5 datasets found
  1. Global air traffic - number of flights 2004-2025

    • statista.com
    • ai-chatbox.pro
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global air traffic - number of flights 2004-2025 [Dataset]. https://www.statista.com/statistics/564769/airline-industry-number-of-flights/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The number of flights performed globally by the airline industry has increased steadily since the early 2000s and reached **** million in 2019. However, due to the coronavirus pandemic, the number of flights dropped to **** million in 2020. The flight volume increased again in the following years and was forecasted to reach ** million in 2025.

  2. Estimated stand-off distance between ADS-B equipped aircraft and obstacles

    • zenodo.org
    • data.niaid.nih.gov
    jpeg, zip
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Weinert; Andrew Weinert (2024). Estimated stand-off distance between ADS-B equipped aircraft and obstacles [Dataset]. http://doi.org/10.5281/zenodo.7741273
    Explore at:
    zip, jpegAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrew Weinert; Andrew Weinert
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Summary:

    Estimated stand-off distance between ADS-B equipped aircraft and obstacles. Obstacle information was sourced from the FAA Digital Obstacle File and the FHWA National Bridge Inventory. Aircraft tracks were sourced from processed data curated from the OpenSky Network. Results are presented as histograms organized by aircraft type and distance away from runways.

    Description:

    For many aviation safety studies, aircraft behavior is represented using encounter models, which are statistical models of how aircraft behave during close encounters. They are used to provide a realistic representation of the range of encounter flight dynamics where an aircraft collision avoidance system would be likely to alert. These models currently and have historically have been limited to interactions between aircraft; they have not represented the specific interactions between obstacles and aircraft equipped transponders. In response, we calculated the standoff distance between obstacles and ADS-B equipped manned aircraft.

    For robustness, this assessment considered two different datasets of manned aircraft tracks and two datasets of obstacles. For robustness, MIT LL calculated the standoff distance using two different datasets of aircraft tracks and two datasets of obstacles. This approach aligned with the foundational research used to support the ASTM F3442/F3442M-20 well clear criteria of 2000 feet laterally and 250 feet AGL vertically.

    The two datasets of processed tracks of ADS-B equipped aircraft curated from the OpenSky Network. It is likely that rotorcraft were underrepresented in these datasets. There were also no considerations for aircraft equipped only with Mode C or not equipped with any transponders. The first dataset was used to train the v1.3 uncorrelated encounter models and referred to as the “Monday” dataset. The second dataset is referred to as the “aerodrome” dataset and was used to train the v2.0 and v3.x terminal encounter model. The Monday dataset consisted of 104 Mondays across North America. The other dataset was based on observations at least 8 nautical miles within Class B, C, D aerodromes in the United States for the first 14 days of each month from January 2019 through February 2020. Prior to any processing, the datasets required 714 and 847 Gigabytes of storage. For more details on these datasets, please refer to "Correlated Bayesian Model of Aircraft Encounters in the Terminal Area Given a Straight Takeoff or Landing" and “Benchmarking the Processing of Aircraft Tracks with Triples Mode and Self-Scheduling.”

    Two different datasets of obstacles were also considered. First was point obstacles defined by the FAA digital obstacle file (DOF) and consisted of point obstacle structures of antenna, lighthouse, meteorological tower (met), monument, sign, silo, spire (steeple), stack (chimney; industrial smokestack), transmission line tower (t-l tower), tank (water; fuel), tramway, utility pole (telephone pole, or pole of similar height, supporting wires), windmill (wind turbine), and windsock. Each obstacle was represented by a cylinder with the height reported by the DOF and a radius based on the report horizontal accuracy. We did not consider the actual width and height of the structure itself. Additionally, we only considered obstacles at least 50 feet tall and marked as verified in the DOF.

    The other obstacle dataset, termed as “bridges,” was based on the identified bridges in the FAA DOF and additional information provided by the National Bridge Inventory. Due to the potential size and extent of bridges, it would not be appropriate to model them as point obstacles; however, the FAA DOF only provides a point location and no information about the size of the bridge. In response, we correlated the FAA DOF with the National Bridge Inventory, which provides information about the length of many bridges. Instead of sizing the simulated bridge based on horizontal accuracy, like with the point obstacles, the bridges were represented as circles with a radius of the longest, nearest bridge from the NBI. A circle representation was required because neither the FAA DOF or NBI provided sufficient information about orientation to represent bridges as rectangular cuboid. Similar to the point obstacles, the height of the obstacle was based on the height reported by the FAA DOF. Accordingly, the analysis using the bridge dataset should be viewed as risk averse and conservative. It is possible that a manned aircraft was hundreds of feet away from an obstacle in actuality but the estimated standoff distance could be significantly less. Additionally, all obstacles are represented with a fixed height, the potentially flat and low level entrances of the bridge are assumed to have the same height as the tall bridge towers. The attached figure illustrates an example simulated bridge.

    It would had been extremely computational inefficient to calculate the standoff distance for all possible track points. Instead, we define an encounter between an aircraft and obstacle as when an aircraft flying 3069 feet AGL or less comes within 3000 feet laterally of any obstacle in a 60 second time interval. If the criteria were satisfied, then for that 60 second track segment we calculate the standoff distance to all nearby obstacles. Vertical separation was based on the MSL altitude of the track and the maximum MSL height of an obstacle.

    For each combination of aircraft track and obstacle datasets, the results were organized seven different ways. Filtering criteria were based on aircraft type and distance away from runways. Runway data was sourced from the FAA runways of the United States, Puerto Rico, and Virgin Islands open dataset. Aircraft type was identified as part of the em-processing-opensky workflow.

    • All: No filter, all observations that satisfied encounter conditions
    • nearRunway: Aircraft within or at 2 nautical miles of a runway
    • awayRunway: Observations more than 2 nautical miles from a runway
    • glider: Observations when aircraft type is a glider
    • fwme: Observations when aircraft type is a fixed-wing multi-engine
    • fwse: Observations when aircraft type is a fixed-wing single engine
    • rotorcraft: Observations when aircraft type is a rotorcraft

    License

    This dataset is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0).

    This license requires that reusers give credit to the creator. It allows reusers to copy and distribute the material in any medium or format in unadapted form and for noncommercial purposes only. Only noncommercial use of your work is permitted. Noncommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. Exceptions are given for the not for profit standards organizations of ASTM International and RTCA.

    MIT is releasing this dataset in good faith to promote open and transparent research of the low altitude airspace. Given the limitations of the dataset and a need for more research, a more restrictive license was warranted. Namely it is based only on only observations of ADS-B equipped aircraft, which not all aircraft in the airspace are required to employ; and observations were source from a crowdsourced network whose surveillance coverage has not been robustly characterized.

    As more research is conducted and the low altitude airspace is further characterized or regulated, it is expected that a future version of this dataset may have a more permissive license.

    Distribution Statement

    DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

    © 2021 Massachusetts Institute of Technology.

    Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

    This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

    This document is derived from work done for the FAA (and possibly others); it is not the direct product of work done for the FAA. The information provided herein may include content supplied by third parties. Although the data and information contained herein has been produced or processed from sources believed to be reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding the accuracy, adequacy, completeness, legality, reliability or usefulness of any information, conclusions or recommendations provided herein. Distribution of the information contained herein does not constitute an endorsement or warranty of the data or information provided herein by the Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal Aviation Administration nor the U.S. Department of

  3. NEON Tree Crowns Dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv, zip
    Updated Jan 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ben Weinstein; Ben Weinstein; Sergio Marconi; Alina Zare; Stephanie Bohlman; Sarah Graves; Aditya Singh; Ethan White; Sergio Marconi; Alina Zare; Stephanie Bohlman; Sarah Graves; Aditya Singh; Ethan White (2021). NEON Tree Crowns Dataset [Dataset]. http://doi.org/10.5281/zenodo.3765872
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jan 22, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ben Weinstein; Ben Weinstein; Sergio Marconi; Alina Zare; Stephanie Bohlman; Sarah Graves; Aditya Singh; Ethan White; Sergio Marconi; Alina Zare; Stephanie Bohlman; Sarah Graves; Aditya Singh; Ethan White
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The NeonTreeCrowns dataset is a set of individual level crown estimates for 100 million trees at 37 geographic sites across the United States surveyed by the National Ecological Observation Network’s Airborne Observation Platform. Each rectangular bounding box crown prediction includes height, crown area, and spatial location.

    How can I see the data?

    A web server to look through predictions is available through idtrees.org

    Dataset Organization

    The shapefiles.zip contains 11,000 shapefiles, each corresponding to a 1km^2 RGB tile from NEON (ID: DP3.30010.001). For example "2019_SOAP_4_302000_4100000_image.shp" are the predictions from "2019_SOAP_4_302000_4100000_image.tif" available from the NEON data portal: https://data.neonscience.org/data-products/explore?search=camera. NEON's file convention refers to the year of data collection (2019), the four letter site code (SOAP), the sampling event (4), and the utm coordinate of the top left corner (302000_4100000). For NEON site abbreviations and utm zones see https://www.neonscience.org/field-sites/field-sites-map.

    The predictions are also available as a single csv for each file. All available tiles for that site and year are combined into one large site. These data are not projected, but contain the utm coordinates for each bounding box (left, bottom, right, top). For both file types the following fields are available:

    Height: The crown height measured in meters. Crown height is defined as the 99th quartile of all canopy height pixels from a LiDAR height model (ID: DP3.30015.001)

    Area: The crown area in m2 of the rectangular bounding box.

    Label: All data in this release are "Tree".

    Score: The confidence score from the DeepForest deep learning algorithm. The score ranges from 0 (low confidence) to 1 (high confidence)

    How were predictions made?

    The DeepForest algorithm is available as a python package: https://deepforest.readthedocs.io/. Predictions were overlaid on the LiDAR-derived canopy height model. Predictions with heights less than 3m were removed.

    How were predictions validated?

    Please see

    Weinstein, B. G., Marconi, S., Bohlman, S. A., Zare, A., & White, E. P. (2020). Cross-site learning in deep learning RGB tree crown detection. Ecological Informatics, 56, 101061.

    Weinstein, B., Marconi, S., Aubry-Kientz, M., Vincent, G., Senyondo, H., & White, E. (2020). DeepForest: A Python package for RGB deep learning tree crown delineation. bioRxiv.

    Weinstein, Ben G., et al. "Individual tree-crown detection in RGB imagery using semi-supervised deep learning neural networks." Remote Sensing 11.11 (2019): 1309.

    Were any sites removed?

    Several sites were removed due to poor NEON data quality. GRSM and PUUM both had lower quality RGB data that made them unsuitable for prediction. NEON surveys are updated annually and we expect future flights to correct these errors. We removed the GUIL puerto rico site due to its very steep topography and poor sunangle during data collection. The DeepForest algorithm responded poorly to predicting crowns in intensely shaded areas where there was very little sun penetration. We are happy to make these data are available upon request.

    # Contact

    We welcome questions, ideas and general inquiries. The data can be used for many applications and we look forward to hearing from you. Contact ben.weinstein@weecology.org.

  4. Fatal civil airliner accidents by country and region 1945-2022

    • statista.com
    • ai-chatbox.pro
    Updated Apr 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Fatal civil airliner accidents by country and region 1945-2022 [Dataset]. https://www.statista.com/statistics/262867/fatal-civil-airliner-accidents-since-1945-by-country-and-region/
    Explore at:
    Dataset updated
    Apr 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As a result of the continued annual growth in global air traffic passenger demand, the number of airplanes that were involved in accidents is on the increase. Although the United States is ranked among the 20 countries with the highest quality of air infrastructure, the U.S. reports the highest number of civil airliner accidents worldwide. 2020 was the year with more plane crashes victims, despite fewer flights The number of people killed in accidents involving large commercial aircraft has risen globally in 2020, even though the number of commercial flights performed last year dropped by 57 percent to 16.4 million. More than half of the total number of deaths were recorded in January 2020, when an Ukrainian plane was shot down in Iranian airspace, a tragedy that killed 176 people. The second fatal incident took place in May, when a Pakistani airliner crashed, killing 97 people. Changes in aviation safety In terms of fatal accidents, it seems that aviation safety experienced some decline on a couple of parameters. For example, there were 0.37 jet hull losses per one million flights in 2016. In 2017, passenger flights recorded the safest year in world history, with only 0.11 jet hull losses per one million flights. In 2020, the region with the highest hull loss rate was the Commonwealth of Independent States. These figures do not take into account accidents involving military, training, private, cargo and helicopter flights.

  5. Volume of air-freight transport in the United Arab Emirates 2014-2029

    • statista.com
    Updated Aug 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Volume of air-freight transport in the United Arab Emirates 2014-2029 [Dataset]. https://www.statista.com/topics/10278/air-traffic-in-uae/
    Explore at:
    Dataset updated
    Aug 16, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United Arab Emirates
    Description

    The volume of air-freight transport in the United Arab Emirates was forecast to decrease between 2024 and 2029 by in total 0.02 billion ton-kilometers. This overall decrease does not happen continuously, notably not in 2026 and 2027. The volume of air-freight transport is estimated to amount to 14 billion ton-kilometers in 2029. As defined by Worldbank, air freight refers to the summated volume of freight, express and diplomatic bags carried across the various flight stages (from takeoff to the next landing). The forecast has been adjusted for the expected impact of COVID-19.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).Find more key insights for the volume of air-freight transport in countries like Oman and Israel.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Global air traffic - number of flights 2004-2025 [Dataset]. https://www.statista.com/statistics/564769/airline-industry-number-of-flights/
Organization logo

Global air traffic - number of flights 2004-2025

Explore at:
96 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 27, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

The number of flights performed globally by the airline industry has increased steadily since the early 2000s and reached **** million in 2019. However, due to the coronavirus pandemic, the number of flights dropped to **** million in 2020. The flight volume increased again in the following years and was forecasted to reach ** million in 2025.

Search
Clear search
Close search
Google apps
Main menu