the flight. (String) | | Published Airline IATA Code | The IATA code of the airline that published the fare for the flight. (String) | | GEO Summary | A summary of the geographic region. (String) | | GEO Region | The geographic region. (String) | | Activity Type Code | The type of activity. (String) | | Price Category Code | The price category of the fare. (String) | | Terminal | The terminal of the flight. (String) | | Boarding Area | The boarding area of the flight. (String) | | Passenger Count | The number of passengers on the flight. (Integer) | | Adjusted Activity Type Code | The type of activity, adjusted for missing data. (String) | | Adjusted Passenger Count | The number of passengers on the flight, adjusted for missing data. (Integer) | | Year | The year of the activity. (Integer) | | Month | The month of the activity. (Integer) |
Facebook
TwitterPercentage of flights arriving on-time. A flight is on-time if it arrives within 15 minutes of the schedule arrival time. Data are available for those carriers that had at least 1% of domestic enplanements in the previous year. The last 25 months of data include only carriers that reported in each of the last 25 months to retain comparability. Earlier data includes all reporting carriers. A scheduled operation consists of any nonstop segment of a flight. The Bureau of Transportation Statistics air collects performance data from U.S. air carriers and international carriers operating within the U.S.
Facebook
TwitterIn 2023, the estimated number of scheduled passengers boarded by the global airline industry amounted to approximately *** billion people. This represents a significant increase compared to the previous year since the pandemic started and the positive trend was forecast to continue in 2024, with the scheduled passenger volume reaching just below **** billion travelers. Airline passenger traffic The number of scheduled passengers handled by the global airline industry has increased in all but one of the last decade. Scheduled passengers refer to the number of passengers who have booked a flight with a commercial airline. Excluded are passengers on charter flights, whereby an entire plane is booked by a private group. In 2023, the Asia Pacific region had the highest share of airline passenger traffic, accounting for ********* of the global total.
Facebook
Twitterhttps://www.gnu.org/licenses/gpl-3.0-standalone.htmlhttps://www.gnu.org/licenses/gpl-3.0-standalone.html
This record is a global open-source passenger air traffic dataset primarily dedicated to the research community. It gives a seating capacity available on each origin-destination route for a given year, 2019, and the associated aircraft and airline when this information is available. Context on the original work is given in the related article (https://journals.open.tudelft.nl/joas/article/download/7201/5683) and on the associated GitHub page (https://github.com/AeroMAPS/AeroSCOPE/).A simple data exploration interface will be available at www.aeromaps.eu/aeroscope.The dataset was created by aggregating various available open-source databases with limited geographical coverage. It was then completed using a route database created by parsing Wikipedia and Wikidata, on which the traffic volume was estimated using a machine learning algorithm (XGBoost) trained using traffic and socio-economical data. 1- DISCLAIMER The dataset was gathered to allow highly aggregated analyses of the air traffic, at the continental or country levels. At the route level, the accuracy is limited as mentioned in the associated article and improper usage could lead to erroneous analyses. Although all sources used are open to everyone, the Eurocontrol database is only freely available to academic researchers. It is used in this dataset in a very aggregated way and under several levels of abstraction. As a result, it is not distributed in its original format as specified in the contract of use. As a general rule, we decline any responsibility for any use that is contrary to the terms and conditions of the various sources that are used. In case of commercial use of the database, please contact us in advance. 2- DESCRIPTION Each data entry represents an (Origin-Destination-Operator-Aircraft type) tuple. Please refer to the support article for more details (see above). The dataset contains the following columns:
"First column" : index airline_iata : IATA code of the operator in nominal cases. An ICAO -> IATA code conversion was performed for some sources, and the ICAO code was kept if no match was found. acft_icao : ICAO code of the aircraft type acft_class : Aircraft class identifier, own classification.
WB: Wide Body NB: Narrow Body RJ: Regional Jet PJ: Private Jet TP: Turbo Propeller PP: Piston Propeller HE: Helicopter OTHER seymour_proxy: Aircraft code for Seymour Surrogate (https://doi.org/10.1016/j.trd.2020.102528), own classification to derive proxy aircraft when nominal aircraft type unavailable in the aircraft performance model. source: Original data source for the record, before compilation and enrichment.
ANAC: Brasilian Civil Aviation Authorities AUS Stats: Australian Civil Aviation Authorities BTS: US Bureau of Transportation Statistics T100 Estimation: Own model, estimation on Wikipedia-parsed route database Eurocontrol: Aggregation and enrichment of R&D database OpenSky World Bank seats: Number of seats available for the data entry, AFTER airport residual scaling n_flights: Number of flights of the data entry, when available iata_departure, iata_arrival : IATA code of the origin and destination airports. Some BTS inhouse identifiers could remain but it is marginal. departure_lon, departure_lat, arrival_lon, arrival_lat : Origin and destination coordinates, could be NaN if the IATA identifier is erroneous departure_country, arrival_country: Origin and destination country ISO2 code. WARNING: disable NA (Namibia) as default NaN at import departure_continent, arrival_continent: Origin and destination continent code. WARNING: disable NA (North America) as default NaN at import seats_no_est_scaling: Number of seats available for the data entry, BEFORE airport residual scaling distance_km: Flight distance (km) ask: Available Seat Kilometres rpk: Revenue Passenger Kilometres (simple calculation from ASK using IATA average load factor) fuel_burn_seymour: Fuel burn per flight (kg) when seymour proxy available fuel_burn: Total fuel burn of the data entry (kg) co2: Total CO2 emissions of the data entry (kg) domestic: Domestic/international boolean (Domestic=1, International=0)
3- Citation Please cite the support paper instead of the dataset itself.
Salgas, A., Sun, J., Delbecq, S., Planès, T., & Lafforgue, G. (2023). Compilation of an open-source traffic and CO2 emissions dataset for commercial aviation. Journal of Open Aviation Science. https://doi.org/10.59490/joas.2023.7201
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset provides a comprehensive overview of domestic airline routes within the United States. It includes valuable information for analyzing passenger travel patterns, market trends, and airline pricing strategies.
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The European Flights Dataset is a tabulated dataset of more than 680,000 air traffic records, including instrument flight (IFR) arrivals and operations at major European airports from January 2016 to May 2022.
2) Data Utilization (1) European Flights Dataset has characteristics that: • Each row contains 14 key items, including year, month, flight date, airport code and name, country name, and number of departures, arrivals, and total flights based on IFR. • The data are segmented by airport, country, and month, so they are well structured to analyze time series and spatial changes in European air traffic. (2) European Flights Dataset can be used to: • Analysis of Air Traffic Trends and Recovery: Using IFR operational performance by year, month, and airport, you can analyze changes in air traffic before and after the pandemic, seasonal trends, and speed of recovery. • Airport and Country Comparison Study: National/Airport performance data can be used to compare and evaluate major hub airports, cross-country aviation network structure, policy effectiveness, and more.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Daily data showing UK flight numbers and rolling seven-day average, including flights to, from, and within the UK. These are official statistics in development. Source: EUROCONTROL.
Facebook
TwitterAviation statistics user engagement survey
Thank you very much for all responses to the survey and your interest in DfT Aviation Statistics. All feedback will be taken into consideration when we publish the Aviation Statistics update later this year, alongside which, we will update the background information with details of the feedback and any future development plans.
AVI0101 (TSGB0201): https://assets.publishing.service.gov.uk/media/6753137f21057d0ed56a0415/avi0101.ods">Air traffic at UK airports: 1950 onwards (ODS, 9.93 KB)
AVI0102 (TSGB0202): https://assets.publishing.service.gov.uk/media/6753138a14973821ce2a6d22/avi0102.ods">Air traffic by operation type and airport, UK (ODS, 37.6 KB)
AVI0103 (TSGB0203): https://assets.publishing.service.gov.uk/media/67531395dcabf976e5fb0073/avi0103.ods">Punctuality at selected UK airports (ODS, 41.1 KB)
AVI0105 (TSGB0205): https://assets.publishing.service.gov.uk/media/675313a014973821ce2a6d23/avi0105.ods">International passenger movements at UK airports by last or next country travelled to (ODS, 20.7 KB)
AVI0106 (TSGB0206): https://assets.publishing.service.gov.uk/media/67531f09e40c78cba1fb008d/avi0106.ods">Proportion of transfer passengers at selected UK airports (ODS, 9.52 KB)
AVI0107 (TSGB0207): https://assets.publishing.service.gov.uk/media/67531d7a14973821ce2a6d2d/avi0107.ods">Mode of transport to the airport (ODS, 14.3 KB)
AVI0108 (TSGB0208): https://assets.publishing.service.gov.uk/media/67531f17dcabf976e5fb007f/avi0108.ods">Purpose of travel at selected UK airports (ODS, 15.7 KB)
AVI0109 (TSGB0209): https://assets.publishing.service.gov.uk/media/67531f3b20bcf083762a6d3b/avi0109.ods">Map of UK airports (ODS, 193 KB)
AVI0201 (TSGB0210): https://assets.publishing.service.gov.uk/media/67531f527e5323915d6a042f/avi0201.ods">Main outputs for UK airlines by type of service (ODS, 17.7 KB)
AVI0203 (TSGB0211): https://assets.publishing.service.gov.uk/media/67531f6014973821ce2a6d31/avi0203.ods">Worldwide employment by UK airlines (ODS, <span class="
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The European Flights Dataset from 2016 to 2022 provides an extensive record of air traffic activities across various European airports. The data includes essential metrics related to IFR (Instrument Flight Rules) movements, covering both departures and arrivals as reported by the Network Manager and Airport Operator. The dataset is comprehensive, with 688,099 entries and 14 columns, detailing flights over a span of seven years.
Geography: Europe
Time period: Jan 2016- May 2022
Unit of analysis: European Flights Dataset
| Column Name | Description | Example |
|---|---|---|
| YEAR | Reference year | 2014 |
| MONTH_NUM | Month (numeric) | 1 |
| MONTH_MON | Month (3-letter code) | JAN |
| FLT_DATE | Date of flight | 01-Jan-2014 |
| APT_ICAO | ICAO 4-letter airport designator | EDDM |
| APT_NAME | Airport name | Munich |
| STATE_NAME | Name of the country in which the airport is located | Germany |
| FLT_DEP_1 | Number of IFR departures | 278 |
| FLT_ARR_1 | Number of IFR arrivals | 241 |
| FLT_TOT_1 | Number total IFR movements | 519 |
| FLT_DEP_IFR_2 | Number of IFR departures | 278 |
| FLT_ARR_IFR_2 | Number of IFR arrivals | 241 |
| FLT_TOT_IFR_2 | Number total IFR movements | 519 |
Datasource: Aviation Intelligence Unit Portal
Inspiration: Commercial air transport in August 2021: in recovery
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2Fb41aa2af36253223c44a36f11cea3d34%2FEU-NEWS-COMMERCIAL-FLIGHT-COMPARE.jpg?generation=1718278227722520&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2Fd36afbf88081d544dd855f6425816d0c%2FEU-NEWS-COMMERCIAL-FLIGHT.jpg?generation=1718278253126208&alt=media" alt="">
Facebook
TwitterAs new technologies are developed to handle the complexities of the Next Generation Air Transportation System (NextGen), it is increasingly important to address both current and future safety concerns along with the operational, environmental, and efficiency issues within the National Airspace System (NAS). In recent years, the Federal Aviation Administration’s (FAA) safety offices have been researching ways to utilize the many safety databases maintained by the FAA, such as those involving flight recorders, radar tracks, weather, and many other high-volume sensors, in order to monitor this unique and complex system. Although a number of current technologies do monitor the frequency of known safety risks in the NAS, very few methods currently exist that are capable of analyzing large data repositories with the purpose of discovering new and previously unmonitored safety risks. While monitoring the frequency of known events in the NAS enables mitigation of already identified problems, a more proactive approach of finding unidentified issues still needs to be addressed. This is especially important in the proactive identification of new, emergent safety issues that may result from the planned introduction of advanced NextGen air traffic management technologies and procedures. Development of an automated tool that continuously evaluates the NAS to discover both events exhibiting flight characteristics indicative of safety-related concerns as well as operational anomalies will heighten the awareness of such situations in the aviation community and serve to increase the overall safety of the NAS. This paper discusses the extension of previous anomaly detection work to identify operationally significant flights within the highly complex airspace encompassing the New York area of operations, focusing on the major airports of Newark International (EWR), LaGuardia International (LGA), and John F. Kennedy International (JFK). In addition, flight traffic in the vicinity of Denver International (DEN) airport/airspace is also investigated to evaluate the impact on operations due to variances in seasonal weather and airport elevation. From our previous research, subject matter experts determined that some of the identified anomalies were significant, but could not reach conclusive findings without additional supportive data. To advance this research further, causal examination using domain experts is continued along with the integration of air traffic control (ATC) voice data to shed much needed insight into resolving which flight characteristic(s) may be impacting an aircraft's unusual profile. Once a flight characteristic is identified, it could be included in a list of potential safety precursors. This paper also describes a process that has been developed and implemented to automatically identify and produce daily reports on flights of interest from the previous day.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Air transport domain contains national and international intra and extra-EU data. This provides air transport data for passengers (in number of passengers) and for freight and mail (in 1 000 tonnes) as well as air traffic data by airports, airlines and aircraft. Data are transmitted to Eurostat by EU Member States, EFTA countries and some other reporting countries. Data are compiled following the provisions of the Regulation (EC) N°1358/2003, implementing Regulation N°437/2003 of the European Parliament and of the Council on statistical returns in respect of the carriage of passengers, freight and mail by air. The air transport data are collected at airport level. As from 2003 reference year the data are provided according to the legal act (some countries were given derogation until 2005). Until 2002 partial information (passenger transport only) are available for some countries and airports.
Airports handling less than 15 000 passenger units annually are excluded from the scope of the Regulation. Datasets A1 and B1 are provided on monthly basis, while dataset C1 can be provided either on monthly or annual basis. For some countries optional variable - total number of transfer passengers - is provided as well.
The data are disseminated by Eurostat in on-line database in four sub-domains:
The two first domains contain several data collections:
In the tables of the sub-domain "Transport measurement - Passengers", data are broken down by passengers on board (arrivals, departures and total), passengers carried (arrivals, departures and total) and passenger commercial air flights (arrival, departures and total). Additionally, the tables of collection "Detailed air transport by reporting country and routes" provide data on seats available (arrival, departures and total). The data is presented at monthly, quarterly and annual level.
In the tables of the sub-domain "Transport measurement - Freight and mail", data are broken down by freight and mail on board (arrival, departures and total), freight and mail loaded/unloaded (loaded, unloaded and total) and all-freight and mail commercial air flights (arrival, departures and total). The data is presented at monthly, quarterly and annual level.
In the tables of the sub-domain "Transport measurement - Traffic by airports, aircraft and airlines":
The sub-domain "Transport measurement - Data aggregated at standard regional levels (NUTS)", contains two tables:
The tables present the evolution of the number of passengers carried (if not available passengers on board) and the volume of freight and mail loaded or unloaded (if not available freight and mail on board) to/from the NUTS regions (level 2, 1 and 0) since 1999. The data is presented at annual level. The air transport regional data have been calculated using data collected at the airport level in the frame of the regulatory data collection on air transport.
For more details on datasets, data validation and dissemination refer also to Reference Manual on Air Transport Statistics available in the Annex part of the metadata.
Facebook
TwitterPassengers enplaned and deplaned at Canadian airports, annual.
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/12.0/customlicense?persistentId=doi:10.7910/DVN/COHFWAhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/12.0/customlicense?persistentId=doi:10.7910/DVN/COHFWA
Projections of commercial airline flight schedules worldwide. Describe characteristics of each flight such as: departure and arrival airports, flight times, carrier, fares, capacity, and more. Projections are made at the beginning of every time period (month or year) and project the schedules for that time period until the next update is received. Data from 1979-March 1987 are available monthly. Data from 1987 onward are available annually.DATA AVAILABLE FOR YEARS: 1978-2024 (see Note for specifics)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Number of passengers carried (arrivals and departures). Passengers carried are (1) all passengers on a particular flight (with one flight number) counted once only and not repeatedly on each individual stage of that flight, (2) all revenue and non-revenue passengers whose journey begins or terminates at the reporting airport and transfer passengers joining or leaving the flight at the reporting airport. Excludes direct transit passengers. National aggregates, total intra-EU aggregates and total EU aggregates exclude any double counting.
Facebook
TwitterThe environmental impact of aviation is enormous given the fact that in the US alone there are nearly 6 million flights per year of commercial aircraft. This situation has driven numerous policy and procedural measures to help develop environmentally friendly technologies which are safe and affordable and reduce the environmental impact of aviation. However, many of these technologies require significant initial investment in newer aircraft fleets and modifications to existing regulations which are both long and costly enterprises. We propose to use an anomaly detection method based on Virtual Sensors to help detect overconsumption of fuel in aircraft which relies only on the data recorded during flight of most existing commercial aircraft, thus significantly reducing the cost and complexity of implementing this method. The Virtual Sensors developed here are ensemble-learning regression models for detecting the overconsumption of fuel based on instantaneous measurements of the aircraft state. This approach requires no additional information about standard operating procedures or other encoded domain knowledge. We present experimental results on three data sets and compare five different Virtual Sensors algorithms. The first two data sets are publicly available and consist of a simulated data set from a flight simulator and a real-world turbine disk.We show the ability to detect anomalies with high accuracy on these data sets. These sets contain seeded faults, meaning that they have been deliberately injected into the system. The second data set is from realworld fleet of 84 jet aircraft where we show the ability to detect fuel overconsumption which can have a significant environmental and economic impact. To the best of our knowledge, this is the first study of its kind in the aviation domain.
Facebook
TwitterThis dataset contain information about: The number of flights executed, the number of buses and their capacity, and the number of passengers between cities for previous years, by year, month, and the city of departure
Facebook
TwitterMotivation
The data in this dataset is derived and cleaned from the full OpenSky dataset to illustrate the development of air traffic during the COVID-19 pandemic. It spans all flights seen by the network's more than 2500 members since 1 January 2019. More data has been periodically included in the dataset until the end of the COVID-19 pandemic.
We stopped updating the dataset after December 2022. Previous files have been fixed after a thorough sanity check.
License
See LICENSE.txt
Disclaimer
The data provided in the files is provided as is. Despite our best efforts at filtering out potential issues, some information could be erroneous.
Origin and destination airports are computed online based on the ADS-B trajectories on approach/takeoff: no crosschecking with external sources of data has been conducted. Fields origin or destination are empty when no airport could be found.
Aircraft information come from the OpenSky aircraft database. Fields typecode and registration are empty when the aircraft is not present in the database.
Description of the dataset
One file per month is provided as a csv file with the following features:
callsign: the identifier of the flight displayed on ATC screens (usually the first three letters are reserved for an airline: AFR for Air France, DLH for Lufthansa, etc.)
number: the commercial number of the flight, when available (the matching with the callsign comes from public open API); this field may not be very reliable;
icao24: the transponder unique identification number;
registration: the aircraft tail number (when available);
typecode: the aircraft model type (when available);
origin: a four letter code for the origin airport of the flight (when available);
destination: a four letter code for the destination airport of the flight (when available);
firstseen: the UTC timestamp of the first message received by the OpenSky Network;
lastseen: the UTC timestamp of the last message received by the OpenSky Network;
day: the UTC day of the last message received by the OpenSky Network;
latitude_1, longitude_1, altitude_1: the first detected position of the aircraft;
latitude_2, longitude_2, altitude_2: the last detected position of the aircraft.
Examples
Possible visualisations and a more detailed description of the data are available at the following page:
Credit
If you use this dataset, please cite:
Martin Strohmeier, Xavier Olive, Jannis Lübbe, Matthias Schäfer, and Vincent Lenders "Crowdsourced air traffic data from the OpenSky Network 2019–2020" Earth System Science Data 13(2), 2021 https://doi.org/10.5194/essd-13-357-2021
Facebook
TwitterAttribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
The University of Miami Libraries Special Collections is home to the Pan American World Airways, Inc. Records. In operation from 1927 until 1991, Pan Am was an iconic and groundbreaking airline beloved by travelers worldwide, pioneering the development of international air routes, commercial passenger service, and aviation technology. The collection is comprised of fifteen hundred boxes of administrative, legal, financial, technical and promotional materials, as well as internal publications, photographs, audiovisual material and graphic material.
Selected materials from the collection were digitized thanks to a 2016 grant from the National Historical Publications & Records Commission and a 2018 Digitizing Hidden Collections grant from the Council on Library and Information Resources, which was made possible by funding from The Andrew W. Mellon Foundation.
This dataset contains 39 boxes from the Flight and Route Information Series of the Pan Am collection. These boxes include promotional and operational records pertaining to the development of Pan Am's flights and routes from the 1920s-1980s, as well as first and inaugural flights, special and charter flights, survey flights, milestones, and the Great Circle route.
This dataset is available in the form of plain text files for use in textual analysis and digital scholarship research, inspired by the work of the Collections as Data project.
Each box of the Flight and Route Information Series is provided in the form of a zip file, which includes the text files, as well as a file roster and a readme file. Each text file represents one page from a folder in the original archival collection. The readme files include potential starting points, such as interesting keywords or queries customized for each box.
Full scans of the Flight and Route Information Series and other digitized materials from the Pan Am Collection are available for viewing and download in the University of Miami Libraries Digital Collections.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
We'll tailor a bespoke airline dataset to meet your unique needs, encompassing flight details, destinations, pricing, passenger reviews, on-time performance, and other pertinent metrics.
Leverage our airline datasets for diverse applications to bolster strategic planning and market analysis. Scrutinizing these datasets enables organizations to grasp traveler preferences and industry trends, facilitating nuanced operational adaptations and marketing initiatives. Customize your access to the entire dataset or specific subsets as per your business requisites.
Popular use cases involve optimizing route profitability, improving passenger satisfaction, and conducting competitor analysis.
Facebook
TwitterThe number of flights performed globally by the airline industry has increased steadily since the early 2000s and reached **** million in 2019. However, due to the coronavirus pandemic, the number of flights dropped to **** million in 2020. The flight volume increased again in the following years and was forecasted to reach ** million in 2025.