You can check the fields description in the documentation: current Keyword database: https://docs.dataforseo.com/v3/databases/google/keywords/?bash; Historical Keyword database: https://docs.dataforseo.com/v3/databases/google/history/keywords/?bash. You don’t have to download fresh data dumps in JSON or CSV – we can deliver data straight to your storage or database. We send terrabytes of data to dozens of customers every month using Amazon S3, Google Cloud Storage, Microsoft Azure Blob, Eleasticsearch, and Google Big Query. Let us know if you’d like to get your data to any other storage or database.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
If you use this dataset anywhere in your work, kindly cite as the below: L. Gupta, "Google Play Store Apps," Feb 2019. [Online]. Available: https://www.kaggle.com/lava18/google-play-store-apps
While many public datasets (on Kaggle and the like) provide Apple App Store data, there are not many counterpart datasets available for Google Play Store apps anywhere on the web. On digging deeper, I found out that iTunes App Store page deploys a nicely indexed appendix-like structure to allow for simple and easy web scraping. On the other hand, Google Play Store uses sophisticated modern-day techniques (like dynamic page load) using JQuery making scraping more challenging.
Each app (row) has values for catergory, rating, size, and more.
This information is scraped from the Google Play Store. This app information would not be available without it.
The Play Store apps data has enormous potential to drive app-making businesses to success. Actionable insights can be drawn for developers to work on and capture the Android market!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the second version of the Google Landmarks dataset (GLDv2), which contains images annotated with labels representing human-made and natural landmarks. The dataset can be used for landmark recognition and retrieval experiments. This version of the dataset contains approximately 5 million images, split into 3 sets of images: train, index and test. The dataset was presented in our CVPR'20 paper. In this repository, we present download links for all dataset files and relevant code for metric computation. This dataset was associated to two Kaggle challenges, on landmark recognition and landmark retrieval. Results were discussed as part of a CVPR'19 workshop. In this repository, we also provide scores for the top 10 teams in the challenges, based on the latest ground-truth version. Please visit the challenge and workshop webpages for more details on the data, tasks and technical solutions from top teams.
The COVID-19 Search Trends symptoms dataset shows aggregated, anonymized trends in Google searches for a broad set of health symptoms, signs, and conditions. The dataset provides a daily or weekly time series for each region showing the relative volume of searches for each symptom. This dataset is intended to help researchers to better understand the impact of COVID-19. It shouldn't be used for medical diagnostic, prognostic, or treatment purposes. It also isn't intended to be used for guidance on personal travel plans. To learn more about the dataset, how we generate it and preserve privacy, read the data documentation . To visualize the data, try exploring these interactive charts and map of symptom search trends . As of Dec. 15, 2020, the dataset was expanded to include trends for Australia, Ireland, New Zealand, Singapore, and the United Kingdom. This expanded data is available in new tables that provide data at country and two subregional levels. We will not be updating existing state/county tables going forward. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
Google Suite is an umbrella Information System by which USAID receives multiple Google services per USAID's subscription contract. Business services include but are not limited to: Business email through Gmail, Video and voice conferencing, Secure team messaging, Shared calendars, Documents, spreadsheets, and presentations, Unlimited cloud storage, and Smart search across G Suite with Cloud Search. Security and administration controls include: Control how long your email messages and on-the-record chats are retained. Specify policies for your entire domain or based on organizational units, date ranges, and specific terms. Archive and set retention policies for emails and chats, Security center for G Suite, eDiscovery for emails, chats, and files, Audit reports to track user activity, Data loss prevention for Gmail, Data loss prevention for Drive Hosted S/MIME for Gmail, Integrate Gmail with compliant third-party archiving tools, Enterprise-grade access control with security key enforcement, and Gmail log analysis in BigQuery
https://brightdata.com/licensehttps://brightdata.com/license
The Google Reviews dataset is perfect for obtaining comprehensive insights into businesses and their customer feedback globally. Easily filter by location, business type, or reviewer details to extract the precise data you need. The Google Reviews dataset includes key data points such as URL, place ID, place name, country, address, review ID, reviewer name, total reviews and photos by the reviewer, reviewer profile URL, and more. This dataset provides valuable information for sentiment analysis, business comparisons, and customer behavior studies.
You can check the fields description in the documentation: current Full database: https://docs.dataforseo.com/v3/databases/google/full/?bash; Historical Full database: https://docs.dataforseo.com/v3/databases/google/history/full/?bash.
Full Google Database is a combination of the Advanced Google SERP Database and Google Keyword Database.
Google SERP Database offers millions of SERPs collected in 67 regions with most of Google’s advanced SERP features, including featured snippets, knowledge graphs, people also ask sections, top stories, and more.
Google Keyword Database encompasses billions of search terms enriched with related Google Ads data: search volume trends, CPC, competition, and more.
This database is available in JSON format only.
You don’t have to download fresh data dumps in JSON – we can deliver data straight to your storage or database. We send terrabytes of data to dozens of customers every month using Amazon S3, Google Cloud Storage, Microsoft Azure Blob, Eleasticsearch, and Google Big Query. Let us know if you’d like to get your data to any other storage or database.
Google Play Store dataset to explore detailed information about apps, including ratings, descriptions, updates, and developer details. Popular use cases include app performance analysis, market research, and consumer behavior insights.
Use our Google Play Store dataset to explore detailed information about apps available on the platform, including app titles, developers, monetization features, user ratings, reviews, and more. This dataset also includes data on app descriptions, safety measures, download counts, recent updates, and compatibility, providing a complete overview of app performance and features.
Tailored for app developers, marketers, and researchers, this dataset offers valuable insights into user preferences, app trends, and market dynamics. Whether you're optimizing app development, conducting competitive analysis, or tracking app performance, the Google Play Store dataset is an essential resource for making data-driven decisions in the mobile app ecosystem.
This dataset is ideal for a variety of applications:
CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement
~Up to $0.0025 per record. Min order $250
Approximately 10M new records are added each month. Approximately 13.8M records are updated each month. Get the complete dataset each delivery, including all records. Retrieve only the data you need with the flexibility to set Smart Updates.
New snapshot each month, 12 snapshots/year Paid monthly
New snapshot each quarter, 4 snapshots/year Paid quarterly
New snapshot every 6 months, 2 snapshots/year Paid twice-a-year
New snapshot one-time delivery Paid once
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data that is collected at the individual-level from mobile phones is typically aggregated to the population-level for privacy reasons. If we are interested in answering questions regarding the mean, or working with groups appropriately modeled by a continuum, then this data is immediately informative. However, coupling such data regarding a population to a model that requires information at the individual-level raises a number of complexities. This is the case if we aim to characterize human mobility and simulate the spatial and geographical spread of a disease by dealing in discrete, absolute numbers. In this work, we highlight the hurdles faced and outline how they can be overcome to effectively leverage the specific dataset: Google COVID-19 Aggregated Mobility Research Dataset (GAMRD). Using a case study of Western Australia, which has many sparsely populated regions with incomplete data, we firstly demonstrate how to overcome these challenges to approximate absolute flow of people around a transport network from the aggregated data. Overlaying this evolving mobility network with a compartmental model for disease that incorporated vaccination status we run simulations and draw meaningful conclusions about the spread of COVID-19 throughout the state without de-anonymizing the data. We can see that towns in the Pilbara region are highly vulnerable to an outbreak originating in Perth. Further, we show that regional restrictions on travel are not enough to stop the spread of the virus from reaching regional Western Australia. The methods explained in this paper can be therefore used to analyze disease outbreaks in similarly sparse populations. We demonstrate that using this data appropriately can be used to inform public health policies and have an impact in pandemic responses.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/
Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:
Over 8 million 311 service requests from 2012-2016
More than 1 million motor vehicle collisions 2012-present
Citi Bike stations and 30 million Citi Bike trips 2013-present
Over 1 billion Yellow and Green Taxi rides from 2009-present
Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015
This dataset is deprecated and not being updated.
Fork this kernel to get started with this dataset.
https://opendata.cityofnewyork.us/
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.
The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.
Banner Photo by @bicadmedia from Unplash.
On which New York City streets are you most likely to find a loud party?
Can you find the Virginia Pines in New York City?
Where was the only collision caused by an animal that injured a cyclist?
What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here">
https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png
In the U.S. public companies, certain insiders and broker-dealers are required to regularly file with the SEC. The SEC makes this data available online for anybody to view and use via their Electronic Data Gathering, Analysis, and Retrieval (EDGAR) database. The SEC updates this data every quarter going back to January, 2009. To aid analysis a quick summary view of the data has been created that is not available in the original dataset. The quick summary view pulls together signals into a single table that otherwise would have to be joined from multiple tables and enables a more streamlined user experience. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets.詳細
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This Dataset is a collection of Reviews of Google Apps available on playstore. Contains more than 90,000 cumulative App reviews on various Google Apps.
This Dataset contains: 1.) The basic description of apps(for e.g. App Title,App Description,Number of Installs,etc.) 2.) ReviewID 3.) Score and Review by the User and thumbsUp count on the reviews. 4.) Review creation and reply by developer date and time. 5.) The App's Review by the Users
Not many datasets are available on app reviews on Kaggle
https://www.enterpriseappstoday.com/privacy-policyhttps://www.enterpriseappstoday.com/privacy-policy
Google Gemini Statistics: In 2023, Google unveiled the most powerful AI model to date. Google Gemini is the world’s most advanced AI leaving the ChatGPT 4 behind in the line. Google has 3 different sizes of models, superior to each, and can perform tasks accordingly. According to Google Gemini Statistics, these can understand and solve complex problems related to absolutely anything. Google even said, they will develop AI in such as way that it will let you know how helpful AI is in our daily routine. Well, we hope our next generation won’t be fully dependent on such technologies, otherwise, we will lose all of our natural talent! Editor’s Choice Google Gemini can follow natural and engaging conversations. According to Google Gemini Statistics, Gemini Ultra has a 90.0% score on the MMLU benchmark for testing the knowledge of and problem-solving on subjects including history, physics, math, law, ethics, history, and medicine. If you ask Gemini what to do with your raw material, it can provide you with ideas in the form of text or images according to the given input. Gemini has outperformed ChatGPT -4 tests in the majority of the cases. According to the report this LLM is said to be unique because it can process multiple types of data at the same time along with video, images, computer code, and text. Google is considering its development as The Gemini Era, showing the importance of our AI is significant in improving our daily lives. Google Gemini can talk like a real person Gemini Ultra is the largest model and can solve extremely complex problems. Gemini models are trained on multilingual and multimodal datasets. Gemini’s Ultra performance on the MMMU benchmark has also outperformed the GPT-4V in the following results Art and Design (74.2), Business (62.7), Health and Medicine (71.3), Humanities and Social Science (78.3), and Technology and Engineering (53.00).
Author: Víctor Yeste. Universitat Politècnica de Valencia.The object of this study is the design of a cybermetric methodology whose objectives are to measure the success of the content published in online media and the possible prediction of the selected success variables.In this case, due to the need to integrate data from two separate areas, such as web publishing and the analysis of their shares and related topics on Twitter, has opted for programming as you access both the Google Analytics v4 reporting API and Twitter Standard API, always respecting the limits of these.The website analyzed is hellofriki.com. It is an online media whose primary intention is to solve the need for information on some topics that provide daily a vast number of news in the form of news, as well as the possibility of analysis, reports, interviews, and many other information formats. All these contents are under the scope of the sections of cinema, series, video games, literature, and comics.This dataset has contributed to the elaboration of the PhD Thesis:Yeste Moreno, VM. (2021). Diseño de una metodología cibermétrica de cálculo del éxito para la optimización de contenidos web [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/176009Data have been obtained from each last-minute news article published online according to the indicators described in the doctoral thesis. All related data are stored in a database, divided into the following tables:tesis_followers: User ID list of media account followers.tesis_hometimeline: data from tweets posted by the media account sharing breaking news from the web.status_id: Tweet IDcreated_at: date of publicationtext: content of the tweetpath: URL extracted after processing the shortened URL in textpost_shared: Article ID in WordPress that is being sharedretweet_count: number of retweetsfavorite_count: number of favoritestesis_hometimeline_other: data from tweets posted by the media account that do not share breaking news from the web. Other typologies, automatic Facebook shares, custom tweets without link to an article, etc. With the same fields as tesis_hometimeline.tesis_posts: data of articles published by the web and processed for some analysis.stats_id: Analysis IDpost_id: Article ID in WordPresspost_date: article publication date in WordPresspost_title: title of the articlepath: URL of the article in the middle webtags: Tags ID or WordPress tags related to the articleuniquepageviews: unique page viewsentrancerate: input ratioavgtimeonpage: average visit timeexitrate: output ratiopageviewspersession: page views per sessionadsense_adunitsviewed: number of ads viewed by usersadsense_viewableimpressionpercent: ad display ratioadsense_ctr: ad click ratioadsense_ecpm: estimated ad revenue per 1000 page viewstesis_stats: data from a particular analysis, performed at each published breaking news item. Fields with statistical values can be computed from the data in the other tables, but total and average calculations are saved for faster and easier further processing.id: ID of the analysisphase: phase of the thesis in which analysis has been carried out (right now all are 1)time: "0" if at the time of publication, "1" if 14 days laterstart_date: date and time of measurement on the day of publicationend_date: date and time when the measurement is made 14 days latermain_post_id: ID of the published article to be analysedmain_post_theme: Main section of the published article to analyzesuperheroes_theme: "1" if about superheroes, "0" if nottrailer_theme: "1" if trailer, "0" if notname: empty field, possibility to add a custom name manuallynotes: empty field, possibility to add personalized notes manually, as if some tag has been removed manually for being considered too generic, despite the fact that the editor put itnum_articles: number of articles analysednum_articles_with_traffic: number of articles analysed with traffic (which will be taken into account for traffic analysis)num_articles_with_tw_data: number of articles with data from when they were shared on the media’s Twitter accountnum_terms: number of terms analyzeduniquepageviews_total: total page viewsuniquepageviews_mean: average page viewsentrancerate_mean: average input ratioavgtimeonpage_mean: average duration of visitsexitrate_mean: average output ratiopageviewspersession_mean: average page views per sessiontotal: total of ads viewedadsense_adunitsviewed_mean: average of ads viewedadsense_viewableimpressionpercent_mean: average ad display ratioadsense_ctr_mean: average ad click ratioadsense_ecpm_mean: estimated ad revenue per 1000 page viewsTotal: total incomeretweet_count_mean: average incomefavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesterms_ini_num_tweets: total tweets on the terms on the day of publicationterms_ini_retweet_count_total: total retweets on the terms on the day of publicationterms_ini_retweet_count_mean: average retweets on the terms on the day of publicationterms_ini_favorite_count_total: total of favorites on the terms on the day of publicationterms_ini_favorite_count_mean: average of favorites on the terms on the day of publicationterms_ini_followers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the terms on the day of publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms on the day of publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who spoke about the terms on the day of publicationterms_ini_user_age_mean: average age in days of users who have spoken of the terms on the day of publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms on the day of publicationterms_end_num_tweets: total tweets on terms 14 days after publicationterms_ini_retweet_count_total: total retweets on terms 14 days after publicationterms_ini_retweet_count_mean: average retweets on terms 14 days after publicationterms_ini_favorite_count_total: total bookmarks on terms 14 days after publicationterms_ini_favorite_count_mean: average of favorites on terms 14 days after publicationterms_ini_followers_talking_rate: ratio of media Twitter account followers who have recently posted a tweet talking about the terms 14 days after publicationterms_ini_user_num_followers_mean: average followers of users who have spoken of the terms 14 days after publicationterms_ini_user_num_tweets_mean: average number of tweets published by users who have spoken about the terms 14 days after publicationterms_ini_user_age_mean: the average age in days of users who have spoken of the terms 14 days after publicationterms_ini_ur_inclusion_rate: URL inclusion ratio of tweets talking about terms 14 days after publication.tesis_terms: data of the terms (tags) related to the processed articles.stats_id: Analysis IDtime: "0" if at the time of publication, "1" if 14 days laterterm_id: Term ID (tag) in WordPressname: Name of the termslug: URL of the termnum_tweets: number of tweetsretweet_count_total: total retweetsretweet_count_mean: average retweetsfavorite_count_total: total of favoritesfavorite_count_mean: average of favoritesfollowers_talking_rate: ratio of followers of the media Twitter account who have recently published a tweet talking about the termuser_num_followers_mean: average followers of users who were talking about the termuser_num_tweets_mean: average number of tweets published by users who were talking about the termuser_age_mean: average age in days of users who were talking about the termurl_inclusion_rate: URL inclusion ratio
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Google Search Trends: Government Measures: Government Subsidy data was reported at 0.000 Score in 14 May 2025. This stayed constant from the previous number of 0.000 Score for 13 May 2025. United States Google Search Trends: Government Measures: Government Subsidy data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 14 May 2025, with 1261 observations. The data reached an all-time high of 0.000 Score in 14 May 2025 and a record low of 0.000 Score in 14 May 2025. United States Google Search Trends: Government Measures: Government Subsidy data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s United States – Table US.Google.GT: Google Search Trends: by Categories.
OpenWeb Ninja's Google Images Data (Google SERP Data) API provides real-time image search capabilities for images sourced from all public sources on the web.
The API enables you to search and access more than 100 billion images from across the web including advanced filtering capabilities as supported by Google Advanced Image Search. The API provides Google Images Data (Google SERP Data) including details such as image URL, title, size information, thumbnail, source information, and more data points. The API supports advanced filtering and options such as file type, image color, usage rights, creation time, and more. In addition, any Advanced Google Search operators can be used with the API.
OpenWeb Ninja's Google Images Data & Google SERP Data API common use cases:
Creative Media Production: Enhance digital content with a vast array of real-time images, ensuring engaging and brand-aligned visuals for blogs, social media, and advertising.
AI Model Enhancement: Train and refine AI models with diverse, annotated images, improving object recognition and image classification accuracy.
Trend Analysis: Identify emerging market trends and consumer preferences through real-time visual data, enabling proactive business decisions.
Innovative Product Design: Inspire product innovation by exploring current design trends and competitor products, ensuring market-relevant offerings.
Advanced Search Optimization: Improve search engines and applications with enriched image datasets, providing users with accurate, relevant, and visually appealing search results.
OpenWeb Ninja's Annotated Imagery Data & Google SERP Data Stats & Capabilities:
100B+ Images: Access an extensive database of over 100 billion images.
Images Data from all Public Sources (Google SERP Data): Benefit from a comprehensive aggregation of image data from various public websites, ensuring a wide range of sources and perspectives.
Extensive Search and Filtering Capabilities: Utilize advanced search operators and filters to refine image searches by file type, color, usage rights, creation time, and more, making it easy to find exactly what you need.
Rich Data Points: Each image comes with more than 10 data points, including URL, title (annotation), size information, thumbnail, and source information, providing a detailed context for each image.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Quick Draw Dataset is a collection of 50 million drawings across 345 categories, contributed by players of the game "Quick, Draw!". The drawings were captured as timestamped vectors, tagged with metadata including what the player was asked to draw and in which country the player was located.
Example drawings: https://raw.githubusercontent.com/googlecreativelab/quickdraw-dataset/master/preview.jpg" alt="preview">
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data was collected by Google and Dublin City Council as part of Project Air View Dublin. Google's first electric Street View car equipped with Aclima’s mobile air sensing platform drove through the roads of Dublin City measuring street by street air quality. Driving predominantly took place Monday–Friday between 9:00 am and 5:00 pm from May 2021 through August 2022, so the dataset primarily represents typical daytime, weekday air quality. The car measured pollution on each street and highway at 1-second intervals, driving with the flow of traffic at normal speeds. The pollutants determined are: Carbon Monoxide(CO), Carbon Dioxide(CO2), Nitrogen Dioxide (NO2), NO (nitric oxide), Ozone (O3), and Particulate Matter PM2.5 (including size resolved particle counts from 0.3 - 2.5 μm). Airview_DublinCity_Measurements is the 1-second intervals data captured during the period. AirView_Dublin_City_RoadData is the 1-second data points aggregated in approximately 50m road segments. For more information about the project, methodology and maps, visit Google EIE Labs. Citing this data: Feel free to include the data in other analysis, materials, reports, and communications with the following data attribution: Aclima & Google 2022 via Dublinked
You can check the fields description in the documentation: current Keyword database: https://docs.dataforseo.com/v3/databases/google/keywords/?bash; Historical Keyword database: https://docs.dataforseo.com/v3/databases/google/history/keywords/?bash. You don’t have to download fresh data dumps in JSON or CSV – we can deliver data straight to your storage or database. We send terrabytes of data to dozens of customers every month using Amazon S3, Google Cloud Storage, Microsoft Azure Blob, Eleasticsearch, and Google Big Query. Let us know if you’d like to get your data to any other storage or database.