Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here
Facebook
TwitterBy Priyanka Dobhal [source]
This dataset contains the rankings of the 2020 Forbes list of 100 most powerful women from around the world. This dataset includes detailed insights on each woman, such as their age, country/territory, category, and designation. This comprehensive ranking celebrates female leaders that are making an impact in their field and around the world while inspiring us to continue striving for gender parity and driving positive social change. Explore this dataset to get an idea of who are some of the top female voices right now at the forefront of progress
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Creating personalized stories of each woman to showcase their inspiring accomplishments, achievements and successes.
- Analyzing the age range of female Forbes 100 Power Women list to adjust marketing, staffing, and other outreach initiatives aimed at empowering women globally.
- Developing an interactive map with information about the country/territory of origin for each Forbes Power Woman, with an interactive feature that provides stories from successful women from these countries/territories that can serve as inspiration for other aspiring entrepreneurs
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: Forbes 100 Women List 2020.csv | Column name | Description | |:----------------------|:-------------------------------------------------------------------------------| | Name | Name of the Power Woman. (String) | | Age | Age of the Power Woman. (Integer) | | Country/Territory | Country or territory of origin of the Power Woman. (String) | | Category | Category of the Power Woman's achievements. (String) | | Designation | Designation of the Power Woman. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Priyanka Dobhal.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Blue Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Blue Earth. The dataset can be utilized to understand the population distribution of Blue Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Blue Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Blue Earth.
Key observations
Largest age group (population): Male # 40-44 years (125) | Female # 85+ years (156). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth Population by Gender. You can refer the same here
Facebook
TwitterData Series: Proportion of ever-partnered women and girls subjected to physical and/or sexual violence by a current or former intimate partner in the previous 12 months, by age Indicator: V.1 - Proportion of ever-partnered women and girls aged 15 years and older subjected to physical, sexual or psychological violence by a current or former intimate partner in the previous 12 months, by form of violence and by age Source year: 2022 This dataset is part of the Minimum Gender Dataset compiled by the United Nations Statistics Division. Domain: Human rights of women and girl children
Facebook
TwitterBy Amber Thomas [source]
This dataset contains all of the data used in the Pudding essay When Women Make Headlines published in January 2022. This dataset was created to analyze gendered language, bias and language themes in news headlines from across the world. It contains headlines from top50 news publications and news agencies from four major countries - USA, UK, India and South Africa - as published by SimilarWeb (as of 2021-06-06).
To collect this data we used RapidAPI's google news API to query headlines containing one or more of keywords selected based on existing research done by Huimin Xu & team and The Swaddle team. We analyzed words used in headlines manually curating two dictionaries — gendered words about women (words that are explicitly gendered) and words that denote societal/behavioral stereotypes about women. To calculate bias scores, we utilized technology developed through Yasmeen Hitti & team’s research on gender bias text analysis. To categorize words used into themes (violence/crime, empowerment, race/ethnicity/identity etc), we manually curated four dictionaries utilizing Natural Language Processing packages for Python like spacy & nltk for our analysis. Plus, inverting polarity scores with vaderSentiment algorithm helped us shed light on differences between women-centered/non-women centered polarity levels as well as differences between global polarity baselines of each country's most visited publications & news agencies according to SimilarWeb 2020 statistics..
This dataset enables journalists, researchers and educators researching issues related to gender equity within media outlets around the world further insights into potential disparities with just a few lines of code! Any discoveries made by using this data should provide valuable support for evidence-based argumentation . Let us advocate for greater awareness towards female representation better quality coverage!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a comprehensive look at the portrayal of women in headlines from 2010-2020. Using this dataset, researchers and data scientists can explore a range of topics including language used to describe women, bias associated with different topics or publications, and temporal patterns in headlines about women over time.
To use this dataset effectively, it is helpful to understand the structure of the data. The columns include headline_no_site (the text of the headline without any information about which publication it is from), time (the date and time that the article was published), country (the country where it was published), bias score (calculated using Gender Bias Taxonomy V1.0) and year (the year that the article was published).
By exploring these columns individually or combining them into groups such as by publication or by topic, there are many ways to make meaningful discoveries using this data set. For example, one could explore if certain news outlets employ more gender-biased language when writing about female subjects than other outlets or investigate whether female-centric stories have higher/lower bias scores than average for a particular topic across multiple countries over time. This type of analysis helps researchers to gain insight into how our culture's dialogue has evolved over recent years as relates to women in media coverage worldwide
- A comparative, cross-country study of the usage of gendered language and the prevalence of gender bias in headlines to better understand regional differences.
- Creating an interactive visualization showing the evolution of headline bias scores over time with respect to a certain topic or population group (such as women).
- Analyzing how different themes are covered in headlines featuring women compared to those without, such as crime or violence versus empowerment or race and ethnicity, to see if there’s any difference in how they are portrayed by the media
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: headlines_reduced_temporal.csv | Column name | Description | |:---------------------|:-------------------------------------------------------------------------------------...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Demographic and Health Surveys (DHS) Program exists to advance the global understanding of health and population trends in developing countries.
The UN describes violence against women and girls (VAWG) as: “One of the most widespread, persistent, and devastating human rights violations in our world today. It remains largely unreported due to the impunity, silence, stigma, and shame surrounding it.”
In general terms, it manifests itself in physical, sexual, and psychological forms, encompassing: • intimate partner violence (battering, psychological abuse, marital rape, femicide) • sexual violence and harassment (rape, forced sexual acts, unwanted sexual advances, child sexual abuse, forced marriage, street harassment, stalking, cyber-harassment), human trafficking (slavery, sexual exploitation) • female genital mutilation • child marriage
The data was taken from a survey of men and women in African, Asian, and South American countries, exploring the attitudes and perceived justifications given for committing acts of violence against women. The data also explores different sociodemographic groups that the respondents belong to, including: Education Level, Marital status, Employment, and Age group.
It is, therefore, critical that the countries where these views are widespread, prioritize public awareness campaigns, and access to education for women and girls, to communicate that violence against women and girls is never acceptable or justifiable.
| Field | Definition |
|---|---|
| Record ID | Numeric value unique to each question by country |
| Country | Country in which the survey was conducted |
| Gender | Whether the respondents were Male or Female |
| Demographics Question | Refers to the different types of demographic groupings used to segment respondents – marital status, education level, employment status, residence type, or age |
| Demographics Response | Refers to demographic segment into which the respondent falls (e.g. the age groupings are split into 15-24, 25-34, and 35-49) |
| Survey Year | Year in which the Demographic and Health Survey (DHS) took place. “DHS surveys are nationally-representative household surveys that provide data for a wide range of monitoring and impact evaluation indicators in the areas of population, health and nutrition. Standard DHS Surveys have large sample sizes (usually between 5,000 and 30,000 households) and typically are conducted around every 5 years, to allow comparisons over time.” |
| Value | % of people surveyed in the relevant group who agree with the question (e.g. the percentage of women aged 15-24 in Afghanistan who agree that a husband is justified in hitting or beating his wife if she burns the food) |
Question | Respondents were asked if they agreed with the following statements: - A husband is justified in hitting or beating his wife if she burns the food - A husband is justified in hitting or beating his wife if she argues with him - A husband is justified in hitting or beating his wife if she goes out without telling him - A husband is justified in hitting or beating his wife if she neglects the children - A husband is justified in hitting or beating his wife if she refuses to have sex with him - A husband is justified in hitting or beating his wife for at least one specific reason
More - Find More Exciting🙀 Datasets Here - An Upvote👍 A Dayᕙ(`▿´)ᕗ , Keeps Aman Hurray Hurray..... ٩(˘◡˘)۶Haha
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Earth. The dataset can be utilized to understand the population distribution of Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Earth.
Key observations
Largest age group (population): Male # 15-19 years (71) | Female # 10-14 years (70). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany DE: Population: Female: Aged 15-64 data was reported at 25,940,226.000 Person in 2023. This records a decrease from the previous number of 26,244,031.000 Person for 2022. Germany DE: Population: Female: Aged 15-64 data is updated yearly, averaging 26,508,473.000 Person from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 27,619,973.000 Person in 1998 and a record low of 25,711,613.000 Person in 1971. Germany DE: Population: Female: Aged 15-64 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Population and Urbanization Statistics. Female population between the ages 15 to 64. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.;World Bank staff estimates using the World Bank's total population and age/sex distributions of the United Nations Population Division's World Population Prospects: 2024 Revision.;Sum;Relevance to gender indicator: Knowing how many girls, adolescents and women there are in a population helps a country in determining its provision of services.
Facebook
TwitterSeries Name: Proportion of ever-partnered women and girls subjected to physical and or sexual violence by a current or former intimate partner in the previous 12 months by age (percent)Series Code: VC_VAW_MARRRelease Version: 2020.Q2.G.03 This dataset is the part of the Global SDG Indicator Database compiled through the UN System in preparation for the Secretary-General's annual report on Progress towards the Sustainable Development Goals.Indicator 5.2.1: Proportion of ever-partnered women and girls aged 15 years and older subjected to physical, sexual or psychological violence by a current or former intimate partner in the previous 12 months, by form of violence and by ageTarget 5.2: Eliminate all forms of violence against all women and girls in the public and private spheres, including trafficking and sexual and other types of exploitationGoal 5: Achieve gender equality and empower all women and girlsFor more information on the compilation methodology of this dataset, see https://unstats.un.org/sdgs/metadata/
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
CONTENT
Gender Inequality Index: A composite measure reflecting inequality in achievement between women and men in three dimensions: reproductive health, empowerment and the labour market. See Technical note 4 at http://hdr.undp.org/sites/default/files/hdr2022_technical_notes.pdf for details on how the Gender Inequality Index is calculated.
Maternal mortality ratio: Number of deaths due to pregnancy-related causes per 100,000 live births.
Adolescent birth rate: Number of births to women ages 15–19 per 1,000 women ages 15–19.
Share of seats in parliament: Proportion of seats held by women in the national parliament expressed as a percentage of total seats For countries with a bicameral legislative system, the share of seats is calculated based on both houses.
Population with at least some secondary education: Percentage of the population ages 25 and older that has reached (but not necessarily completed) a secondary level of education.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Black Earth town by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Black Earth town. The dataset can be utilized to understand the population distribution of Black Earth town by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Black Earth town. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Black Earth town.
Key observations
Largest age group (population): Male # 65-69 years (37) | Female # 50-54 years (31). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth town Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for RETIREMENT AGE WOMEN reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The study used an explanatory sequential mixed method design. This method is appropriate for examining the employment status of STEM graduates in terms of gender as well as the time it takes for graduates to secure their first job after graduating. The method is also employed to look at how staff in higher education supports female graduates in their search for employment after graduation. By design, this study collects data in a sequential fashion, starting with quantitative data and moving on to qualitative data that provide context for the quantitative data.Both primary and secondary sources of data were employed in the study (See Figure A). While information from secondary sources was gathered using Eric, Scopus, and Google search engines, information from primary sources was gathered through questionnaires and interviews. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) was used to conduct the analysis. Using the keywords employment status, duration of job search, and gender-responsive support of higher education, the first 221 articles were collected. Only 15 articles were chosen when PRISMA used the inclusion and exclusion criteria to filter out publications gathered between 2012 and 2024. The information gathered from secondary sources was utilized to triangulate the findings of the primary data sources. The following figure shows the data sources.Figure A: Data sources for the study (see the Description Word Doc. in the dataset)Based on the explanatory sequential mixed method design, quantitative data analysis was first carried out. In order to determine whether there were statistical differences in the employment status and the time it took for male and female STEM engineering graduates to find jobs, the chi square test was employed. An analysis of the degree to which higher education institutions assist female graduates in their job search was also done using an independent samples t-test. The viewpoints of academics from these related universities and prospective employers of STEM graduates were captured through the use of qualitative data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 2015 Global Nutrition Report Dataset contains data for all the indicators that were used in Global Nutrition Report 2015: Actions and Accountability to Advance Nutrition & Sustainable Development. The data are compiled from secondary sources including United Nations Children's Fund (UNICEF), World Health Organization (WHO), and the World Bank (WB) among many others. The dataset broadly contains information on adult and child nutrition, economic demography, nutrition intervention coverage, and policy legislation in the nutrition sector.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Arab Emirates AE: Population: as % of Total: Female: Aged 15-64 data was reported at 73.941 % in 2017. This records an increase from the previous number of 73.775 % for 2016. United Arab Emirates AE: Population: as % of Total: Female: Aged 15-64 data is updated yearly, averaging 54.297 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 73.941 % in 2017 and a record low of 51.471 % in 1960. United Arab Emirates AE: Population: as % of Total: Female: Aged 15-64 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United Arab Emirates – Table AE.World Bank: Population and Urbanization Statistics. Female population between the ages 15 to 64 as a percentage of the total female population. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; Weighted average; Relevance to gender indicator: Knowing how many girls, adolescents and women there are in a population helps a country in determining its provision of services.
Facebook
TwitterThis data contains all the essential data in the form of % with respect to rural and urban Indian states . This dataset is highly accurate as this is taken from the Indian govt. it is updated till 2021 for all states and union territories. source of data is data.gov.in titled - ******All India and State/UT-wise Factsheets of National Family Health Survey******
it is advised to you pls search the data keywords you need by using (Ctrl+f) , as it will help to avoid time wastage. States/UTs
Different columns it contains are Area
Number of Households surveyed Number of Women age 15-49 years interviewed Number of Men age 15-54 years interviewed
Female population age 6 years and above who ever attended school (%)
Population below age 15 years (%)
Sex ratio of the total population (females per 1,000 males)
Sex ratio at birth for children born in the last five years (females per 1,000 males)
Children under age 5 years whose birth was registered with the civil authority (%)
Deaths in the last 3 years registered with the civil authority (%)
Population living in households with electricity (%)
Population living in households with an improved drinking-water source1 (%)
Population living in households that use an improved sanitation facility2 (%)
Households using clean fuel for cooking3 (%) Households using iodized salt (%)
Households with any usual member covered under a health insurance/financing scheme (%)
Children age 5 years who attended pre-primary school during the school year 2019-20 (%)
Women (age 15-49) who are literate4 (%)
Men (age 15-49) who are literate4 (%)
Women (age 15-49) with 10 or more years of schooling (%)
Men (age 15-49) with 10 or more years of schooling (%)
Women (age 15-49) who have ever used the internet (%)
Men (age 15-49) who have ever used the internet (%)
Women age 20-24 years married before age 18 years (%)
Men age 25-29 years married before age 21 years (%)
Total Fertility Rate (number of children per woman) Women age 15-19 years who were already mothers or pregnant at the time of the survey (%)
Adolescent fertility rate for women age 15-19 years5 Neonatal mortality rate (per 1000 live births)
Infant mortality rate (per 1000 live births) Under-five mortality rate (per 1000 live births)
Current Use of Family Planning Methods (Currently Married Women Age 15-49 years) - Any method6 (%)
Current Use of Family Planning Methods (Currently Married Women Age 15-49 years) - Any modern method6 (%)
Current Use of Family Planning Methods (Currently Married Women Age 15-49 years) - Female sterilization (%)
Current Use of Family Planning Methods (Currently Married Women Age 15-49 years) - Male sterilization (%)
Current Use of Family Planning Methods (Currently Married Women Age 15-49 years) - IUD/PPIUD (%)
Current Use of Family Planning Methods (Currently Married Women Age 15-49 years) - Pill (%)
Current Use of Family Planning Methods (Currently Married Women Age 15-49 years) - Condom (%)
Current Use of Family Planning Methods (Currently Married Women Age 15-49 years) - Injectables (%)
Total Unmet need for Family Planning (Currently Married Women Age 15-49 years)7 (%)
Unmet need for spacing (Currently Married Women Age 15-49 years)7 (%)
Health worker ever talked to female non-users about family planning (%)
Current users ever told about side effects of current method of family planning8 (%)
Mothers who had an antenatal check-up in the first trimester (for last birth in the 5 years before the survey) (%)
Mothers who had at least 4 antenatal care visits (for last birth in the 5 years before the survey) (%)
Mothers whose last birth was protected against neonatal tetanus (for last birth in the 5 years before the survey)9 (%)
Mothers who consumed iron folic acid for 100 days or more when they were pregnant (for last birth in the 5 years before the survey) (%)
Mothers who consumed iron folic acid for 180 days or more when they were pregnant (for last birth in the 5 years before the survey} (%)
Registered pregnancies for which the mother received a Mother and Child Protection (MCP) card (for last birth in the 5 years before the survey) (%)
Mothers who received postnatal care from a doctor/nurse/LHV/ANM/midwife/other health personnel within 2 days of delivery (for last birth in the 5 years before the survey) (%)
Average out-of-pocket expenditure per delivery in a public health facility (for last birth in the 5 years before the survey) (Rs.)
Children born at home who were taken to a health facility for a check-up within 24 hours of birth (for last birth in the 5 years before the survey} (%)
Children who received postnatal care from a doctor/nurse/LHV/ANM/midwife/ other health personnel within 2 days of delivery (for last birth in the 5 years before the survey) (%)
Institutional births (in the 5...
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The WTA (Women's Tennis Association) is the principal organizing body of women's professional tennis, it governs its own tour worldwide. On its website, it provides a lot of data about the players as individuals as well the tour matches with results and the current rank during it.
Luckily for us, Jeff Sackmann scraped the website and collected everything from there and put in a nice way into easily consumable datasets.
On Jeff's GitHub account you can find a lot more data about tennis!
The dataset present here is directly downloaded from the source, no alteration on the data was made, the files were only placed in subdirectories so one can easily locate them.
It covers statistics of players registered on the WTA, the matches that happened on each tour by year, with results, as well some qualifying matches for the tours.
As a reminder, you may not find all data of the matches prior to 2006, so be warned when working with those sets.
Thanks to Jeff Sackmann for maintaining such collection and making it public!
Also, a thank you for WTA for collecting those stats and making them accessible to anyone on their site.
Here are some things to start:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Blue Earth City township by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Blue Earth City township. The dataset can be utilized to understand the population distribution of Blue Earth City township by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Blue Earth City township. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Blue Earth City township.
Key observations
Largest age group (population): Male # 60-64 years (26) | Female # 65-69 years (32). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth City township Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth township by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth township. The dataset can be utilized to understand the population distribution of White Earth township by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth township. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth township.
Key observations
Largest age group (population): Male # 5-9 years (82) | Female # 25-29 years (69). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth township Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Sugar Land by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Sugar Land. The dataset can be utilized to understand the population distribution of Sugar Land by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Sugar Land. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Sugar Land.
Key observations
Largest age group (population): Male # 10-14 years (4,603) | Female # 45-49 years (4,319). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sugar Land Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here