ONC uses the SK&A Office-based Provider Database to calculate the counts of medical doctors, doctors of osteopathy, nurse practitioners, and physician assistants at the state and count level from 2011 through 2013. These counts are grouped as a total, as well as segmented by each provider type and separately as counts of primary care providers.
US Healthcare NPI Data is a comprehensive resource offering detailed information on health providers registered in the United States.
Dataset Highlights:
Taxonomy Data:
Data Updates:
Use Cases:
Data Quality and Reliability:
Access and Integration: - CSV Format: The dataset is provided in CSV format, making it easy to integrate with various data analysis tools and platforms. - Ease of Use: The structured format of the data ensures that it can be easily imported, analyzed, and utilized for various applications without extensive preprocessing.
Ideal for:
Why Choose This Dataset?
By leveraging the US Healthcare NPI & Taxonomy Data, users can gain valuable insights into the healthcare landscape, enhance their outreach efforts, and conduct detailed research with confidence in the accuracy and comprehensiveness of the data.
Summary:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The DocGraph Teaming data set shows how healthcare providers in the United States team together to provide care to Medicare patients. The dataset is a simple graph data structure, using the National Provider Identifier as keys. We have not heard of a larger, publicly available graph data set that uses real identities. This file contains the links to both the data sets (which are many Gigabytes even as zip files) as well as the documentation for the data.Note: On Oct 5 2015, this data set was redacted due to signifigant issues with its content vs documentation. On Dec 15 2015, this data, along with updated documentation, was replaced. http://www.docgraph.com/teamingdatav2/
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations. The following dataset provides state-aggregated data for hospital utilization in a timeseries format dating back to January 1, 2020. These are derived from reports with facility-level granularity across three main sources: (1) HHS TeleTracking, (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities and (3) National Healthcare Safety Network (before July 15). The file will be updated regularly and provides the latest values reported by each facility within the last four days for all time. This allows for a more comprehensive picture of the hospital utilization within a state by ensuring a hospital is represented, even if they miss a single day of reporting. No statistical analysis is applied to account for non-response and/or to account for missing data. The below table displays one value for each field (i.e., column). Sometimes, reports for a given facility will be provided to more than one reporting source: HHS TeleTracking, NHSN, and HHS Protect. When this occurs, to ensure that there are not duplicate reports, prioritization is applied to the numbers for each facility. On April 27, 2022 the following pediatric fields were added: all_pediatric_inpatient_bed_occupied all_pediatric_inpatient_bed_occupied_coverage all_pediatric_inpatient_beds all_pediatric_inpatient_beds_coverage previous_day_admission_pediatric_covid_confirmed_0_4 previous_day_admission_pediatric_covid_confirmed_0_4_coverage previous_day_admission_pediatric_covid_confirmed_12_17 previous_day_admission_pediatric_covid_confirmed_12_17_coverage previous_day_admission_pediatric_covid_confirmed_5_11 previous_day_admission_pediatric_covid_confirmed_5_11_coverage previous_day_admission_pediatric_covid_confirmed_unknown previous_day_admission_pediatric_covid_confirmed_unknown_coverage staffed_icu_pediatric_patients_confirmed_covid staffed_icu_pediatric_patients_confirmed_covid_coverage staffed_pediatric_icu_bed_occupancy staffed_pediatric_icu_bed_occupancy_coverage total_staffed_pediatric_icu_beds total_staffed_pediatric_icu_beds_coverage On January 19, 2022, the following fields have been added to this dataset: inpatient_beds_used_covid inpatient_beds_used_covid_coverage On September 17, 2021, this data set has had the following fields added: icu_patients_confirmed_influenza, icu_patients_confirmed_influenza_coverage, previous_day_admission_influenza_confirmed, previous_day_admission_influenza_confirmed_coverage, previous_day_deaths_covid_and_influenza, previous_day_deaths_covid_and_influenza_coverage, previous_day_deaths_influenza, previous_day_deaths_influenza_coverage, total_patients_hospitalized_confirmed_influenza, total_patients_hospitalized_confirmed_influenza_and_covid, total_patients_hospitalized_confirmed_influenza_and_covid_coverage, total_patients_hospitalized_confirmed_influenza_coverage On September 13, 2021, this data set has had the following fields added: on_hand_supply_therapeutic_a_casirivimab_imdevimab_courses, on_hand_supply_therapeutic_b_bamlanivimab_courses, on_hand_supply_therapeutic_c_bamlanivimab_etesevimab_courses, previous_week_therapeutic_a_casirivimab_imdevimab_courses_used, previous_week_therapeutic_b_bamlanivimab_courses_used, previous_week_therapeutic_c_bamlanivima
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Medical Doctors in the United States increased to 2.77 per 1000 people in 2019 from 2.74 per 1000 people in 2018. This dataset includes a chart with historical data for the United States Medical Doctors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset describes the number and density of health care services in each census tract in the United States. The data includes counts, per capita densities, and area densities per tract for many types of businesses in the health care sector, including doctors, dentists, mental health providers, nursing homes, and pharmacies.
The All CMS Data Feeds dataset is an expansive resource offering access to 119 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system including nursing facility owners and accountable care organization participants contact data. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.
Dataset Overview:
118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.
25.8 Billion Rows of Data:
Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.
Monthly Updates:
Data Sourced from CMS:
Use Cases:
Market Analysis:
Healthcare Research:
Performance Tracking:
Compliance and Regulatory Reporting:
Data Quality and Reliability:
The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.
Integration and Usability:
Ease of Integration:
The "COVID-19 Reported Patient Impact and Hospital Capacity by Facility" dataset from the U.S. Department of Health & Human Services, filtered for Connecticut. View the full dataset and detailed metadata here: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities. For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020. Reported elements include an append of either “_coverage”, “_sum”, or “_avg”. A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”. This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020. Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect. For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied. On May 3, 2021, the following fields have been added to this data set. hhs_ids previous_day_admission_adult_covid_confirmed_7_day_coverage previous_day_admission_pediatric_covid_confirmed_7_day_coverage previous_day_admission_adult_covid_suspected_7_day_coverage previous_day_admission_pediatric_covid_suspected_7_day_coverage previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum total_personnel_covid_vaccinated_doses_none_7_day_sum total_personnel_covid_vaccinated_doses_one_7_day_sum total_personnel_covid_vaccinated_doses_all_7_day_sum previous_week_patients_covid_vaccinated_doses_one_7_day_sum previous_week_patients_covid_vaccinated_doses_all_7_day_sum On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added. To see the numbers as reported by the facilities, go to: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number report
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Health Insurance Marketplace Public Use Files contain data on health and dental plans offered to individuals and small businesses through the US Health Insurance Marketplace.
To help get you started, here are some data exploration ideas:
See this forum thread for more ideas, and post there if you want to add your own ideas or answer some of the open questions!
This data was originally prepared and released by the Centers for Medicare & Medicaid Services (CMS). Please read the CMS Disclaimer-User Agreement before using this data.
Here, we've processed the data to facilitate analytics. This processed version has three components:
The original versions of the 2014, 2015, 2016 data are available in the "raw" directory of the download and "../input/raw" on Kaggle Scripts. Search for "dictionaries" on this page to find the data dictionaries describing the individual raw files.
In the top level directory of the download ("../input" on Kaggle Scripts), there are six CSV files that contain the combined at across all years:
Additionally, there are two CSV files that facilitate joining data across years:
The "database.sqlite" file contains tables corresponding to each of the processed CSV files.
The code to create the processed version of this data is available on GitHub.
Made available through Socrata COVID-19 Plugin via API.
From the source Web site: This dataset is intended to be used as a baseline for understanding the typical bed capacity and average yearly bed utilization of hospitals reporting such information. The date of last update received from each hospital may be varied. While the dataset is not updated in real-time, this information is critical for understanding the impact of a high utilization event, like COVID-19.
Definitive Healthcare is the leading provider of data, intelligence, and analytics on healthcare organizations and practitioners. In this service, Definitive Healthcare provides intelligence on the numbers of licensed beds, staffed beds, ICU beds, and the bed utilization rate for the hospitals in the United States.
[IMPORTANT NOTE: Sample file posted on Datarade is not the complete dataset, as Datarade permits only a single CSV file. Visit https://www.careprecise.com/healthcare-provider-data-sample.htm for more complete samples.] Updated every month, CarePrecise developed the AHD to provide a comprehensive database of U.S. hospital information. Extracted from the CarePrecise master provider database with information all of the 6.3 million HIPAA-covered US healthcare providers and additional sources, the Authoritative Hospital Database (AHD) contains records for all HIPAA-covered hospitals. In this database of hospitals we include bed counts, patient satisfaction data, hospital system ownership, hospital charges and cases by Zip Code®, and more. Most records include a cabinet-level or director-level contact. A PlaceKey is provided where available.
The AHD includes bed counts for 95% of hospitals, full contact information on 85%, and fax numbers for 62%. We include detailed patient satisfaction data, employee counts, and medical procedure volumes.
The AHD integrates directly with our extended provider data product to bring you the physicians and practice groups affiliated with the hospitals. This combination of data is the only commercially available hospital dataset of this depth.
NEW: Hospital NPI to CCN Rollup A CarePrecise Exclusive. Using advanced record-linkage technology, the AHD now includes a new file that makes it possible to mine the vast hospital information available in the National Provider Identifier registry database. Hospitals may have dozens of NPI records, each with its own information about a unit, listing facility type and/or medical specialties practiced, as well as separate contact names. To wield the power of this new feature, you'll need the CarePrecise Master Bundle, which contains all of the publicly available NPI registry data. These data are available in other CarePrecise data products.
Counts are approximate due to ongoing updates. Please review the current AHD information here: https://www.careprecise.com/detail_authoritative_hospital_database.htm
The AHD is sold as-is and no warranty is offered regarding accuracy, timeliness, completeness, or fitness for any purpose.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises physician-level entries from the 1906 American Medical Directory, the first in a series of semi-annual directories of all practicing physicians published by the American Medical Association [1]. Physicians are consistently listed by city, county, and state. Most records also include details about the place and date of medical training. From 1906-1940, Directories also identified the race of black physicians [2].This dataset comprises physician entries for a subset of US states and the District of Columbia, including all of the South and several adjacent states (Alabama, Arkansas, Delaware, Florida, Georgia, Kansas, Kentucky, Louisiana, Maryland, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia). Records were extracted via manual double-entry by professional data management company [3], and place names were matched to latitude/longitude coordinates. The main source for geolocating physician entries was the US Census. Historical Census records were sourced from IPUMS National Historical Geographic Information System [4]. Additionally, a public database of historical US Post Office locations was used to match locations that could not be found using Census records [5]. Fuzzy matching algorithms were also used to match misspelled place or county names [6].The source of geocoding match is described in the “match.source” field (Type of spatial match (census_YEAR = match to NHGIS census place-county-state for given year; census_fuzzy_YEAR = matched to NHGIS place-county-state with fuzzy matching algorithm; dc = matched to centroid for Washington, DC; post_places = place-county-state matched to Blevins & Helbock's post office dataset; post_fuzzy = matched to post office dataset with fuzzy matching algorithm; post_simp = place/state matched to post office dataset; post_confimed_missing = post office dataset confirms place and county, but could not find coordinates; osm = matched using Open Street Map geocoder; hand-match = matched by research assistants reviewing web archival sources; unmatched/hand_match_missing = place coordinates could not be found). For records where place names could not be matched, but county names could, coordinates for county centroids were used. Overall, 40,964 records were matched to places (match.type=place_point) and 931 to county centroids ( match.type=county_centroid); 76 records could not be matched (match.type=NA).Most records include information about the physician’s medical training, including the year of graduation and a code linking to a school. A key to these codes is given on Directory pages 26-27, and at the beginning of each state’s section [1]. The OSM geocoder was used to assign coordinates to each school by its listed location. Straight-line distances between physicians’ place of training and practice were calculated using the sf package in R [7], and are given in the “school.dist.km” field. Additionally, the Directory identified a handful of schools that were “fraudulent” (school.fraudulent=1), and institutions set up to train black physicians (school.black=1).AMA identified black physicians in the directory with the signifier “(col.)” following the physician’s name (race.black=1). Additionally, a number of physicians attended schools identified by AMA as serving black students, but were not otherwise identified as black; thus an expanded racial identifier was generated to identify black physicians (race.black.prob=1), including physicians who attended these schools and those directly identified (race.black=1).Approximately 10% of dataset entries were audited by trained research assistants, in addition to 100% of black physician entries. These audits demonstrated a high degree of accuracy between the original Directory and extracted records. Still, given the complexity of matching across multiple archival sources, it is possible that some errors remain; any identified errors will be periodically rectified in the dataset, with a log kept of these updates.For further information about this dataset, or to report errors, please contact Dr Ben Chrisinger (Benjamin.Chrisinger@tufts.edu). Future updates to this dataset, including additional states and Directory years, will be posted here: https://dataverse.harvard.edu/dataverse/amd.References:1. American Medical Association, 1906. American Medical Directory. American Medical Association, Chicago. Retrieved from: https://catalog.hathitrust.org/Record/000543547.2. Baker, Robert B., Harriet A. Washington, Ololade Olakanmi, Todd L. Savitt, Elizabeth A. Jacobs, Eddie Hoover, and Matthew K. Wynia. "African American physicians and organized medicine, 1846-1968: origins of a racial divide." JAMA 300, no. 3 (2008): 306-313. doi:10.1001/jama.300.3.306.3. GABS Research Consult Limited Company, https://www.gabsrcl.com.4. Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 17.0 [GNIS, TIGER/Line & Census Maps for US Places and Counties: 1900, 1910, 1920, 1930, 1940, 1950; 1910_cPHA: ds37]. Minneapolis, MN: IPUMS. 2022. http://doi.org/10.18128/D050.V17.05. Blevins, Cameron; Helbock, Richard W., 2021, "US Post Offices", https://doi.org/10.7910/DVN/NUKCNA, Harvard Dataverse, V1, UNF:6:8ROmiI5/4qA8jHrt62PpyA== [fileUNF]6. fedmatch: Fast, Flexible, and User-Friendly Record Linkage Methods. https://cran.r-project.org/web/packages/fedmatch/index.html7. sf: Simple Features for R. https://cran.r-project.org/web/packages/sf/index.html
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Healthcare Data Industry market was valued at USD XX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 16.20% during the forecast period. Data in healthcare signifies all the information that is created or gathered in the healthcare industry. These include patient records, electronic health records, genomic data, health insurance claims, medical images, and all other clinical trial data. All this stands at the back of modern healthcare and could support many critical applications. First and foremost, health data improves patient care. Pattern analysis for patient records is simplified by health care providers in ensuring accurate disease diagnosis and application of personalized treatment plans. Medical field images, such as X-rays and MRIs, are helpful in finding abnormalities and useful in surgical methods. Genomic data insights comprise susceptibility from a genetic view point, which therefore enables coming up with a customised treatment plan for diseases such as cancer. Then, the health information data is very crucial in conducting research and developing new medical knowledge. Researchers analyze epidemiology of diseases by adopting massive datasets, manufacture new drugs and treatments, and analyze effectiveness of health care programs by such datasets. For instance, the medical trials dataset helps in the development of evidence about the safety and efficiency of new treatment options. The health insurance claims dataset can help assess healthcare utilization patterns so as to identify areas in need of improvement. Therefore, health care data also enables administrative and operational functions of health care organizations. EHRs allow easy maintenance of the patient data, enable sound communications among healthcare providers, and minimize errors. Apart from this, analytics on health insurance claims are performed to make possible billing and reimbursement services to ensure the payment of the healthcare provider in the right amount of their rendered service. Further, analytics data could be used for optimization of resource utilization, in identifying potential cost savings, and making health care organizations efficient as a whole. Healthcare information is one of those precious assets that propel innovation, promote better patient outcomes, and support the coherent functioning of the healthcare system. Therefore, improving the quality and efficiency in which care delivery is offered can be achieved through the effective use of healthcare information by healthcare providers, researchers, and administrators for a better state of health among individuals and communities. Recent developments include: March 2022: Microsoft launched Azure Health Data Services in the United States. It is a platform as a service (PAAS) offering designed exclusively to support protected health information (PHI) in the cloud., March 2022: The government of Thailand launched a big data portal for healthcare facilities. The National Reforms Committee on Public Health recently joined hands with 12 government agencies to improve the quality of healthcare services by implementing digital technologies.. Key drivers for this market are: Increase in Demand for Analytics Solutions for Population Health Management, Rise in Need for Business Intelligence to Optimize Health Administration and Strategy; Surge in Adoption of Big Data in the Healthcare Industry. Potential restraints include: Security Concerns Related to Sensitive Patients Medical Data, High Cost of Implementation and Deployment. Notable trends are: Cloud Segment is Expected to Register a High Growth Rate Over the Forecast Period.
This dataset contains Hospital General Information from the U.S. Department of Health & Human Services. This is the BigQuery COVID-19 public dataset. This data contains a list of all hospitals that have been registered with Medicare. This list includes addresses, phone numbers, hospital types and quality of care information. The quality of care data is provided for over 4,000 Medicare-certified hospitals, including over 130 Veterans Administration (VA) medical centers, across the country. You can use this data to find hospitals and compare the quality of their care
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.cms_medicare.hospital_general_info.
How do the hospitals in Mountain View, CA compare to the average hospital in the US? With the hospital compare data you can quickly understand how hospitals in one geographic location compare to another location. In this example query we compare Google’s home in Mountain View, California, to the average hospital in the United States. You can also modify the query to learn how the hospitals in your city compare to the US national average.
“#standardSQL
SELECT
MTV_AVG_HOSPITAL_RATING,
US_AVG_HOSPITAL_RATING
FROM (
SELECT
ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS MTV_AVG_HOSPITAL_RATING
FROM
bigquery-public-data.cms_medicare.hospital_general_info
WHERE
city = 'MOUNTAIN VIEW'
AND state = 'CA'
AND hospital_overall_rating <> 'Not Available') MTV
JOIN (
SELECT
ROUND(AVG(CAST(hospital_overall_rating AS int64)),2) AS US_AVG_HOSPITAL_RATING
FROM
bigquery-public-data.cms_medicare.hospital_general_info
WHERE
hospital_overall_rating <> 'Not Available')
ON
1 = 1”
What are the most common diseases treated at hospitals that do well in the category of patient readmissions?
For hospitals that achieved “Above the national average” in the category of patient readmissions, it might be interesting to review the types of diagnoses that are treated at those inpatient facilities. While this query won’t provide the granular detail that went into the readmission calculation, it gives us a quick glimpse into the top disease related groups (DRG)
, or classification of inpatient stays that are found at those hospitals. By joining the general hospital information to the inpatient charge data, also provided by CMS, you could quickly identify DRGs that may warrant additional research. You can also modify the query to review the top diagnosis related groups for hospital metrics you might be interested in.
“#standardSQL
SELECT
drg_definition,
SUM(total_discharges) total_discharge_per_drg
FROM
bigquery-public-data.cms_medicare.hospital_general_info
gi
INNER JOIN
bigquery-public-data.cms_medicare.inpatient_charges_2015
ic
ON
gi.provider_id = ic.provider_id
WHERE
readmission_national_comparison = 'Above the national average'
GROUP BY
drg_definition
ORDER BY
total_discharge_per_drg DESC
LIMIT
10;”
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Transparency in Hospital Prices Dataset
Overview
The Transparency in Hospital Prices dataset provides insights into the costs of medical procedures across healthcare providers and insurers in the United States. This dataset is derived from an initiative by the Centers for Medicare & Medicaid Services (CMS) that mandates hospitals to publicly disclose their pricing information.
About the Dataset
Source: Centers for Medicare & Medicaid Services (CMS)… See the full description on the dataset page: https://huggingface.co/datasets/kevykibbz/hospitals.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
By Data Society [source]
Do you want to explore the complexities of Health Insurance Marketplace and uncover insights into plan rates, benefits, and networks? Look no further! With this dataset from the Centers for Medicare & Medicaid Services (CMS), you can investigate trends in plan rates, access coverage across states and zip codes, compare metal level plans (across years), as well as analyze benefit information all in one place.
We’ve provided six CSV files containing combined data from across all years: BenefitsCostSharing.csv provides details on benefits, BusinessRules.csv provides details about premium payment requirements for a plan or set of plans, Network.csv offers details about health plans’ networks of providers who offer services at different cost levels to members enrolled in a given plan or set of plans; PlanAttributes.csv gives attributes like age off dates for various plans; Rate.csv delivers information on rate changes; ServiceArea.csv reveals demographic characteristics related to each service area associated with a specific issuer and two CSV files that join data across years (Crosswalk2015 & Crosswalk2016).
So come on board and use your creativity to unlock the mysteries behind changes in benefits in relation to costs while exploring network providers within different regions!!!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information about the health insurance plans offered in the US Health Insurance Marketplace. It includes data on plan benefits, cost-sharing, networks, rates and service areas for different states. The data can be used to compare and analyze plan characteristics across different states and ages which will help guide users decision making when purchasing a health insurance plan.
To begin using the dataset, you should start by looking at the columns available. These include State, Dental Plan, Multistate Plan (2015 & 2016), Metal Level (2015 & 2016), Child/Adult Only (2015 & 2016), FIPS Code, Zip Code Crosswalk Level, Reason for Crosswalk, Multistate Plan Ageoff (2016 & 2015) and MetalLevel Ageoff (2016 & 2015). These columns provide important information on each plan that can be used to compare them across states or between years.
Using this data you can explore several interesting questions such as: How do benefit levels vary among states? Are there any differences in network providers between states? What factors influence plan rates?
In order to answer these questions you should join together relevant tables from across years using Crosswalk 2015/2016 CSV files then organize your data accordingly so that it is easier to visualize differences in features between plans sold across different states or years. Once the information is organized it might be helpful to use visualizations such as line graphs or bar charts to view comparison between feature values of two plans versus one another more clearly in order differentiate variations of plans among Consumers.
By doing this you can gain a better understanding of how certain factors may affect rate changes over time or how certain benefit levels might differ by state which will allow Consumers make an informed choice when selecting their next health insurance plan
- Analyzing the effectiveness of different plan benefits and how they affect premiums to determine a fair price point for different types of healthcare plans.
- Examining the variation in rates, benefits and coverage by state or zip code to identify potential trends or disparities in access to quality health care services across regions.
- Developing an algorithm that can predict premium prices based on certain factors such as age groups, type of plan (metal levels), multistate coverage, etc., to help consumers more easily understand the true cost of their health insurance plans before committing to purchase them
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit -...
The CarePrecise U.S. HCP/HCO Collection Dataset includes deep data on all 6.7 million U.S. HIPAA-covered healthcare practitioners and organizations. Monthly full updates. Includes linkages between the individual practitioners and their practice groups, hospitals, and hospital systems. Licensing plans are available for basic (internal use), derivative products, and redistribution. Data updates are delivered quarterly or monthly to suit customer need; FTP push is available, standard delivery is via CDN. Single download for evaluation is available. CarePrecise is a leader in the fields of HCP/HCO data, supplying provider data to the industry since 2008. Note regarding pricing: The Collection price shown in Pricing is separate from email addresses. Email addresses are priced as low as $0.075 per, based on volume. Pricing shown is without derivative product (DP) licensing for use in web applications; DP license ranges in price from $1,900/year to $9,000/year on top of data purchase, based on application and overall exposure estimate. DP license is sold in two-year term and requires a license agreement.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset contains measures of the number and density of health care services per United States Census Tract or ZIP Code Tabulation Area (ZCTA) from 1990 through 2021. The dataset includes four separate files for four different geographic areas (GIS shapefiles from the United States Census Bureau). The four geographies include:● Census Tract 2010 ● Census Tract 2020● ZIP Code Tabulation Area (ZCTA) 2010 ● ZIP Code Tabulation Area (ZCTA) 2020Information about which dataset to use can be found in the Usage Notes section of this document.
ONC uses the SK&A Office-based Provider Database to calculate the counts of medical doctors, doctors of osteopathy, nurse practitioners, and physician assistants at the state and count level from 2011 through 2013. These counts are grouped as a total, as well as segmented by each provider type and separately as counts of primary care providers.