https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This dataset investigates the relationship between Wordle answers and Google search spikes, particularly for uncommon words. It spans from June 21, 2021 to June 24, 2025.
It includes daily data for each Wordle answer, its search trend on that day, and frequency-based commonality indicators.
Each Wordle answer causes a spike in search volume on the day it appears — more so if the word is rare.
This dataset supports exploration of:
Column | Description |
---|---|
date | Date of the Wordle puzzle |
word | Correct 5-letter Wordle answer |
game | Wordle game number |
wordfreq_commonality | Normalized frequency score using Python’s wordfreq library |
subtlex_commonality | Normalized frequency score using SUBTLEX-US dataset |
trend_day_global | Google search interest on the day (global, all categories) |
trend_avg_200_global | 200-day average search interest (global, all categories) |
trend_day_language | Search interest on Wordle day (Language Resources category) |
trend_avg_200_language | 200-day average search interest (Language Resources category) |
Notes: - All trend values are relative (0–100 scale, per Google Trends)
wordfreq
Python librarypytrends
Can find analysis done using this data in the blog post
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Drive Stats
Drive Stats is a public data set of daily metrics on the hard drives in Backblaze’s cloud storage infrastructure that Backblaze has open-sourced since April 2013. Currently, Drive Stats comprises over 388 million records, rising by over 240,000 records per day. Drive Stats is an append-only dataset effectively logging daily statistics that once written are never updated or deleted. This is our first Hugging Face dataset; feel free to suggest improvements by creating a… See the full description on the dataset page: https://huggingface.co/datasets/backblaze/Drive_Stats.
The dataset of this paper is collected based on Google, Blockchain, and the Bitcoin market. Generally, there is a total of 26 features, however, a feature whose correlation rate is lower than 0.3 between the variations of price and the variations of feature has been eliminated. Hence, a total of 21 practical features including Market capitalization, Trade-volume, Transaction-fees USD, Average confirmation time, Difficulty, High price, Low price, Total hash rate, Block-size, Miners-revenue, N-transactions-total, Google searches, Open price, N-payments-per Block, Total circulating Bitcoin, Cost-per-transaction percent, Fees-USD-per transaction, N-unique-addresses, N-transactions-per block, and Output-volume have been selected. In addition to the values of these features, for each feature, a new one is created that includes the difference between the previous day and the day before the previous day as a supportive feature. From the point of view of the number and history of the dataset used, a total of 1275 training data were used in the proposed model to extract patterns of Bitcoin price and they were collected from 12 Nov 2018 to 4 Jun 2021.
This is the US Coronavirus data repository from The New York Times . This data includes COVID-19 cases and deaths reported by state and county. The New York Times compiled this data based on reports from state and local health agencies. More information on the data repository is available here . For additional reporting and data visualizations, see The New York Times’ U.S. coronavirus interactive site
Which US counties have the most confirmed cases per capita? This query determines which counties have the most cases per 100,000 residents. Note that this may differ from similar queries of other datasets because of differences in reporting lag, methodologies, or other dataset differences.
SELECT
covid19.county,
covid19.state_name,
total_pop AS county_population,
confirmed_cases,
ROUND(confirmed_cases/total_pop *100000,2) AS confirmed_cases_per_100000,
deaths,
ROUND(deaths/total_pop *100000,2) AS deaths_per_100000
FROM
bigquery-public-data.covid19_nyt.us_counties
covid19
JOIN
bigquery-public-data.census_bureau_acs.county_2017_5yr
acs ON covid19.county_fips_code = acs.geo_id
WHERE
date = DATE_SUB(CURRENT_DATE(),INTERVAL 1 day)
AND covid19.county_fips_code != "00000"
ORDER BY
confirmed_cases_per_100000 desc
How do I calculate the number of new COVID-19 cases per day?
This query determines the total number of new cases in each state for each day available in the dataset
SELECT
b.state_name,
b.date,
MAX(b.confirmed_cases - a.confirmed_cases) AS daily_confirmed_cases
FROM
(SELECT
state_name AS state,
state_fips_code ,
confirmed_cases,
DATE_ADD(date, INTERVAL 1 day) AS date_shift
FROM
bigquery-public-data.covid19_nyt.us_states
WHERE
confirmed_cases + deaths > 0) a
JOIN
bigquery-public-data.covid19_nyt.us_states
b ON
a.state_fips_code = b.state_fips_code
AND a.date_shift = b.date
GROUP BY
b.state_name, date
ORDER BY
date desc
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update — December 7, 2014. – Evidence-based medicine (EBM) is not working for many reasons, for example: 1. Incorrect in their foundations (paradox): hierarchical levels of evidence are supported by opinions (i.e., lowest strength of evidence according to EBM) instead of real data collected from different types of study designs (i.e., evidence). http://dx.doi.org/10.6084/m9.figshare.1122534 2. The effect of criminal practices by pharmaceutical companies is only possible because of the complicity of others: healthcare systems, professional associations, governmental and academic institutions. Pharmaceutical companies also corrupt at the personal level, politicians and political parties are on their payroll, medical professionals seduced by different types of gifts in exchange of prescriptions (i.e., bribery) which very likely results in patients not receiving the proper treatment for their disease, many times there is no such thing: healthy persons not needing pharmacological treatments of any kind are constantly misdiagnosed and treated with unnecessary drugs. Some medical professionals are converted in K.O.L. which is only a puppet appearing on stage to spread lies to their peers, a person supposedly trained to improve the well-being of others, now deceits on behalf of pharmaceutical companies. Probably the saddest thing is that many honest doctors are being misled by these lies created by the rules of pharmaceutical marketing instead of scientific, medical, and ethical principles. Interpretation of EBM in this context was not anticipated by their creators. “The main reason we take so many drugs is that drug companies don’t sell drugs, they sell lies about drugs.” ―Peter C. Gøtzsche “doctors and their organisations should recognise that it is unethical to receive money that has been earned in part through crimes that have harmed those people whose interests doctors are expected to take care of. Many crimes would be impossible to carry out if doctors weren’t willing to participate in them.” —Peter C Gøtzsche, The BMJ, 2012, Big pharma often commits corporate crime, and this must be stopped. Pending (Colombia): Health Promoter Entities (In Spanish: EPS ―Empresas Promotoras de Salud).
Google’s energy consumption has increased over the last few years, reaching 25.9 terawatt hours in 2023, up from 12.8 terawatt hours in 2019. The company has made efforts to make its data centers more efficient through customized high-performance servers, using smart temperature and lighting, advanced cooling techniques, and machine learning. Datacenters and energy Through its operations, Google pursues a more sustainable impact on the environment by creating efficient data centers that use less energy than the average, transitioning towards renewable energy, creating sustainable workplaces, and providing its users with the technological means towards a cleaner future for the future generations. Through its efficient data centers, Google has also managed to divert waste from its operations away from landfills. Reducing Google’s carbon footprint Google’s clean energy efforts is also related to their efforts to reduce their carbon footprint. Since their commitment to using 100 percent renewable energy, the company has met their targets largely through solar and wind energy power purchase agreements and buying renewable power from utilities. Google is one of the largest corporate purchasers of renewable energy in the world.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Dataset for the paper "Capturing the Aftermath of the Dobbs v. Jackson Decision in the Google Search Results across 65 U.S. Locations" to appear in the proceedings of ICWSM 2023. Starting on the day of the U.S Supreme Court decision to overturn Roe v. Wade, we collected Google Search result pages for 21 days in 65 U.S. locations for a set of almost 1,700 queries. We stored all the SERPs generated by Google. Because the archives containing these SERPs are much larger than the file limits of the Harvard Dataverse, you can find them at this address: https://cs.wellesley.edu/~credlab/icwsm2023/. Instead, in this repository we will share all the files that were created by parsing some of the information in the SERPs: organic search results, top stories, and embedded tweets. We also provide aggregated statistics for the domains appearing in the organic results and the top stories. This dataset can be useful for answering questions about Google Search's algorithms with respect to shaping access to information related to important news events.
Ethereum is a crypto currency which leverages blockchain technology to store transactions in a distributed ledger. A blockchain is an ever-growing "tree" of blocks, where each block contains a number of transactions. To learn more, read the "Ethereum in BigQuery: a Public Dataset for smart contract analytics" blog post by Google Developer Advocate Allen Day. This dataset is part of a larger effort to make cryptocurrency data available in BigQuery through the Google Cloud Public Datasets program . The program is hosting several cryptocurrency datasets, with plans to both expand offerings to include additional cryptocurrencies and reduce the latency of updates. You can find these datasets by searching "cryptocurrency" in GCP Marketplace. For analytics interoperability, we designed a unified schema that allows all Bitcoin-like datasets to share queries. Interested in learning more about how the data from these blockchains were brought into BigQuery? Looking for more ways to analyze the data? Check out the Google Cloud Big Data blog post and try the sample queries below to get started. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The main file contains an entry (N=28530) per search result in all collected pages. It comprises the following columns:
Manually annotated abstracts resulting from the searches.
The zip contains an HTML per search engine result page collected (N=2853). See column filename from the main dataset.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Blockchain technology, first implemented by Satoshi Nakamoto in 2009 as a core component of Bitcoin, is a distributed, public ledger recording transactions. Its usage allows secure peer-to-peer communication by linking blocks containing hash pointers to a previous block, a timestamp, and transaction data. Bitcoin is a decentralized digital currency (cryptocurrency) which leverages the Blockchain to store transactions in a distributed manner in order to mitigate against flaws in the financial industry.
Nearly ten years after its inception, Bitcoin and other cryptocurrencies experienced an explosion in popular awareness. The value of Bitcoin, on the other hand, has experienced more volatility. Meanwhile, as use cases of Bitcoin and Blockchain grow, mature, and expand, hype and controversy have swirled.
In this dataset, you will have access to information about blockchain blocks and transactions. All historical data are in the bigquery-public-data:crypto_bitcoin
dataset. It’s updated it every 10 minutes. The data can be joined with historical prices in kernels. See available similar datasets here: https://www.kaggle.com/datasets?search=bitcoin.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_bitcoin.[TABLENAME]
. Fork this kernel to get started.
Allen Day (Twitter | Medium), Google Cloud Developer Advocate & Colin Bookman, Google Cloud Customer Engineer retrieve data from the Bitcoin network using a custom client available on GitHub that they built with the bitcoinj
Java library. Historical data from the origin block to 2018-01-31 were loaded in bulk to two BigQuery tables, blocks_raw and transactions. These tables contain fresh data, as they are now appended when new blocks are broadcast to the Bitcoin network. For additional information visit the Google Cloud Big Data and Machine Learning Blog post "Bitcoin in BigQuery: Blockchain analytics on public data".
Photo by Andre Francois on Unsplash.
Zilliqa is a blockchain platform designed around the concept of sharding. Sharding means dividing the network into several smaller component networks that are able to process transactions in parallel. Cryptocurrency markets are becoming more accessible and analysis is increasing by the day. Gone will be the days when investors jump into crypto to become overnight millionaires and it is the reason some ICOs are doing well while others have been losing value since January. Zilliqa platform is among the few projects that seem to be gaining favor from different facets in the financial services sector. Zilliqa aims at maximizing scalability within blockchain tech. The platform has been developed using sharding tech in order to interlink more networks. This dataset is part of a larger effort to make cryptocurrency data available in BigQuery through the Google Cloud Public Datasets program. The program is hosting several cryptocurrency datasets, with plans to both expand offerings to include additional cryptocurrencies and reduce the latency of updates. You can find these datasets by searching "cryptocurrency" in GCP Marketplace. For analytics interoperability, we designed a unified schema that allows all Bitcoin-like datasets to share queries. Interested in learning more about how the data from these blockchains were brought into BigQuery? Looking for more ways to analyze the data? Check out the Google Cloud Big Data blog post and try the sample queries below to get started. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using
An education company named X Education sells online courses to industry professionals. On any given day, many professionals who are interested in the courses land on their website and browse for courses.
The company markets its courses on several websites and search engines like Google. Once these people land on the website, they might browse the courses or fill up a form for the course or watch some videos. When these people fill up a form providing their email address or phone number, they are classified to be a lead. Moreover, the company also gets leads through past referrals. Once these leads are acquired, employees from the sales team start making calls, writing emails, etc. Through this process, some of the leads get converted while most do not. The typical lead conversion rate at X education is around 30%.
Now, although X Education gets a lot of leads, its lead conversion rate is very poor. For example, if, say, they acquire 100 leads in a day, only about 30 of them are converted. To make this process more efficient, the company wishes to identify the most potential leads, also known as ‘Hot Leads’. If they successfully identify this set of leads, the lead conversion rate should go up as the sales team will now be focusing more on communicating with the potential leads rather than making calls to everyone.
There are a lot of leads generated in the initial stage (top) but only a few of them come out as paying customers from the bottom. In the middle stage, you need to nurture the potential leads well (i.e. educating the leads about the product, constantly communicating, etc. ) in order to get a higher lead conversion.
X Education wants to select the most promising leads, i.e. the leads that are most likely to convert into paying customers. The company requires you to build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score h have a higher conversion chance and the customers with lower lead score have a lower conversion chance. The CEO, in particular, has given a ballpark of the target lead conversion rate to be around 80%.
Variables Description
* Prospect ID - A unique ID with which the customer is identified.
* Lead Number - A lead number assigned to each lead procured.
* Lead Origin - The origin identifier with which the customer was identified to be a lead. Includes API, Landing Page Submission, etc.
* Lead Source - The source of the lead. Includes Google, Organic Search, Olark Chat, etc.
* Do Not Email -An indicator variable selected by the customer wherein they select whether of not they want to be emailed about the course or not.
* Do Not Call - An indicator variable selected by the customer wherein they select whether of not they want to be called about the course or not.
* Converted - The target variable. Indicates whether a lead has been successfully converted or not.
* TotalVisits - The total number of visits made by the customer on the website.
* Total Time Spent on Website - The total time spent by the customer on the website.
* Page Views Per Visit - Average number of pages on the website viewed during the visits.
* Last Activity - Last activity performed by the customer. Includes Email Opened, Olark Chat Conversation, etc.
* Country - The country of the customer.
* Specialization - The industry domain in which the customer worked before. Includes the level 'Select Specialization' which means the customer had not selected this option while filling the form.
* How did you hear about X Education - The source from which the customer heard about X Education.
* What is your current occupation - Indicates whether the customer is a student, umemployed or employed.
* What matters most to you in choosing this course An option selected by the customer - indicating what is their main motto behind doing this course.
* Search - Indicating whether the customer had seen the ad in any of the listed items.
* Magazine
* Newspaper Article
* X Education Forums
* Newspaper
* Digital Advertisement
* Through Recommendations - Indicates whether the customer came in through recommendations.
* Receive More Updates About Our Courses - Indicates whether the customer chose to receive more updates about the courses.
* Tags - Tags assigned to customers indicating the current status of the lead.
* Lead Quality - Indicates the quality of lead based on the data and intuition the employee who has been assigned to the lead.
* Update me on Supply Chain Content - Indicates whether the customer wants updates on the Supply Chain Content.
* Get updates on DM Content - Indicates whether the customer wants updates on the DM Content.
* Lead Profile - A lead level assigned to each customer based on their profile.
* City - The city of the customer.
* Asymmetric Activity Index - An index and score assigned to each customer based on their activity and their profile
* Asymmetric Profile Index
* Asymmetric Activity Score
* Asymmetric Profile Score
* I agree to pay the amount through cheque - Indicates whether the customer has agreed to pay the amount through cheque or not.
* a free copy of Mastering The Interview - Indicates whether the customer wants a free copy of 'Mastering the Interview' or not.
* Last Notable Activity - The last notable activity performed by the student.
UpGrad Case Study
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
A dataset of keywords that are relevant to lawyers, including their definitions, synonyms, antonyms, search volume and costs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was collected for the period spanning between 01/07/2019 and 31/12/2022.The historical Twitter volume were retrieved using ‘‘Bitcoin’’ (case insensitive) as the keyword from bitinfocharts.com. Google search volume was retrieved using library Gtrends. 2000 tweets per day using 4 times interval were crawled by employing Twitter API with the keyword “Bitcoin. The daily closing prices of Bitcoin, oil price, gold price, and U.S stock market indexes (S&P 500, NASDAQ, and Dow Jones Industrial Average) were collected using R libraries either Quantmod or Quandl.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This dataset investigates the relationship between Wordle answers and Google search spikes, particularly for uncommon words. It spans from June 21, 2021 to June 24, 2025.
It includes daily data for each Wordle answer, its search trend on that day, and frequency-based commonality indicators.
Each Wordle answer causes a spike in search volume on the day it appears — more so if the word is rare.
This dataset supports exploration of:
Column | Description |
---|---|
date | Date of the Wordle puzzle |
word | Correct 5-letter Wordle answer |
game | Wordle game number |
wordfreq_commonality | Normalized frequency score using Python’s wordfreq library |
subtlex_commonality | Normalized frequency score using SUBTLEX-US dataset |
trend_day_global | Google search interest on the day (global, all categories) |
trend_avg_200_global | 200-day average search interest (global, all categories) |
trend_day_language | Search interest on Wordle day (Language Resources category) |
trend_avg_200_language | 200-day average search interest (Language Resources category) |
Notes: - All trend values are relative (0–100 scale, per Google Trends)
wordfreq
Python librarypytrends
Can find analysis done using this data in the blog post