Facebook
TwitterLooking for a dataset on hospitals in the United States? Look no further! This dataset contains information on all of the hospitals registered with Medicare in the US, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.
This dataset can also be used to study hospital ownership, emergency services
If you want to study the US healthcare system, this dataset is perfect for you. It contains information on all of the hospitals registered with Medicare, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.
This dataset can also be used to study hospital ownership, emergency services, and EHR usage. In addition, the hospital overall rating and various comparisons are included for safety of care, readmission rates
This dataset was originally published by Centers for Medicare and Medicaid Services and has been modified for this project
File: Hospital_General_Information.csv | Column name | Description | |:-------------------------------------------------------|:----------------------------------------------------------------------------------------------------------| | Hospital Name | The name of the hospital. (String) | | Hospital Name | The name of the hospital. (String) | | Address | The address of the hospital. (String) | | Address | The address of the hospital. (String) | | City | The city in which the hospital is located. (String) | | City | The city in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | ZIP Code | The ZIP code of the hospital. (Integer) | | ZIP Code | The ZIP code of the hospital. (Integer) | | County Name | The county in which the hospital is located. (String) | | County Name | The county in which the hospital is located. (String) | | Phone Number | The phone number of the hospital. (String) | | Phone Number | The phone number of the hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Emergency Services | Whether or not the...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Health care in the United States is provided by many distinct organizations. Health care facilities are largely owned and operated by private sector businesses. 58% of US community hospitals are non-profit, 21% are government owned, and 21% are for-profit. According to the World Health Organization (WHO), the United States spent more on healthcare per capita ($9,403), and more on health care as percentage of its GDP (17.1%), than any other nation in 2014. Many different datasets are needed to portray different aspects of healthcare in US like disease prevalences, pharmaceuticals and drugs, Nutritional data of different food products available in US. Such data is collected by surveys (or otherwise) conducted by Centre of Disease Control and Prevention (CDC), Foods and Drugs Administration, Center of Medicare and Medicaid Services and Agency for Healthcare Research and Quality (AHRQ). These datasets can be used to properly review demographics and diseases, determining start ratings of healthcare providers, different drugs and their compositions as well as package informations for different diseases and for food quality. We often want such information and finding and scraping such data can be a huge hurdle. So, Here an attempt is made to make available all US healthcare data at one place to download from in csv files.
Facebook
TwitterUS Healthcare NPI Data is a comprehensive resource offering detailed information on health providers registered in the United States.
Dataset Highlights:
Taxonomy Data:
Data Updates:
Use Cases:
Data Quality and Reliability:
Access and Integration: - CSV Format: The dataset is provided in CSV format, making it easy to integrate with various data analysis tools and platforms. - Ease of Use: The structured format of the data ensures that it can be easily imported, analyzed, and utilized for various applications without extensive preprocessing.
Ideal for:
Why Choose This Dataset?
By leveraging the US Healthcare NPI & Taxonomy Data, users can gain valuable insights into the healthcare landscape, enhance their outreach efforts, and conduct detailed research with confidence in the accuracy and comprehensiveness of the data.
Summary:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Medical Doctors in the United States increased to 2.77 per 1000 people in 2019 from 2.74 per 1000 people in 2018. This dataset includes a chart with historical data for the United States Medical Doctors.
Facebook
TwitterThe All CMS Data Feeds dataset is an expansive resource offering access to 118 unique report feeds, providing in-depth insights into various aspects of the U.S. healthcare system. With over 25.8 billion rows of data meticulously collected since 2007, this dataset is invaluable for healthcare professionals, analysts, researchers, and businesses seeking to understand and analyze healthcare trends, performance metrics, and demographic shifts over time. The dataset is updated monthly, ensuring that users always have access to the most current and relevant data available.
Dataset Overview:
118 Report Feeds: - The dataset includes a wide array of report feeds, each providing unique insights into different dimensions of healthcare. These topics range from Medicare and Medicaid service metrics, patient demographics, provider information, financial data, and much more. The breadth of information ensures that users can find relevant data for nearly any healthcare-related analysis. - As CMS releases new report feeds, they are automatically added to this dataset, keeping it current and expanding its utility for users.
25.8 Billion Rows of Data:
Historical Data Since 2007: - The dataset spans from 2007 to the present, offering a rich historical perspective that is essential for tracking long-term trends and changes in healthcare delivery, policy impacts, and patient outcomes. This historical data is particularly valuable for conducting longitudinal studies and evaluating the effects of various healthcare interventions over time.
Monthly Updates:
Data Sourced from CMS:
Use Cases:
Market Analysis:
Healthcare Research:
Performance Tracking:
Compliance and Regulatory Reporting:
Data Quality and Reliability:
The All CMS Data Feeds dataset is designed with a strong emphasis on data quality and reliability. Each row of data is meticulously cleaned and aligned, ensuring that it is both accurate and consistent. This attention to detail makes the dataset a trusted resource for high-stakes applications, where data quality is critical.
Integration and Usability:
Ease of Integration:
Facebook
TwitterSuccess.ai’s Healthcare Industry Leads Data and B2B Contact Data for US Healthcare Professionals offers an extensive and verified database tailored to connect businesses with key executives and administrators in the healthcare industry across the United States. With over 170M verified profiles, including work emails and direct phone numbers, this dataset enables precise targeting of decision-makers in hospitals, clinics, and healthcare organizations.
Backed by AI-driven validation technology for unmatched accuracy and reliability, this contact data empowers your marketing, sales, and recruitment strategies. Designed for industry professionals, our continuously updated profiles provide the actionable insights you need to grow your business in the competitive healthcare sector.
Key Features of Success.ai’s US Healthcare Contact Data:
Hospital Executives: CEOs, CFOs, and COOs managing top-tier facilities. Healthcare Administrators: Decision-makers driving operational excellence. Medical Professionals: Physicians, specialists, and nurse practitioners. Clinic Managers: Leaders in small and mid-sized healthcare organizations.
AI-Validated Accuracy and Updates
99% Verified Accuracy: Our advanced AI technology ensures data reliability for optimal engagement. Real-Time Updates: Profiles are continuously refreshed to maintain relevance and accuracy. Minimized Bounce Rates: Save time and resources by reaching verified contacts.
Customizable Delivery Options Choose how you access the data to match your business requirements:
API Integration: Connect our data directly to your CRM or sales platform. Flat File Delivery: Receive customized datasets in formats suited to your needs.
Why Choose Success.ai for Healthcare Data?
Best Price Guarantee We ensure competitive pricing for our verified contact data, offering the most comprehensive and cost-effective solution in the market.
Compliance-Driven and Ethical Data Our data collection adheres to strict global standards, including HIPAA, GDPR, and CCPA compliance, ensuring secure and ethical usage.
Strategic Benefits for Your Business Success.ai’s US healthcare professional data unlocks numerous business opportunities:
Targeted Marketing: Develop tailored campaigns aimed at healthcare executives and decision-makers. Efficient Sales Outreach: Engage with key contacts to accelerate your sales process. Recruitment Optimization: Access verified profiles to identify and recruit top talent in the healthcare industry. Market Intelligence: Use detailed firmographic and demographic insights to guide strategic decisions. Partnership Development: Build valuable relationships within the healthcare ecosystem.
Key APIs for Advanced Functionality
Enrichment API Enhance your existing contact data with real-time updates, ensuring accuracy and relevance for your outreach initiatives.
Lead Generation API Drive high-quality lead generation efforts by utilizing verified contact information, including work emails and direct phone numbers, for up to 860,000 API calls per day.
Use Cases
Healthcare Marketing Campaigns Target verified executives and administrators to deliver personalized and impactful marketing campaigns.
Sales Enablement Connect with key decision-makers in healthcare organizations, ensuring higher conversion rates and shorter sales cycles.
Talent Acquisition Source and engage healthcare professionals and administrators with accurate, up-to-date contact information.
Strategic Partnerships Foster collaborations with healthcare institutions and professionals to expand your business network.
Industry Analysis Leverage enriched contact data to gain insights into the US healthcare market, helping you refine your strategies.
Verified Accuracy: AI-driven technology ensures 99% reliability for all contact details. Comprehensive Reach: Covering healthcare professionals from large hospital systems to smaller clinics nationwide. Flexible Access: Customizable data delivery methods tailored to your business needs. Ethical Standards: Fully compliant with healthcare and data protection regulations.
Success.ai’s B2B Contact Data for US Healthcare Professionals is the ultimate solution for connecting with industry leaders, driving impactful marketing campaigns, and optimizing your recruitment strategies. Our commitment to quality, accuracy, and affordability ensures you achieve exceptional results while adhering to ethical and legal standards.
No one beats us on price. Period.
Facebook
TwitterMade available through Socrata COVID-19 Plugin via API.
From the source Web site: This dataset is intended to be used as a baseline for understanding the typical bed capacity and average yearly bed utilization of hospitals reporting such information. The date of last update received from each hospital may be varied. While the dataset is not updated in real-time, this information is critical for understanding the impact of a high utilization event, like COVID-19.
Definitive Healthcare is the leading provider of data, intelligence, and analytics on healthcare organizations and practitioners. In this service, Definitive Healthcare provides intelligence on the numbers of licensed beds, staffed beds, ICU beds, and the bed utilization rate for the hospitals in the United States.
Facebook
TwitterBy US Department of Health and Human Services [source]
This dataset provides comprehensive address-level information on Federally Qualified Health Centers (FQHCs) in the United States. FQHCs are community-driven and consumer run organizations that serve populations with limited access to health care, including those who are low-income, uninsured, have a limited grasp of English, migrating and seasonal farm workers, individuals experiencing homelessness, and those living in public housing. In addition to detailed location addressing data such as postal code and city name for each center in the scope of this dataset; users can find optional information about an individual center such as its operator description or the type of population it serves, along with rich backroom management data which includes grant number, grantee name and uniform resource locator (URL). Get familiarized with this essential dataset to help provide quality medical care access to under served communities across the US
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset is an address-level dataset on the locations of Federally Qualified Health Centers (FQHCs). This dataset includes information on the FQHCs such as name, address, contact information, operating hours per week and grant number. It can be used to locate FQHCs in a particular area and to gain insights into the services they provide.
In order to use this data set, it is important to understand what attributes are included. These are broken down into categories including basic site information (name, telephone number etc.), service description (what population is served etc.), region info (HHS region code etc.) and supplemental info including records for operator and grantee organization.
Once you have identified what fields you are interested in, you can then use this data set for further analysis such as counting how many FQHCs exist within a certain area or determining which states have higher numbers of FQHCs than others. You can also filter by features such as services offered or population served to gain further insights into a particular segment of the FQHC market.
It should also be noted that there may be discrepancies between different sources regarding different fields due to variations in data collection methods; however this dataset is sourced from reliable government datasets making it more accurate than other options. Additionally it contains multiple years of data which provides invaluable insight over time trends that would otherwise not be available through other sources
- Monitoring health outcomes in a given region and comparing changes over time in terms of FQHC locations, services available, and populations served.
- Analyzing the regional distribution of FQHCs and determining whether there are underserved areas based on population density and access to healthcare services.
- Creating a geographic information system (GIS) map to visualize the FQHC locations across the United States, highlighting rural or underserved areas in need of additional support for healthcare access
If you use this dataset in your research, please credit the original authors. Data Source
Unknown License - Please check the dataset description for more information.
File: SITE_HCC_FCT_DET.csv | Column name | Description | |:-----------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------| | Site Name | Name of the FQHC. (String) | | UDS Number | Unique identifier assigned by the US Department of Human Services for each FQHC. (Integer) | | Site Telephone Number | Telephone number of the FQHC. (String) | | Site Facsimile Telephone Number | Facsimile telephone number of the FQHC. (String) | | **Administrati...
Facebook
TwitterNote: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Facebook
TwitterUnited Healthcare Transparency in Coverage Dataset
Unlock the power of healthcare pricing transparency with our comprehensive United Healthcare Transparency in Coverage dataset. This invaluable resource provides unparalleled insights into healthcare costs, enabling data-driven decision-making for insurers, employers, researchers, and policymakers.
Key Features:
Detailed Data Points:
For each of the 76,000 employers, the dataset includes: 1. In-network negotiated rates for covered items and services 2. Historical out-of-network allowed amounts and billed charges 3. Cost-sharing information for specific items and services 4. Pricing data for medical procedures and services across providers, plans, and employers
Use Cases
For Insurers: - Benchmark your rates against competitors - Optimize network design and provider contracting - Develop more competitive and cost-effective insurance products
For Employers: - Make informed decisions about health plan offerings - Negotiate better rates with insurers and providers - Implement cost-saving strategies for employee healthcare
For Researchers: - Conduct in-depth studies on healthcare pricing variations - Analyze the impact of policy changes on healthcare costs - Investigate regional differences in healthcare pricing
For Policymakers: - Develop evidence-based healthcare policies - Monitor the effectiveness of price transparency initiatives - Identify areas for potential cost-saving interventions
Data Delivery
Our flexible data delivery options ensure you receive the information you need in the most convenient format:
Why Choose Our Dataset?
Harness the power of healthcare pricing transparency to drive your business forward. Contact us today to discuss how our United Healthcare Transparency in Coverage dataset can meet your specific needs and unlock valuable insights for your organization.
Facebook
TwitterThe "COVID-19 Reported Patient Impact and Hospital Capacity by Facility" dataset from the U.S. Department of Health & Human Services, filtered for Connecticut. View the full dataset and detailed metadata here: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities. For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020. Reported elements include an append of either “_coverage”, “_sum”, or “_avg”. A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”. This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020. Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect. For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied. On May 3, 2021, the following fields have been added to this data set. hhs_ids previous_day_admission_adult_covid_confirmed_7_day_coverage previous_day_admission_pediatric_covid_confirmed_7_day_coverage previous_day_admission_adult_covid_suspected_7_day_coverage previous_day_admission_pediatric_covid_suspected_7_day_coverage previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum total_personnel_covid_vaccinated_doses_none_7_day_sum total_personnel_covid_vaccinated_doses_one_7_day_sum total_personnel_covid_vaccinated_doses_all_7_day_sum previous_week_patients_covid_vaccinated_doses_one_7_day_sum previous_week_patients_covid_vaccinated_doses_all_7_day_sum On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added. To see the numbers as reported by the facilities, go to: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number report
Facebook
TwitterSalutary Data is a boutique, B2B contact and company data provider that's committed to delivering high quality data for sales intelligence, lead generation, marketing, recruiting / HR, identity resolution, and ML / AI. Our database currently consists of 148MM+ highly curated B2B Contacts ( US only), along with over 4M+ companies, and is updated regularly to ensure we have the most up-to-date information.
We can enrich your in-house data ( CRM Enrichment, Lead Enrichment, etc.) and provide you with a custom dataset ( such as a lead list) tailored to your target audience specifications and data use-case. We also support large-scale data licensing to software providers and agencies that intend to redistribute our data to their customers and end-users.
What makes Salutary unique? - We offer our clients a truly unique, one-stop aggregation of the best-of-breed quality data sources. Our supplier network consists of numerous, established high quality suppliers that are rigorously vetted. - We leverage third party verification vendors to ensure phone numbers and emails are accurate and connect to the right person. Additionally, we deploy automated and manual verification techniques to ensure we have the latest job information for contacts. - We're reasonably priced and easy to work with.
Products: API Suite Web UI Full and Custom Data Feeds
Services: Data Enrichment - We assess the fill rate gaps and profile your customer file for the purpose of appending fields, updating information, and/or rendering net new “look alike” prospects for your campaigns. ABM Match & Append - Send us your domain or other company related files, and we’ll match your Account Based Marketing targets and provide you with B2B contacts to campaign. Optionally throw in your suppression file to avoid any redundant records. Verification (“Cleaning/Hygiene”) Services - Address the 2% per month aging issue on contact records! We will identify duplicate records, contacts no longer at the company, rid your email hard bounces, and update/replace titles or phones. This is right up our alley and levers our existing internal and external processes and systems.
Facebook
TwitterTransparency in Hospital Prices Dataset
Overview
The Transparency in Hospital Prices dataset provides insights into the costs of medical procedures across healthcare providers and insurers in the United States. This dataset is derived from an initiative by the Centers for Medicare & Medicaid Services (CMS) that mandates hospitals to publicly disclose their pricing information.
About the Dataset
Source: Centers for Medicare & Medicaid Services (CMS)… See the full description on the dataset page: https://huggingface.co/datasets/kevykibbz/hospitals.
Facebook
TwitterNote: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset describes the number and density of health care services in each census tract in the United States. The data includes counts, per capita densities, and area densities per tract for many types of businesses in the health care sector, including doctors, dentists, mental health providers, hospitals, nursing homes, and pharmacies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To estimate county of residence of Filipinx healthcare workers who died of COVID-19, we retrieved data from the Kanlungan website during the month of December 2020.22 In deciding who to include on the website, the AF3IRM team that established the Kanlungan website set two standards in data collection. First, the team found at least one source explicitly stating that the fallen healthcare worker was of Philippine ancestry; this was mostly media articles or obituaries sharing the life stories of the deceased. In a few cases, the confirmation came directly from the deceased healthcare worker's family member who submitted a tribute. Second, the team required a minimum of two sources to identify and announce fallen healthcare workers. We retrieved 86 US tributes from Kanlungan, but only 81 of them had information on county of residence. In total, 45 US counties with at least one reported tribute to a Filipinx healthcare worker who died of COVID-19 were identified for analysis and will hereafter be referred to as “Kanlungan counties.” Mortality data by county, race, and ethnicity came from the National Center for Health Statistics (NCHS).24 Updated weekly, this dataset is based on vital statistics data for use in conducting public health surveillance in near real time to provide provisional mortality estimates based on data received and processed by a specified cutoff date, before data are finalized and publicly released.25 We used the data released on December 30, 2020, which included provisional COVID-19 death counts from February 1, 2020 to December 26, 2020—during the height of the pandemic and prior to COVID-19 vaccines being available—for counties with at least 100 total COVID-19 deaths. During this time period, 501 counties (15.9% of the total 3,142 counties in all 50 states and Washington DC)26 met this criterion. Data on COVID-19 deaths were available for six major racial/ethnic groups: Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Native Hawaiian or Other Pacific Islander, Non-Hispanic American Indian or Alaska Native, Non-Hispanic Asian (hereafter referred to as Asian American), and Hispanic. People with more than one race, and those with unknown race were included in the “Other” category. NCHS suppressed county-level data by race and ethnicity if death counts are less than 10. In total, 133 US counties reported COVID-19 mortality data for Asian Americans. These data were used to calculate the percentage of all COVID-19 decedents in the county who were Asian American. We used data from the 2018 American Community Survey (ACS) five-year estimates, downloaded from the Integrated Public Use Microdata Series (IPUMS) to create county-level population demographic variables.27 IPUMS is publicly available, and the database integrates samples using ACS data from 2000 to the present using a high degree of precision.27 We applied survey weights to calculate the following variables at the county-level: median age among Asian Americans, average income to poverty ratio among Asian Americans, the percentage of the county population that is Filipinx, and the percentage of healthcare workers in the county who are Filipinx. Healthcare workers encompassed all healthcare practitioners, technical occupations, and healthcare service occupations, including nurse practitioners, physicians, surgeons, dentists, physical therapists, home health aides, personal care aides, and other medical technicians and healthcare support workers. County-level data were available for 107 out of the 133 counties (80.5%) that had NCHS data on the distribution of COVID-19 deaths among Asian Americans, and 96 counties (72.2%) with Asian American healthcare workforce data. The ACS 2018 five-year estimates were also the source of county-level percentage of the Asian American population (alone or in combination) who are Filipinx.8 In addition, the ACS provided county-level population counts26 to calculate population density (people per 1,000 people per square mile), estimated by dividing the total population by the county area, then dividing by 1,000 people. The county area was calculated in ArcGIS 10.7.1 using the county boundary shapefile and projected to Albers equal area conic (for counties in the US contiguous states), Hawai’i Albers Equal Area Conic (for Hawai’i counties), and Alaska Albers Equal Area Conic (for Alaska counties).20
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises physician-level entries from the 1906 American Medical Directory, the first in a series of semi-annual directories of all practicing physicians published by the American Medical Association [1]. Physicians are consistently listed by city, county, and state. Most records also include details about the place and date of medical training. From 1906-1940, Directories also identified the race of black physicians [2].This dataset comprises physician entries for a subset of US states and the District of Columbia, including all of the South and several adjacent states (Alabama, Arkansas, Delaware, Florida, Georgia, Kansas, Kentucky, Louisiana, Maryland, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia). Records were extracted via manual double-entry by professional data management company [3], and place names were matched to latitude/longitude coordinates. The main source for geolocating physician entries was the US Census. Historical Census records were sourced from IPUMS National Historical Geographic Information System [4]. Additionally, a public database of historical US Post Office locations was used to match locations that could not be found using Census records [5]. Fuzzy matching algorithms were also used to match misspelled place or county names [6].The source of geocoding match is described in the “match.source” field (Type of spatial match (census_YEAR = match to NHGIS census place-county-state for given year; census_fuzzy_YEAR = matched to NHGIS place-county-state with fuzzy matching algorithm; dc = matched to centroid for Washington, DC; post_places = place-county-state matched to Blevins & Helbock's post office dataset; post_fuzzy = matched to post office dataset with fuzzy matching algorithm; post_simp = place/state matched to post office dataset; post_confimed_missing = post office dataset confirms place and county, but could not find coordinates; osm = matched using Open Street Map geocoder; hand-match = matched by research assistants reviewing web archival sources; unmatched/hand_match_missing = place coordinates could not be found). For records where place names could not be matched, but county names could, coordinates for county centroids were used. Overall, 40,964 records were matched to places (match.type=place_point) and 931 to county centroids ( match.type=county_centroid); 76 records could not be matched (match.type=NA).Most records include information about the physician’s medical training, including the year of graduation and a code linking to a school. A key to these codes is given on Directory pages 26-27, and at the beginning of each state’s section [1]. The OSM geocoder was used to assign coordinates to each school by its listed location. Straight-line distances between physicians’ place of training and practice were calculated using the sf package in R [7], and are given in the “school.dist.km” field. Additionally, the Directory identified a handful of schools that were “fraudulent” (school.fraudulent=1), and institutions set up to train black physicians (school.black=1).AMA identified black physicians in the directory with the signifier “(col.)” following the physician’s name (race.black=1). Additionally, a number of physicians attended schools identified by AMA as serving black students, but were not otherwise identified as black; thus an expanded racial identifier was generated to identify black physicians (race.black.prob=1), including physicians who attended these schools and those directly identified (race.black=1).Approximately 10% of dataset entries were audited by trained research assistants, in addition to 100% of black physician entries. These audits demonstrated a high degree of accuracy between the original Directory and extracted records. Still, given the complexity of matching across multiple archival sources, it is possible that some errors remain; any identified errors will be periodically rectified in the dataset, with a log kept of these updates.For further information about this dataset, or to report errors, please contact Dr Ben Chrisinger (Benjamin.Chrisinger@tufts.edu). Future updates to this dataset, including additional states and Directory years, will be posted here: https://dataverse.harvard.edu/dataverse/amd.References:1. American Medical Association, 1906. American Medical Directory. American Medical Association, Chicago. Retrieved from: https://catalog.hathitrust.org/Record/000543547.2. Baker, Robert B., Harriet A. Washington, Ololade Olakanmi, Todd L. Savitt, Elizabeth A. Jacobs, Eddie Hoover, and Matthew K. Wynia. "African American physicians and organized medicine, 1846-1968: origins of a racial divide." JAMA 300, no. 3 (2008): 306-313. doi:10.1001/jama.300.3.306.3. GABS Research Consult Limited Company, https://www.gabsrcl.com.4. Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 17.0 [GNIS, TIGER/Line & Census Maps for US Places and Counties: 1900, 1910, 1920, 1930, 1940, 1950; 1910_cPHA: ds37]. Minneapolis, MN: IPUMS. 2022. http://doi.org/10.18128/D050.V17.05. Blevins, Cameron; Helbock, Richard W., 2021, "US Post Offices", https://doi.org/10.7910/DVN/NUKCNA, Harvard Dataverse, V1, UNF:6:8ROmiI5/4qA8jHrt62PpyA== [fileUNF]6. fedmatch: Fast, Flexible, and User-Friendly Record Linkage Methods. https://cran.r-project.org/web/packages/fedmatch/index.html7. sf: Simple Features for R. https://cran.r-project.org/web/packages/sf/index.html
Facebook
TwitterFacilitate marketing campaigns with the healthcare email list from Infotanks Media, including doctors, healthcare professionals, NPI numbers, physician specialties, and more. Buy targeted email lists of healthcare professionals and connect with doctors, specialists, and other healthcare professionals to promote your products and services. Hyper personalize campaigns to increase engagement for better chances of conversion. Reach out to our data experts today! Access 1.2 million physician contact database with 150+ specialties, including chiropractors, cardiologists, psychiatrists, and radiologists, among others. Get ready to integrate healthcare email lists from Infotanks Media to start email marketing campaigns through CRM and ESP. Contact us right now! Ensure guaranteed lead generation with segmented email marketing strategies for specialists, departments, and more. Make the best use of target marketing to progress and move closer to your business goals with email listing services for healthcare professionals. Infotanks Media provides 100% verified healthcare email lists with the highest email deliverability guarantee of 95%. Get a custom quote today as per your requirements. Enhance your marketing campaigns with healthcare email lists from 170+ countries to build your global outreach. Request your free sample today! Personalize your business communication and interactions to maximize conversion rates with high-quality contact data. Grow your business network in your target markets from anywhere globally with a guaranteed 95% contact accuracy of the healthcare email lists from Infotanks Media. Contact data experts at Infotanks Media from the healthcare industry to get a quick sample for free. Please write to us or call today!
Hyper target within and outside your desired markets with GDPR and CAN-SPAM compliant healthcare email lists that get integrated into your CRM and ESPs. Balance out the sales and marketing efforts by aligning goals using email lists from the healthcare industry. Build strong business relationships with potential clients through personalized campaigns. Call Infotanks Media for a free consultation. Explore new geographies and target markets with a focused approach using healthcare email lists. Align your sales teams and marketing teams through personalized email marketing campaigns to ensure they accomplish business goals together. Add value and grow revenue to take your business to the next level of success. Double up your business and revenue growth with email lists of healthcare professionals. Send segmented campaigns to monitor behaviors and understand the purchasing habits of your potential clients. Send follow-up nurturing email marketing campaigns to attract your potential clients to become converted customers. Close deals sooner with detailed information of your prospects using the healthcare email list from Infotanks Media. Reach healthcare professionals on their preferred platform of communication with the email list of healthcare professionals. Identify, capture, explore, and grow in your target markets anywhere globally with a fully verified, validated, and compliant email database of healthcare professionals. Move beyond the traditional approach and automate sales cycles with buying triggers sent through email marketing campaigns. Use the healthcare email list from Infotanks Media to engage with your targeted potential clients and get them to respond. Increase email marketing campaign response rate to convert better! Reach out to Infotanks Media to customize your healthcare email lists. Call today!
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Healthcare fraud is considered a challenge for many societies. Health care funding that could be spent on medicine, care for the elderly, or emergency room visits is instead lost to fraudulent activities by materialistic practitioners or patients. With rising healthcare costs, healthcare fraud is a major contributor to these increasing healthcare costs.
Try out various unsupervised techniques to find the anomalies in the data.
Detailed Data File:
The following variables are included in the detailed Physician and Other Supplier data file (see Appendix A for a condensed version of variables included)).
npi – National Provider Identifier (NPI) for the performing provider on the claim. The provider NPI is the numeric identifier registered in NPPES.
nppes_provider_last_org_name – When the provider is registered in NPPES as an individual (entity type code=’I’), this is the provider’s last name. When the provider is registered as an organization (entity type code = ‘O’), this is the organization's name.
nppes_provider_first_name – When the provider is registered in NPPES as an individual (entity type code=’I’), this is the provider’s first name. When the provider is registered as an organization (entity type code = ‘O’), this will be blank.
nppes_provider_mi – When the provider is registered in NPPES as an individual (entity type code=’I’), this is the provider’s middle initial. When the provider is registered as an organization (entity type code= ‘O’), this will be blank.
nppes_credentials – When the provider is registered in NPPES as an individual (entity type code=’I’), these are the provider’s credentials. When the provider is registered as an organization (entity type code = ‘O’), this will be blank.
nppes_provider_gender – When the provider is registered in NPPES as an individual (entity type code=’I’), this is the provider’s gender. When the provider is registered as an organization (entity type code = ‘O’), this will be blank.
nppes_entity_code – Type of entity reported in NPPES. An entity code of ‘I’ identifies providers registered as individuals and an entity type code of ‘O’ identifies providers registered as organizations.
nppes_provider_street1 – The first line of the provider’s street address, as reported in NPPES.
nppes_provider_street – The second line of the provider’s street address, as reported in NPPES.
nppes_provider_city – The city where the provider is located, as reported in NPPES.
nppes_provider_zip – The provider’s zip code, as reported in NPPES.
nppes_provider_state – The state where the provider is located, as reported in NPPES. The fifty U.S. states and the District of Columbia are reported by the state postal abbreviation. The following values are used for all other areas:
'XX' = 'Unknown' 'AA' = 'Armed Forces Central/South America' 'AE' = 'Armed Forces Europe' 'AP' = 'Armed Forces Pacific' 'AS' = 'American Samoa' 'GU' = 'Guam' 'MP' = 'North Mariana Islands' 'PR' = 'Puerto Rico' 'VI' = 'Virgin Islands' 'ZZ' = 'Foreign Country'
nppes_provider_country – The country where the provider is located, as reported in NPPES. The country code will be ‘US’ for any state or U.S. possession. For foreign countries (i.e., state values of ‘ZZ’), the provider country values include the following: AE=United Arab Emirates IT=Italy AG=Antigua JO= Jordan AR=Argentina JP=Japan AU=Australia KR=Korea BO=Bolivia KW=Kuwait BR=Brazil KY=Cayman Islands CA=Canada LB=Lebanon CH=Switzerland MX=Mexico CN=China NL=Netherlands CO=Colombia NO=Norway DE= Germany NZ=New Zealand ES= Spain PA=Panama FR=France PK=Pakistan GB=Great Britain RW=Rwanda GR=Greece SA=Saudi Arabia HU= Hungary SY=Syria IL= Israel TH=Thailand IN=India TR=Turkey IS= Iceland VE=Venezuela
provider_type – Derived from the provider specialty code reported on the claim.
medicare_participation_indicator – Identifies whether the provider participates in Medicare and/or accepts the assigned assignment of Medicare allowed amounts.
place_of_service – Identifies whether the place of service submitted on the claims is a facility (value of ‘F’) or non-facility (value of ‘O’). Non-facility is generally an office setting; however other entities are included in non-facility.
hcpcs_code – HCPCS code used to identify the specific medical service furnished by the provider.
hcpcs_description – Description of the HCPCS code for the specific medical service furnished by the provider.
hcpcs_drug_indicator –Identifies whether the HCPCS code for the specific service furnished by the provider is an HCPCS listed on the Medicare Part B Drug Average Sales Price (ASP) File.
line_srvc_cnt – Number of services provided; note that the metrics used to count the number provided can vary from service to service.
bene_unique_cnt – Number of distinct Medicare beneficiaries rec...
Facebook
TwitterThe number of hospitals in the United States was forecast to continuously decrease between 2024 and 2029 by in total 13 hospitals (-0.23 percent). According to this forecast, in 2029, the number of hospitals will have decreased for the twelfth consecutive year to 5,548 hospitals. Depicted is the number of hospitals in the country or region at hand. As the OECD states, the rules according to which an institution can be registered as a hospital vary across countries.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of hospitals in countries like Canada and Mexico.
Facebook
TwitterLooking for a dataset on hospitals in the United States? Look no further! This dataset contains information on all of the hospitals registered with Medicare in the US, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.
This dataset can also be used to study hospital ownership, emergency services
If you want to study the US healthcare system, this dataset is perfect for you. It contains information on all of the hospitals registered with Medicare, including their addresses, phone numbers, hospital type, and more. With such a large amount of data, this dataset is perfect for anyone interested in studying the US healthcare system.
This dataset can also be used to study hospital ownership, emergency services, and EHR usage. In addition, the hospital overall rating and various comparisons are included for safety of care, readmission rates
This dataset was originally published by Centers for Medicare and Medicaid Services and has been modified for this project
File: Hospital_General_Information.csv | Column name | Description | |:-------------------------------------------------------|:----------------------------------------------------------------------------------------------------------| | Hospital Name | The name of the hospital. (String) | | Hospital Name | The name of the hospital. (String) | | Address | The address of the hospital. (String) | | Address | The address of the hospital. (String) | | City | The city in which the hospital is located. (String) | | City | The city in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | State | The state in which the hospital is located. (String) | | ZIP Code | The ZIP code of the hospital. (Integer) | | ZIP Code | The ZIP code of the hospital. (Integer) | | County Name | The county in which the hospital is located. (String) | | County Name | The county in which the hospital is located. (String) | | Phone Number | The phone number of the hospital. (String) | | Phone Number | The phone number of the hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Type | The type of hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Hospital Ownership | The ownership of the hospital. (String) | | Emergency Services | Whether or not the...