13 datasets found
  1. United States Google Search Trends: Government Measures: Government Subsidy

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States Google Search Trends: Government Measures: Government Subsidy [Dataset]. https://www.ceicdata.com/en/united-states/google-search-trends-by-categories/google-search-trends-government-measures-government-subsidy
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 23, 2025 - Mar 6, 2025
    Area covered
    United States
    Description

    United States Google Search Trends: Government Measures: Government Subsidy data was reported at 0.000 Score in 14 May 2025. This stayed constant from the previous number of 0.000 Score for 13 May 2025. United States Google Search Trends: Government Measures: Government Subsidy data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 14 May 2025, with 1261 observations. The data reached an all-time high of 0.000 Score in 14 May 2025 and a record low of 0.000 Score in 14 May 2025. United States Google Search Trends: Government Measures: Government Subsidy data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s United States – Table US.Google.GT: Google Search Trends: by Categories.

  2. COVID-19 Search Trends symptoms dataset

    • console.cloud.google.com
    Updated Dec 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:BigQuery%20Public%20Datasets%20Program&inv=1&invt=Ab2UXQ (2019). COVID-19 Search Trends symptoms dataset [Dataset]. https://console.cloud.google.com/marketplace/product/bigquery-public-datasets/covid19-search-trends
    Explore at:
    Dataset updated
    Dec 17, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Description

    The COVID-19 Search Trends symptoms dataset shows aggregated, anonymized trends in Google searches for a broad set of health symptoms, signs, and conditions. The dataset provides a daily or weekly time series for each region showing the relative volume of searches for each symptom. This dataset is intended to help researchers to better understand the impact of COVID-19. It shouldn't be used for medical diagnostic, prognostic, or treatment purposes. It also isn't intended to be used for guidance on personal travel plans. To learn more about the dataset, how we generate it and preserve privacy, read the data documentation . To visualize the data, try exploring these interactive charts and map of symptom search trends . As of Dec. 15, 2020, the dataset was expanded to include trends for Australia, Ireland, New Zealand, Singapore, and the United Kingdom. This expanded data is available in new tables that provide data at country and two subregional levels. We will not be updating existing state/county tables going forward. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  3. Data from: Qbias – A Dataset on Media Bias in Search Queries and Query...

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Haak; Fabian Haak; Philipp Schaer; Philipp Schaer (2023). Qbias – A Dataset on Media Bias in Search Queries and Query Suggestions [Dataset]. http://doi.org/10.5281/zenodo.7682915
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 1, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Fabian Haak; Fabian Haak; Philipp Schaer; Philipp Schaer
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present Qbias, two novel datasets that promote the investigation of bias in online news search as described in

    Fabian Haak and Philipp Schaer. 2023. 𝑄𝑏𝑖𝑎𝑠 - A Dataset on Media Bias in Search Queries and Query Suggestions. In Proceedings of ACM Web Science Conference (WebSci’23). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3578503.3583628.

    Dataset 1: AllSides Balanced News Dataset (allsides_balanced_news_headlines-texts.csv)

    The dataset contains 21,747 news articles collected from AllSides balanced news headline roundups in November 2022 as presented in our publication. The AllSides balanced news feature three expert-selected U.S. news articles from sources of different political views (left, right, center), often featuring spin bias, and slant other forms of non-neutral reporting on political news. All articles are tagged with a bias label by four expert annotators based on the expressed political partisanship, left, right, or neutral. The AllSides balanced news aims to offer multiple political perspectives on important news stories, educate users on biases, and provide multiple viewpoints. Collected data further includes headlines, dates, news texts, topic tags (e.g., "Republican party", "coronavirus", "federal jobs"), and the publishing news outlet. We also include AllSides' neutral description of the topic of the articles.
    Overall, the dataset contains 10,273 articles tagged as left, 7,222 as right, and 4,252 as center.

    To provide easier access to the most recent and complete version of the dataset for future research, we provide a scraping tool and a regularly updated version of the dataset at https://github.com/irgroup/Qbias. The repository also contains regularly updated more recent versions of the dataset with additional tags (such as the URL to the article). We chose to publish the version used for fine-tuning the models on Zenodo to enable the reproduction of the results of our study.

    Dataset 2: Search Query Suggestions (suggestions.csv)

    The second dataset we provide consists of 671,669 search query suggestions for root queries based on tags of the AllSides biased news dataset. We collected search query suggestions from Google and Bing for the 1,431 topic tags, that have been used for tagging AllSides news at least five times, approximately half of the total number of topics. The topic tags include names, a wide range of political terms, agendas, and topics (e.g., "communism", "libertarian party", "same-sex marriage"), cultural and religious terms (e.g., "Ramadan", "pope Francis"), locations and other news-relevant terms. On average, the dataset contains 469 search queries for each topic. In total, 318,185 suggestions have been retrieved from Google and 353,484 from Bing.

    The file contains a "root_term" column based on the AllSides topic tags. The "query_input" column contains the search term submitted to the search engine ("search_engine"). "query_suggestion" and "rank" represents the search query suggestions at the respective positions returned by the search engines at the given time of search "datetime". We scraped our data from a US server saved in "location".

    We retrieved ten search query suggestions provided by the Google and Bing search autocomplete systems for the input of each of these root queries, without performing a search. Furthermore, we extended the root queries by the letters a to z (e.g., "democrats" (root term) >> "democrats a" (query input) >> "democrats and recession" (query suggestion)) to simulate a user's input during information search and generate a total of up to 270 query suggestions per topic and search engine. The dataset we provide contains columns for root term, query input, and query suggestion for each suggested query. The location from which the search is performed is the location of the Google servers running Colab, in our case Iowa in the United States of America, which is added to the dataset.

    AllSides Scraper

    At https://github.com/irgroup/Qbias, we provide a scraping tool, that allows for the automatic retrieval of all available articles at the AllSides balanced news headlines.

    We want to provide an easy means of retrieving the news and all corresponding information. For many tasks it is relevant to have the most recent documents available. Thus, we provide this Python-based scraper, that scrapes all available AllSides news articles and gathers available information. By providing the scraper we facilitate access to a recent version of the dataset for other researchers.

  4. China Google Search Trends: Online Shopping: Tmall

    • ceicdata.com
    Updated Mar 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). China Google Search Trends: Online Shopping: Tmall [Dataset]. https://www.ceicdata.com/en/china/google-search-trends-by-categories/google-search-trends-online-shopping-tmall
    Explore at:
    Dataset updated
    Mar 18, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 7, 2025 - Mar 18, 2025
    Area covered
    China
    Description

    China Google Search Trends: Online Shopping: Tmall data was reported at 8.000 Score in 14 May 2025. This stayed constant from the previous number of 8.000 Score for 13 May 2025. China Google Search Trends: Online Shopping: Tmall data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 14 May 2025, with 1261 observations. The data reached an all-time high of 70.000 Score in 22 Jan 2023 and a record low of 0.000 Score in 02 May 2025. China Google Search Trends: Online Shopping: Tmall data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s China – Table CN.Google.GT: Google Search Trends: by Categories.

  5. n

    Repository Analytics and Metrics Portal (RAMP) 2020 data

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Jul 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Wheeler; Kenning Arlitsch (2021). Repository Analytics and Metrics Portal (RAMP) 2020 data [Dataset]. http://doi.org/10.5061/dryad.dv41ns1z4
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 23, 2021
    Dataset provided by
    University of New Mexico
    Montana State University
    Authors
    Jonathan Wheeler; Kenning Arlitsch
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Version update: The originally uploaded versions of the CSV files in this dataset included an extra column, "Unnamed: 0," which is not RAMP data and was an artifact of the process used to export the data to CSV format. This column has been removed from the revised dataset. The data are otherwise the same as in the first version.

    The Repository Analytics and Metrics Portal (RAMP) is a web service that aggregates use and performance use data of institutional repositories. The data are a subset of data from RAMP, the Repository Analytics and Metrics Portal (http://rampanalytics.org), consisting of data from all participating repositories for the calendar year 2020. For a description of the data collection, processing, and output methods, please see the "methods" section below.

    Methods Data Collection

    RAMP data are downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).

    Data are downloaded in two sets per participating IR. The first set includes page level statistics about URLs pointing to IR pages and content files. The following fields are downloaded for each URL, with one row per URL:

    url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    

    Following data processing describe below, on ingest into RAMP a additional field, citableContent, is added to the page level data.

    The second set includes similar information, but instead of being aggregated at the page level, the data are grouped based on the country from which the user submitted the corresponding search, and the type of device used. The following fields are downloaded for combination of country and device, with one row per country/device combination:

    country: The country from which the corresponding search originated.
    device: The device used for the search.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    

    Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.

    More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en

    Data Processing

    Upon download from GSC, the page level data described above are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of page level statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the page level data which records whether each page/URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."

    The data aggregated by the search country of origin and device type do not include URLs. No additional processing is done on these data. Harvested data are passed directly into Elasticsearch.

    Processed data are then saved in a series of Elasticsearch indices. Currently, RAMP stores data in two indices per participating IR. One index includes the page level data, the second index includes the country of origin and device type data.

    About Citable Content Downloads

    Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository content, CCD represent click activity on IR content that may correspond to research use.

    CCD information is summary data calculated on the fly within the RAMP web application. As noted above, data provided by GSC include whether and how many times a URL was clicked by users. Within RAMP, a "click" is counted as a potential download, so a CCD is calculated as the sum of clicks on pages/URLs that are determined to point to citable content (as defined above).

    For any specified date range, the steps to calculate CCD are:

    Filter data to only include rows where "citableContent" is set to "Yes."
    Sum the value of the "clicks" field on these rows.
    

    Output to CSV

    Published RAMP data are exported from the production Elasticsearch instance and converted to CSV format. The CSV data consist of one "row" for each page or URL from a specific IR which appeared in search result pages (SERP) within Google properties as described above. Also as noted above, daily data are downloaded for each IR in two sets which cannot be combined. One dataset includes the URLs of items that appear in SERP. The second dataset is aggregated by combination of the country from which a search was conducted and the device used.

    As a result, two CSV datasets are provided for each month of published data:

    page-clicks:

    The data in these CSV files correspond to the page-level data, and include the following fields:

    url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    citableContent: Whether or not the URL points to a content file (ending with pdf, csv, etc.) rather than HTML wrapper pages. Possible values are Yes or No.
    index: The Elasticsearch index corresponding to page click data for a single IR.
    repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
    

    Filenames for files containing these data end with “page-clicks”. For example, the file named 2020-01_RAMP_all_page-clicks.csv contains page level click data for all RAMP participating IR for the month of January, 2020.

    country-device-info:

    The data in these CSV files correspond to the data aggregated by country from which a search was conducted and the device used. These include the following fields:

    country: The country from which the corresponding search originated.
    device: The device used for the search.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    index: The Elasticsearch index corresponding to country and device access information data for a single IR.
    repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
    

    Filenames for files containing these data end with “country-device-info”. For example, the file named 2020-01_RAMP_all_country-device-info.csv contains country and device data for all participating IR for the month of January, 2020.

    References

    Google, Inc. (2021). Search Console APIs. Retrieved from https://developers.google.com/webmaster-tools/search-console-api-original.

  6. n

    Data from: Repository Analytics and Metrics Portal (RAMP) 2021 data

    • data.niaid.nih.gov
    • zenodo.org
    • +1more
    zip
    Updated May 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Wheeler; Kenning Arlitsch (2023). Repository Analytics and Metrics Portal (RAMP) 2021 data [Dataset]. http://doi.org/10.5061/dryad.1rn8pk0tz
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 23, 2023
    Dataset provided by
    University of New Mexico
    Montana State University
    Authors
    Jonathan Wheeler; Kenning Arlitsch
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The Repository Analytics and Metrics Portal (RAMP) is a web service that aggregates use and performance use data of institutional repositories. The data are a subset of data from RAMP, the Repository Analytics and Metrics Portal (http://rampanalytics.org), consisting of data from all participating repositories for the calendar year 2021. For a description of the data collection, processing, and output methods, please see the "methods" section below.

    The record will be revised periodically to make new data available through the remainder of 2021.

    Methods

    Data Collection

    RAMP data are downloaded for participating IR from Google Search Console (GSC) via the Search Console API. The data consist of aggregated information about IR pages which appeared in search result pages (SERP) within Google properties (including web search and Google Scholar).

    Data are downloaded in two sets per participating IR. The first set includes page level statistics about URLs pointing to IR pages and content files. The following fields are downloaded for each URL, with one row per URL:

    url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    

    Following data processing describe below, on ingest into RAMP a additional field, citableContent, is added to the page level data.

    The second set includes similar information, but instead of being aggregated at the page level, the data are grouped based on the country from which the user submitted the corresponding search, and the type of device used. The following fields are downloaded for combination of country and device, with one row per country/device combination:

    country: The country from which the corresponding search originated.
    device: The device used for the search.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    

    Note that no personally identifiable information is downloaded by RAMP. Google does not make such information available.

    More information about click-through rates, impressions, and position is available from Google's Search Console API documentation: https://developers.google.com/webmaster-tools/search-console-api-original/v3/searchanalytics/query and https://support.google.com/webmasters/answer/7042828?hl=en

    Data Processing

    Upon download from GSC, the page level data described above are processed to identify URLs that point to citable content. Citable content is defined within RAMP as any URL which points to any type of non-HTML content file (PDF, CSV, etc.). As part of the daily download of page level statistics from Google Search Console (GSC), URLs are analyzed to determine whether they point to HTML pages or actual content files. URLs that point to content files are flagged as "citable content." In addition to the fields downloaded from GSC described above, following this brief analysis one more field, citableContent, is added to the page level data which records whether each page/URL in the GSC data points to citable content. Possible values for the citableContent field are "Yes" and "No."

    The data aggregated by the search country of origin and device type do not include URLs. No additional processing is done on these data. Harvested data are passed directly into Elasticsearch.

    Processed data are then saved in a series of Elasticsearch indices. Currently, RAMP stores data in two indices per participating IR. One index includes the page level data, the second index includes the country of origin and device type data.

    About Citable Content Downloads

    Data visualizations and aggregations in RAMP dashboards present information about citable content downloads, or CCD. As a measure of use of institutional repository content, CCD represent click activity on IR content that may correspond to research use.

    CCD information is summary data calculated on the fly within the RAMP web application. As noted above, data provided by GSC include whether and how many times a URL was clicked by users. Within RAMP, a "click" is counted as a potential download, so a CCD is calculated as the sum of clicks on pages/URLs that are determined to point to citable content (as defined above).

    For any specified date range, the steps to calculate CCD are:

    Filter data to only include rows where "citableContent" is set to "Yes."
    Sum the value of the "clicks" field on these rows.
    

    Output to CSV

    Published RAMP data are exported from the production Elasticsearch instance and converted to CSV format. The CSV data consist of one "row" for each page or URL from a specific IR which appeared in search result pages (SERP) within Google properties as described above. Also as noted above, daily data are downloaded for each IR in two sets which cannot be combined. One dataset includes the URLs of items that appear in SERP. The second dataset is aggregated by combination of the country from which a search was conducted and the device used.

    As a result, two CSV datasets are provided for each month of published data:

    page-clicks:

    The data in these CSV files correspond to the page-level data, and include the following fields:

    url: This is returned as a 'page' by the GSC API, and is the URL of the page which was included in an SERP for a Google property.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    citableContent: Whether or not the URL points to a content file (ending with pdf, csv, etc.) rather than HTML wrapper pages. Possible values are Yes or No.
    index: The Elasticsearch index corresponding to page click data for a single IR.
    repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
    

    Filenames for files containing these data end with “page-clicks”. For example, the file named 2021-01_RAMP_all_page-clicks.csv contains page level click data for all RAMP participating IR for the month of January, 2021.

    country-device-info:

    The data in these CSV files correspond to the data aggregated by country from which a search was conducted and the device used. These include the following fields:

    country: The country from which the corresponding search originated.
    device: The device used for the search.
    impressions: The number of times the URL appears within the SERP.
    clicks: The number of clicks on a URL which took users to a page outside of the SERP.
    clickThrough: Calculated as the number of clicks divided by the number of impressions.
    position: The position of the URL within the SERP.
    date: The date of the search.
    index: The Elasticsearch index corresponding to country and device access information data for a single IR.
    repository_id: This is a human readable alias for the index and identifies the participating repository corresponding to each row. As RAMP has undergone platform and version migrations over time, index names as defined for the previous field have not remained consistent. That is, a single participating repository may have multiple corresponding Elasticsearch index names over time. The repository_id is a canonical identifier that has been added to the data to provide an identifier that can be used to reference a single participating repository across all datasets. Filtering and aggregation for individual repositories or groups of repositories should be done using this field.
    

    Filenames for files containing these data end with “country-device-info”. For example, the file named 2021-01_RAMP_all_country-device-info.csv contains country and device data for all participating IR for the month of January, 2021.

    References

    Google, Inc. (2021). Search Console APIs. Retrieved from https://developers.google.com/webmaster-tools/search-console-api-original.

  7. Wordle Answer Search Trends Dataset (2021–2025)

    • kaggle.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ankush Kamboj (2025). Wordle Answer Search Trends Dataset (2021–2025) [Dataset]. https://www.kaggle.com/datasets/kambojankush/wordle-answer-search-trends-dataset-20212025/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 26, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ankush Kamboj
    License

    https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

    Description

    This dataset investigates the relationship between Wordle answers and Google search spikes, particularly for uncommon words. It spans from June 21, 2021 to June 24, 2025.

    It includes daily data for each Wordle answer, its search trend on that day, and frequency-based commonality indicators.

    🔍 Hypothesis

    Each Wordle answer causes a spike in search volume on the day it appears — more so if the word is rare.

    This dataset supports exploration of:

    • Wordle Answers
    • Trends for wordle answers
    • Correlation between wordle answer rarity and search interest

    Columns

    ColumnDescription
    dateDate of the Wordle puzzle
    wordCorrect 5-letter Wordle answer
    gameWordle game number
    wordfreq_commonalityNormalized frequency score using Python’s wordfreq library
    subtlex_commonalityNormalized frequency score using SUBTLEX-US dataset
    trend_day_globalGoogle search interest on the day (global, all categories)
    trend_avg_200_global200-day average search interest (global, all categories)
    trend_day_languageSearch interest on Wordle day (Language Resources category)
    trend_avg_200_language200-day average search interest (Language Resources category)

    Notes: - All trend values are relative (0–100 scale, per Google Trends)

    🧮 Methodology

    • Wordle answers were scraped from wordfinder.yourdictionary.com
    • Commonality scores were computed using:
      • wordfreq Python library
      • SUBTLEX-US dataset (subtitle frequency, approximating spoken English)
    • Trend data was fetched using Google Trends API via pytrends

    📊 Analysis

    Can find analysis done using this data in the blog post

  8. Bitcoin Dataset with Missing Values

    • zenodo.org
    • explore.openaire.eu
    • +1more
    zip
    Updated Jul 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rakshitha Godahewa; Rakshitha Godahewa; Christoph Bergmeir; Christoph Bergmeir; Geoff Webb; Geoff Webb; Rob Hyndman; Rob Hyndman; Pablo Montero-Manso; Pablo Montero-Manso (2021). Bitcoin Dataset with Missing Values [Dataset]. http://doi.org/10.5281/zenodo.5121965
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 23, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Rakshitha Godahewa; Rakshitha Godahewa; Christoph Bergmeir; Christoph Bergmeir; Geoff Webb; Geoff Webb; Rob Hyndman; Rob Hyndman; Pablo Montero-Manso; Pablo Montero-Manso
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the potential influencers of the bitcoin price. There are a total of 18 daily time series including hash rate, block size, mining difficulty etc. It also encompasses public opinion in the form of tweets and google searches mentioning the keyword bitcoin. The data is scraped from the interactive web-graphs available at https://bitinfocharts.com.

  9. Bitcoin Blockchain Historical Data

    • kaggle.com
    zip
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Bitcoin Blockchain Historical Data [Dataset]. https://www.kaggle.com/datasets/bigquery/bitcoin-blockchain
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Feb 12, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Blockchain technology, first implemented by Satoshi Nakamoto in 2009 as a core component of Bitcoin, is a distributed, public ledger recording transactions. Its usage allows secure peer-to-peer communication by linking blocks containing hash pointers to a previous block, a timestamp, and transaction data. Bitcoin is a decentralized digital currency (cryptocurrency) which leverages the Blockchain to store transactions in a distributed manner in order to mitigate against flaws in the financial industry.

    Nearly ten years after its inception, Bitcoin and other cryptocurrencies experienced an explosion in popular awareness. The value of Bitcoin, on the other hand, has experienced more volatility. Meanwhile, as use cases of Bitcoin and Blockchain grow, mature, and expand, hype and controversy have swirled.

    Content

    In this dataset, you will have access to information about blockchain blocks and transactions. All historical data are in the bigquery-public-data:crypto_bitcoin dataset. It’s updated it every 10 minutes. The data can be joined with historical prices in kernels. See available similar datasets here: https://www.kaggle.com/datasets?search=bitcoin.

    Querying BigQuery tables

    You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.crypto_bitcoin.[TABLENAME]. Fork this kernel to get started.

    Method & Acknowledgements

    Allen Day (Twitter | Medium), Google Cloud Developer Advocate & Colin Bookman, Google Cloud Customer Engineer retrieve data from the Bitcoin network using a custom client available on GitHub that they built with the bitcoinj Java library. Historical data from the origin block to 2018-01-31 were loaded in bulk to two BigQuery tables, blocks_raw and transactions. These tables contain fresh data, as they are now appended when new blocks are broadcast to the Bitcoin network. For additional information visit the Google Cloud Big Data and Machine Learning Blog post "Bitcoin in BigQuery: Blockchain analytics on public data".

    Photo by Andre Francois on Unsplash.

    Inspiration

    • How many bitcoins are sent each day?
    • How many addresses receive bitcoin each day?
    • Compare transaction volume to historical prices by joining with other available data sources
  10. Drive_Stats

    • huggingface.co
    Updated Apr 10, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Backblaze (2013). Drive_Stats [Dataset]. https://huggingface.co/datasets/backblaze/Drive_Stats
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 10, 2013
    Dataset provided by
    Backblazehttp://backblaze.com/
    Backblaze
    Authors
    Backblaze
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Drive Stats

    Drive Stats is a public data set of daily metrics on the hard drives in Backblaze’s cloud storage infrastructure that Backblaze has open-sourced since April 2013. Currently, Drive Stats comprises over 388 million records, rising by over 240,000 records per day. Drive Stats is an append-only dataset effectively logging daily statistics that once written are never updated or deleted. This is our first Hugging Face dataset; feel free to suggest improvements by creating a… See the full description on the dataset page: https://huggingface.co/datasets/backblaze/Drive_Stats.

  11. Tunisia Google Search Trends: Online Training: Udemy

    • ceicdata.com
    Updated Feb 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). Tunisia Google Search Trends: Online Training: Udemy [Dataset]. https://www.ceicdata.com/en/tunisia/google-search-trends-by-categories
    Explore at:
    Dataset updated
    Feb 25, 2024
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 8, 2025 - Mar 19, 2025
    Area covered
    Tunisia
    Description

    Google Search Trends: Online Training: Udemy data was reported at 12.000 Score in 14 May 2025. This records an increase from the previous number of 11.000 Score for 13 May 2025. Google Search Trends: Online Training: Udemy data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 14 May 2025, with 1261 observations. The data reached an all-time high of 100.000 Score in 26 Nov 2023 and a record low of 0.000 Score in 02 May 2025. Google Search Trends: Online Training: Udemy data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s Tunisia – Table TN.Google.GT: Google Search Trends: by Categories.

  12. S

    Sri Lanka Google Search Trends: Online Games: Call of Duty

    • ceicdata.com
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Sri Lanka Google Search Trends: Online Games: Call of Duty [Dataset]. https://www.ceicdata.com/en/sri-lanka/google-search-trends-by-categories/google-search-trends-online-games-call-of-duty
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 8, 2025 - Mar 19, 2025
    Area covered
    Sri Lanka
    Description

    Sri Lanka Google Search Trends: Online Games: Call of Duty data was reported at 0.000 Score in 14 May 2025. This stayed constant from the previous number of 0.000 Score for 13 May 2025. Sri Lanka Google Search Trends: Online Games: Call of Duty data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 14 May 2025, with 1261 observations. The data reached an all-time high of 21.000 Score in 01 Dec 2021 and a record low of 0.000 Score in 14 May 2025. Sri Lanka Google Search Trends: Online Games: Call of Duty data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s Sri Lanka – Table LK.Google.GT: Google Search Trends: by Categories.

  13. T

    Tanzania Google Search Trends: Travel & Accommodations: Booking.com

    • ceicdata.com
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Tanzania Google Search Trends: Travel & Accommodations: Booking.com [Dataset]. https://www.ceicdata.com/en/tanzania/google-search-trends-by-categories/google-search-trends-travel--accommodations-bookingcom
    Explore at:
    Dataset updated
    Mar 20, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 9, 2025 - Mar 20, 2025
    Area covered
    Tanzania
    Description

    Tanzania Google Search Trends: Travel & Accommodations: Booking.com data was reported at 8.000 Score in 15 May 2025. This records an increase from the previous number of 6.000 Score for 14 May 2025. Tanzania Google Search Trends: Travel & Accommodations: Booking.com data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 15 May 2025, with 1262 observations. The data reached an all-time high of 82.000 Score in 04 Aug 2022 and a record low of 0.000 Score in 03 May 2025. Tanzania Google Search Trends: Travel & Accommodations: Booking.com data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s Tanzania – Table TZ.Google.GT: Google Search Trends: by Categories.

  14. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com, United States Google Search Trends: Government Measures: Government Subsidy [Dataset]. https://www.ceicdata.com/en/united-states/google-search-trends-by-categories/google-search-trends-government-measures-government-subsidy
Organization logo

United States Google Search Trends: Government Measures: Government Subsidy

Explore at:
Dataset provided by
CEIC Data
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Feb 23, 2025 - Mar 6, 2025
Area covered
United States
Description

United States Google Search Trends: Government Measures: Government Subsidy data was reported at 0.000 Score in 14 May 2025. This stayed constant from the previous number of 0.000 Score for 13 May 2025. United States Google Search Trends: Government Measures: Government Subsidy data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 14 May 2025, with 1261 observations. The data reached an all-time high of 0.000 Score in 14 May 2025 and a record low of 0.000 Score in 14 May 2025. United States Google Search Trends: Government Measures: Government Subsidy data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s United States – Table US.Google.GT: Google Search Trends: by Categories.

Search
Clear search
Close search
Google apps
Main menu