https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Google Earth is a dataset for instance segmentation tasks - it contains Green annotations for 872 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the most current and accurate global development data available including national, regional and global estimates. Data has been collected from the early 1960’s to present and is updated regularly depending on new data available on the indicators. This time series data offers indicators such as agriculture and food security, climate change, population growth, economic growth, education, energy, natural Resources and many more. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
## Overview
Kaggle Ships In Google Earth Dfqwt is a dataset for object detection tasks - it contains Kaggle Ships In Google Earth Dfq annotations for 794 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cloud-based image processing platforms like the Google Earth Engine (GEE) bring unprecedented possibilities for education, research, and outreach. This workshop will focus on an interactive exploration of GEE capabilities, the repository of all of publicly available aerial and satellite data, and user upload of imagery for analysis. The workshop will begin with a presentation of examples of GEE projects with a focus on education, undergraduate research, and outreach followed by hands-activities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Any work using this dataset should cite the following paper:
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloudy. Source: https://en.wikipedia.org/wiki/Weather
NOAA’s Global Historical Climatology Network (GHCN) is an integrated database of climate summaries from land surface stations across the globe that have been subjected to a common suite of quality assurance reviews. Two GHCN datasets are available in BigQuery, the GHCN-D (daily) and the GHCN-M (monthly). The data included in the GHCN datasets are obtained from more than 20 sources, including some data from every year since 1763.
For a complete description of data variables available in this dataset, see NOAA’s readme.txt: https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt
Update Frequency: daily
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:ghcn_d
https://cloud.google.com/bigquery/public-data/noaa-ghcn
Dataset Source: NOAA. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Max LaRochelle from Unplash.
Find weather stations close to a specific location?
Daily rainfall amounts at specific station?
Pulling daily min/max temperature (in Celsius) and rainfall (in mm) for the past 14 days?
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries.
Update Frequency: Biannual
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics
https://cloud.google.com/bigquery/public-data/world-bank-hnp
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Citation: The World Bank: Health Nutrition and Population Statistics
Banner Photo by @till_indeman from Unplash.
What’s the average age of first marriages for females around the world?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Google Search Trends: Government Measures: Government Subsidy data was reported at 0.000 Score in 14 May 2025. This stayed constant from the previous number of 0.000 Score for 13 May 2025. United States Google Search Trends: Government Measures: Government Subsidy data is updated daily, averaging 0.000 Score from Dec 2021 (Median) to 14 May 2025, with 1261 observations. The data reached an all-time high of 0.000 Score in 14 May 2025 and a record low of 0.000 Score in 14 May 2025. United States Google Search Trends: Government Measures: Government Subsidy data remains active status in CEIC and is reported by Google Trends. The data is categorized under Global Database’s United States – Table US.Google.GT: Google Search Trends: by Categories.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sentinel2GlobalLULC is a deep learning-ready dataset of RGB images from the Sentinel-2 satellites designed for global land use and land cover (LULC) mapping. Sentinel2GlobalLULC v2.1 contains 194,877 images in GeoTiff and JPEG format corresponding to 29 broad LULC classes. Each image has 224 x 224 pixels at 10 m spatial resolution and was produced by assigning the 25th percentile of all available observations in the Sentinel-2 collection between June 2015 and October 2020 in order to remove atmospheric effects (i.e., clouds, aerosols, shadows, snow, etc.). A spatial purity value was assigned to each image based on the consensus across 15 different global LULC products available in Google Earth Engine (GEE).
Our dataset is structured into 3 main zip-compressed folders, an Excel file with a dictionary for class names and descriptive statistics per LULC class, and a python script to convert RGB GeoTiff images into JPEG format. The first folder called "Sentinel2LULC_GeoTiff.zip" contains 29 zip-compressed subfolders where each one corresponds to a specific LULC class with hundreds to thousands of GeoTiff Sentinel-2 RGB images. The second folder called "Sentinel2LULC_JPEG.zip" contains 29 zip-compressed subfolders with a JPEG formatted version of the same images provided in the first main folder. The third folder called "Sentinel2LULC_CSV.zip" includes 29 zip-compressed CSV files with as many rows as provided images and with 12 columns containing the following metadata (this same metadata is provided in the image filenames):
For seven LULC classes, we could not export from GEE all images that fulfilled a spatial purity of 100% since there were millions of them. In this case, we exported a stratified random sample of 14,000 images and provided an additional CSV file with the images actually contained in our dataset. That is, for these seven LULC classes, we provide these 2 CSV files:
To clearly state the geographical coverage of images available in this dataset, we included in the version v2.1, a compressed folder called "Geographic_Representativeness.zip". This zip-compressed folder contains a csv file for each LULC class that provides the complete list of countries represented in that class. Each csv file has two columns, the first one gives the country code and the second one gives the number of images provided in that country for that LULC class. In addition to these 29 csv files, we provided another csv file that maps each ISO Alpha-2 country code to its original full country name.
© Sentinel2GlobalLULC Dataset by Yassir Benhammou, Domingo Alcaraz-Segura, Emilio Guirado, Rohaifa Khaldi, Boujemâa Achchab, Francisco Herrera & Siham Tabik is marked with Attribution 4.0 International (CC-BY 4.0)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Ships In Google Earth is a dataset for object detection tasks - it contains Boat annotations for 794 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Top of Atmosphere (TOA) reflectance data in bands from the USGS Landsat 5 and Landsat 8 satellites were accessed via Google Earth Engine. CANUE staff used Google Earth Engine functions to create cloud free annual composites, and mask water features, then export the resulting band data. NDVI indices were calculated as (band 4 - Band 3)/(Band 4 Band 3) for Landsat 5 data, and as (band 5 - band 4)/(band 5 Band 4) for Landsat 8 data. These composites are created from all the scenes in each annual period beginning from the first day of the year and continuing to the last day of the year. No data were available for 2012, due to decommissioning of Landsat 5 in 2011 prior to the start of Landsat 8 in 2013. No cross-calibration between the sensors was performed, please be aware there may be small bias differences between NDVI values calculated using Landsat 5 and Landsat 8. Final NDVI metrics were linked to all 6-digit DMTI Spatial single link postal code locations in Canada, and for surrounding areas within 100m, 250m, 500m, and 1km.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Management • Create and edit fusion tables • Upload imagery, vector, and tabular data using Fusion Tables and KMLs • Share data with other Google Earth Engine (GEE) users as well as download imagery after manipulation in GEE.
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
TimeSpec4LULC is a smart open-source global dataset of multi-spectral time series for 29 Land Use and Land Cover (LULC) classes ready to train machine learning models. It was built based on the seven spectral bands of the MODIS sensors at 500 m resolution from 2000 to 2021 (262 observations in each time series). Then, was annotated using spatial-temporal agreement across the 15 global LULC products available in Google Earth Engine (GEE).
TimeSpec4LULC contains two datasets: the original dataset distributed over 6,076,531 pixels, and the balanced subset of the original dataset distributed over 29000 pixels.
The original dataset contains 30 folders, namely "Metadata", and 29 folders corresponding to the 29 LULC classes. The folder "Metadata" holds 29 different CSV files describing the metadata of the 29 LULC classes. The remaining 29 folders contain the time series data for the 29 LULC classes. Each folder holds 262 CSV files corresponding to the 262 months. Inside each CSV file, we provide the seven values of the spectral bands as well as the coordinates for all the LULC class-related pixels.
The balanced subset of the original dataset contains the metadata and the time series data for 1000 pixels per class representative of the globe. It holds 29 different JSON files following the names of the 29 LULC classes.
The features of the dataset are:
- ".geo": the geometry and coordinates (longitude and latitude) of the pixel center.
- "ADM0_Code": the GAUL country code.
- "ADM1_Code": the GAUL first-level administrative unit code.
- GHM_Index": the average of the global human modification index.
- "Products_Agreement_Percentage": the agreement percentage over the 15 global LULC products available in GEE.
- "Temporal_Availability_Percentage": the percentage of non-missing values in each band.
- "Pixel_TS": the time series values of the seven spectral bands.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Training Classifiers, Supervised Classification and Error Assessment • How to add raster and vector data from the catalog in Google Earth Engine; • Train a classifier; • Perform the error assessment; • Download the results.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank
This dataset combines key education statistics from a variety of sources to provide a look at global literacy, spending, and access.
For more information, see the World Bank website.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:world_bank_health_population
http://data.worldbank.org/data-catalog/ed-stats
https://cloud.google.com/bigquery/public-data/world-bank-education
Citation: The World Bank: Education Statistics
Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @till_indeman from Unplash.
Of total government spending, what percentage is spent on education?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Version 2 of the dataset https://zenodo.org/records/10566644
Changes from first version include:
added crowdsourced verification labels to the dataset gathered from the interactive app (link below) explained here: https://www.nina.no/Om-NINA/Aktuelt/Nyheter/article/kartlegg-nedbygging-av-natur-selv
added the year of change crowdsourced labels
added the type of built-up expansion as labelled by the NRK team
Data can be viewed interactively here: https://nina.earthengine.app/view/nedbygging
(see Norwegian description below)
Dataset Information
Title: Map of built-up expansion over Norway 2017-2022
Author(s): Zander Venter (NINA), Mads Nyborg Støstad (NRK), Ruben Solvang (NRK), Anne Linn Kumano-Ensby (NRK), Su Thet Mon (NRK)
Contact Information: zander.venter@nina.no
Date of Data Generation: 06.01.2024
Version: 1
Description: This is the dataset used in the NRK article published on 06.01.2024. The data contains polygons outlining potential “nedbygging” (hereafter translated to “built-up expansion” in English) events between 2017 and 2022 over Norway. The built-up expansion polygons were identified using a combination of Sentinel-2 satellite imagery, a fully convolutional neural network (a type of AI model) from Google called Dynamic World and NINA’s time series analysis thereof. The method to create the map will be published by NINA at a later date. The original map was created by NINA, but NRK performed some post-processing which included joining some polygons which were part of the same built-up expansion event (e.g. a long road). It is important to note that the map is a result of AI and has errors in it. Therefore, users are encouraged to read the sections on data quality and usage information below. Users can refer to Venter et al. (2024) for details on the scientific best practice which the NRK journalists followed to ensure that their reported area estimates in the article were not biased. In summary, the map is wrong 18% of the time. Users should expect to find that on average 1 in 5 square meter is incorrectly identified as built-up expansion. There are also many instances of built-up expansion which will be missed in the map such as forestry road development, building of small cabins etc.
File Details
Format: Shapefile (.shp, .shx, .dbf, .prj)
Size: 13.27 MB
Geospatial Information
Coordinate System: EPSG:32632, UTM zone 32N
Spatial Resolution: 10m
Geographical Coverage: Norway mainland (excludes Svalbard)
Temporal Coverage: 2017 to 2022
Data Content
Attributes Included:
id: unique identity number for each polygon
undersøkt: whether the polygon has been investigated manually using visual interpretation of orthophotos. “ja” = “yes” and “nei” = “no”
undersøkt_source: whether the data was collected by the NRK team or the crowdsourcing effort
kategori_1: the type of built-up expansion labelled by the NRK team - see Google Translate for translations
year: the year in which the built-up expansion occurred as defined by the crowdsourcing volunteers
ai_feil: whether the AI model method correctly (“riktig”) or incorrectly (“feil”) identified natural habitat conversion to built-up surface. Values where undersøkt == “nei” are labelled as “ikke_verifisert”
Data Quality
Accuracy: As described above, the false positive rate of the map was 18% based on 500 locations used for map validation and accuracy assessment. We did not quantify a false negative rate and balanced accuracy estimates because this would have required a denser sample for manual verification. Therefore, it is likely that there are many instances of built-up expansion that our map does not capture. After the formal accuracy assessment using the 500 stratified random points, NRK verified additional polygons (total of 3875) in the dataset during their investigative journalism workflow. Although these were not collected in a systematic manner, then can still be useful for some downstream tasks such as exploring what causes the AI model to misidentify built-up expansion.
Validation Methods: A design-based approach was used to quantify map accuracy and estimate uncertainty around the resulting area estimate reported in the NRK article. The details of this method are reported in Venter et al. (2024). This approach quantifies the error in the AI-derived map, and corrects for this using a stratified area estimator. Therefore, the total built-up expansion of 208 km<2> reported in the NRK article has been bias-corrected. We also quantified 95% confidence intervals around this are estimate of 9.8 km<2>. It is important to note that the validation approach was conducted on individual Sentinel-2 pixels of 10x10m and not at the polygon level. Therefore, we did not quantify the error in the precision of the polygon shape in terms of capturing the full extent of a given built-up expansion event.
Usage Information
Norwegian description:
Datasettinformasjon
Tittel: Kart over nedbygging over Norge 2017-2022
Forfatter(e): Zander Venter (NINA), Mads Nyborg Støstad (NRK), Ruben Solvang (NRK), Anne Linn Kumano-Ensby (NRK), Su Thet Mon (NRK)
Kontaktinformasjon: zander.venter@nina.no
Dato for datagenerering: 06.01.2024
Versjon: 1
Beskrivelse: Dette er datasettet som brukes i NRK-artikkelen publisert 06.01.2024. Dataene inneholder polygoner som skisserer potensiell nedbygging mellom 2017 og 2022 over Norge. Nedbyggingsområdene ble identifisert ved hjelp av en kombinasjon av Sentinel-2 satellittbilder, et fullstendig konvolusjonelt nevralt nettverk (en type KI-modell) fra Google kalt Dynamic World og NINAs tidsserie-analyse av dette. Metoden for å lage kartet vil bli publisert av NINA på et senere tidspunkt. Det originale kartet ble laget av NINA, men NRK utførte en del etterbehandling som inkluderte sammenføyning av noen polygoner som var en del av den samme oppbygde utvidelseshendelsen (f.eks. en lang vei). Det er viktig å merke seg at kartet er produsert ved hjelp av kunstig intelligens og inneholder feil. Derfor oppfordres brukere til å lese avsnittene om datakvalitet og bruksinformasjon nedenfor. Brukere kan referere til Venter et al. (2024) for detaljer om den vitenskapelige beste praksisen som NRK-journalistene fulgte for å sikre at deres rapporterte arealstatistikk i artikkelen er korrekt. Oppsummert er 18 % av arealet i kartet feil. Brukere bør forvente å finne at i gjennomsnitt 1 av 5 kvadratmeter er feilaktig identifisert som nedbygging. Det er også mange tilfeller av nedbygging som som ikke vil vises i kartet, som skogsveiutbygging, bygging av småhytter mm.
Fildetaljer
Format: Shapefil (.shp, .shx, .dbf, .prj)
Størrelse: 13,27 MB
Geospatial informasjon
Koordinatsystem: EPSG:32632, UTM-sone 32N
Rolig oppløsning: 10m
Geografisk dekning: Norges fastland (ekskluderer Svalbard)
Tidlig dekning: 2017 til 2022
Datainnhold
Attributter inkludert:
id: unikt identitetsnummer for hver polygon
undersøkt: om polygonet er undersøkt manuelt ved bruk av visuell tolkning av ortofoto.
undersøkt_source: om dataene er samlet inn av NRK-teamet eller crowdsourcing-innsatsen
kategori_1: typen nedbygging merket av NRK-teamet
year: året hvor nedbygging skjedde som definert av crowdsourcing
ai_feil: om AI-modellmetoden var “riktig” eller “feil”. Verdier der undersøkt == «nei» er merket som «ikke_verifisert»
Datakvalitet
Nøyaktighet: Som beskrevet ovenfor var andelen falske positive punkter i kartet 18 % basert på 500 steder (prøveflater) brukt for kartvalidering og nøyaktighetsvurdering. Vi kvantifiserte ikke andelen falske negative punkter og balanserte nøyaktighetsestimater, fordi dette ville ha krevd en tettere stikkprøvedensitet for manuell verifisering. Derfor er det sannsynlig at det er mange tilfeller av nedbygging som kartet vårt ikke fanger opp. Etter den formelle nøyaktighetsvurderingen ved bruk av 500 stratifiserte tilfeldige prøveflater, verifiserte NRK ytterligere polygoner (totalt 3875) i datasettet i løpet av deres journalistiske undersøkelser. Selv om disse ikke ble samlet inn på en systematisk måte, kan de fortsatt være nyttige for noen oppfølgingsanalyser som å utforske hva som får AI-modellen til å feilidentifisere nedbygging.
Valideringsmetoder: En designbasert tilnærming («design-based area estimation» på engelsk) ble brukt for å kvantifisere kartnøyaktighet og estimere usikkerhet rundt det resulterende arealestimatet rapportert i NRK-artikkelen. Detaljene ved denne metoden er forklart i Venter et al. (2024). Denne tilnærmingen kvantifiserer feilen i det KI-avledede kartet, og korrigerer for dette ved å bruke en stratifisert arealestimator. Derfor er den totale bebygde utvidelsen på 208 km<2> som er rapportert i NRK-artikkelen, skjevhetskorrigert. Vi kvantifiserte også
Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.
Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.
Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.
By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.
In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.
https://outscraper.com/google-maps-scraper/
As a result of the Google Maps scraping, your data file will contain the following details:
Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID
If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.
Domain Contact Scraper can scrape these details:
Email Facebook Github Instagram Linkedin Phone Twitter Youtube
https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.