MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:
Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.
This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.
https://www.icpsr.umich.edu/web/ICPSR/studies/7896/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7896/terms
This data collection contains information from the first wave of High School and Beyond (HSB), a longitudinal study of American youth conducted by the National Opinion Research Center on behalf of the National Center for Education Statistics (NCES). Data were collected from 58,270 high school students (28,240 seniors and 30,030 sophomores) and 1,015 secondary schools in the spring of 1980. Many items overlap with the NCES's NATIONAL LONGITUDINAL STUDY OF THE CLASS OF 1972 (ICPSR 8085). The HSB study's data are contained in eight files. Part 1 (School Data) contains data from questionnaires completed by high school principals about various school attributes and programs. Part 2 (Student Data) contains data from surveys administered to students. Included are questionnaire responses on family and religious background, perceptions of self and others, personal values, extracurricular activities, type of high school program, and educational expectations and aspirations. Also supplied are scores on a battery of cognitive tests including vocabulary, reading, mathematics, science, writing, civics, spatial orientation, and visualization. To gather the data in Part 3 (Parent Data), a subsample of the seniors and sophomores surveyed in HSB was drawn, and questionnaires were administered to one parent of each of 3,367 sophomores and of 3,197 seniors. The questionnaires contain a number of items in common with the student questionnaires, and there are a number of items in common between the parent-of-sophomore and the parent-of-senior questionnaires. This is a revised file from the one originally released in Autumn 1981, and it includes 22 new analytically constructed variables imputed by NCES from the original survey data gathered from parents. The new data are concerned primarily with the areas of family income, liabilities, and assets. Other data in the file concentrate on financing of post-secondary education, including numerous parent opinions and projections concerning the educational future of the student, anticipated financial aid, student's plans after high school, expected ages for student's marriage and childbearing, estimated costs of post-secondary education, and government financial aid policies. Also supplied are data on family size, value of property and other assets, home financing, family income and debts, and the age, sex, marital, and employment status of parents, plus current income and expenses for the student. Part 4 (Language Data) provides information on each student who reported some non-English language experience, with data on past and current exposure to and use of languages. In Parts 5-6, there are responses from 14,103 teachers about 18,291 senior and sophomore students from 616 schools. Students were evaluated by an average of four different teachers who had the opportunity to express knowledge or opinions of HSB students whom they had taught during the 1979-1980 school year. Part 5 (Teacher Comment Data: Seniors) contains 67,053 records, and Part 6 (Teacher Comment Data: Sophomores) contains 76,560 records. Questions were asked regarding the teacher's opinions of their student's likelihood of attending college, popularity, and physical or emotional handicaps affecting school work. The sophomore file also contains questions on teacher characteristics, e.g., sex, ethnic origin, subjects taught, and time devoted to maintaining order. The data in Part 7 (Twins and Siblings Data) are from students in the HSB sample identified as twins, triplets, or other siblings. Of the 1,348 families included, 524 had twins or triplets only, 810 contained non-twin siblings only, and the remaining 14 contained both types of siblings. Finally, Part 8 (Friends Data) contained the first-, second-, and third-choice friends listed by each of the students in Part 2, along with identifying information allowing links between friendship pairs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: School Enrollment: Secondary: Male: % Net data was reported at 89.513 % in 2015. This records an increase from the previous number of 87.832 % for 2014. United States US: School Enrollment: Secondary: Male: % Net data is updated yearly, averaging 87.442 % from Dec 1987 (Median) to 2015, with 21 observations. The data reached an all-time high of 89.513 % in 2015 and a record low of 85.450 % in 2002. United States US: School Enrollment: Secondary: Male: % Net data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Net enrollment rate is the ratio of children of official school age who are enrolled in school to the population of the corresponding official school age. Secondary education completes the provision of basic education that began at the primary level, and aims at laying the foundations for lifelong learning and human development, by offering more subject- or skill-oriented instruction using more specialized teachers.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
"Enrollment counts are based on the October 31 Audited Register for the 2017-18 to 2019-20 school years. To account for the delay in the start of the school year, enrollment counts are based on the November 13 Audited Register for 2020-21 and the November 12 Audited Register for 2021-22. * Please note that October 31 (and November 12-13) enrollment is not audited for charter schools or Pre-K Early Education Centers (NYCEECs). Charter schools are required to submit enrollment as of BEDS Day, the first Wednesday in October, to the New York State Department of Education." Enrollment counts in the Demographic Snapshot will likely exceed operational enrollment counts due to the fact that long-term absence (LTA) students are excluded for funding purposes. Data on students with disabilities, English Language Learners, students' povery status, and students' Economic Need Value are as of the June 30 for each school year except in 2021-22. Data on SWDs, ELLs, Poverty, and ENI in the 2021-22 school year are as of March 7, 2022. 3-K and Pre-K enrollment totals include students in both full-day and half-day programs. Four-year-old students enrolled in Family Childcare Centers are categorized as 3K students for the purposes of this report. All schools listed are as of the 2021-22 school year. Schools closed before 2021-22 are not included in the school level tab but are included in the data for citywide, borough, and district. Programs and Pre-K NYC Early Education Centers (NYCEECs) are not included on the school-level tab. Due to missing demographic information in rare cases at the time of the enrollment snapshot, demographic categories do not always add up to citywide totals. Students with disabilities are defined as any child receiving an Individualized Education Program (IEP) as of the end of the school year (or March 7 for 2021-22). NYC DOE "Poverty" counts are based on the number of students with families who have qualified for free or reduced price lunch, or are eligible for Human Resources Administration (HRA) benefits. In previous years, the poverty indicator also included students enrolled in a Universal Meal School (USM), where all students automatically qualified, with the exception of middle schools, D75 schools and Pre-K centers. In 2017-18, all students in NYC schools became eligible for free lunch. In order to better reflect free and reduced price lunch status, the poverty indicator does not include student USM status, and retroactively applies this rule to previous years. "The school’s Economic Need Index is the average of its students’ Economic Need Values. The Economic Need Index (ENI) estimates the percentage of students facing economic hardship. The 2014-15 school year is the first year we provide ENI estimates. The metric is calculated as follows: * The student’s Economic Need Value is 1.0 if: o The student is eligible for public assistance from the NYC Human Resources Administration (HRA); o The student lived in temporary housing in the past four years; or o The student is in high school, has a home language other than English, and entered the NYC DOE for the first time within the last four years. * Otherwise, the student’s Economic Need Value is based on the percentage of families (with school-age children) in the student’s census tract whose income is below the poverty level, as estimated by the American Community Survey 5-Year estimate (2020 ACS estimates were used in calculations for 2021-22 ENI). The student’s Economic Need Value equals this percentage divided by 100. Due to differences in the timing of when student demographic, address and census data were pulled, ENI values may vary, slightly, from the ENI values reported in the School Quality Reports. In previous years, student census tract data was based on students’ addresses at the time of ENI calculation. Beginning in 2018-19, census tract data is based on students’ addresses as of the Audited Register date of the g
In 2022, around 20.3 percent of teenagers between ages 16 and 19 were employees while enrolled at school in the United States. This is an increase from the previous year, when 19.4 percent of teenagers were working while in school.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Children Out of School: Male: % of Male Primary School Age data was reported at 4.295 % in 1996. This records an increase from the previous number of 3.055 % for 1995. United States US: Children Out of School: Male: % of Male Primary School Age data is updated yearly, averaging 3.743 % from Dec 1986 (Median) to 1996, with 8 observations. The data reached an all-time high of 7.846 % in 1986 and a record low of 1.372 % in 1991. United States US: Children Out of School: Male: % of Male Primary School Age data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Children out of school are the percentage of primary-school-age children who are not enrolled in primary or secondary school. Children in the official primary age group that are in preprimary education should be considered out of school.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
This dataset displays the locations of the top public high schools in the USA in 2005 according to Newsweek. The location of the high schools were determined by finding the lat/lon of the city and state of the high school. Public schools are ranked according to a ratio devised by Jay Mathews: the number of Advanced Placement, Intl. Baccalaureate and/or Cambridge tests taken by all students at a school in 2004 divided by the number of graduating seniors. All of the schools on the list have an index of at least 1.000; they are in the top 5 percent of public schools measured this way. If you have 2004 data showing that your school should be on this list, please contact Mathews at challenge@washpost.com. Note: Subs. Lunch % is the percentage of students receiving federally subsidized meals. E and E % stands for equity and excellence percentage: the portion of all graduating seniors at a school that had at least one passing grade on one AP or IB test.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset includes the attendance rate for public school students PK-12 by student group and by district during the 2021-2022 school year.
Student groups include:
Students experiencing homelessness Students with disabilities Students who qualify for free/reduced lunch English learners All high needs students Non-high needs students Students by race/ethnicity (Hispanic/Latino of any race, Black or African American, White, All other races)
Attendance rates are provided for each student group by district and for the state. Students who are considered high needs include students who are English language learners, who receive special education, or who qualify for free and reduced lunch.
When no attendance data is displayed in a cell, data have been suppressed to safeguard student confidentiality, or to ensure that statistics based on a very small sample size are not interpreted as equally representative as those based on a sufficiently larger sample size. For more information on CSDE data suppression policies, please visit http://edsight.ct.gov/relatedreports/BDCRE%20Data%20Suppression%20Rules.pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USA: Secondary school enrollment, percent of all eligible children: The latest value from 2022 is 97.47 percent, a decline from 101.19 percent in 2021. In comparison, the world average is 94.03 percent, based on data from 126 countries. Historically, the average for the USA from 1971 to 2022 is 94.64 percent. The minimum value, 82.4 percent, was reached in 1979 while the maximum of 101.19 percent was recorded in 2021.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can customize tables, graphs and maps on data related to children in a specific state or in the United States as a whole. Comparisons can be made between states. Background KIDS COUNT Data Center is part of the Annie E. Casey Foundation and serves to provide information on the status of children in America. The ten core indicators of interest under "Data by State" are: percent of low birth weight babies, infant mortality rate, child death rate, rate of teen deaths by accident, suicide and homicide, teen birth rate, percent of children living with parents who do not have full-time year-round employment, percent of teens who are high school drop outs, percent of teens not working and not in school, percent of children in poverty, and percent of families with children headed by a single parent. A number of other indicators, plus demographic and income information, are also included. "Data across States" is grouped into the following broad categories: demographics, education, economic well-being, family and community, health, safety and risk behaviors, and other. User Functionality Users can determine the view of the data- by table, line graph or map and can print or email the results. Data is available by state and across states. Data Across States allows users to access the raw data. Data is often present over a number of years. For a number of indicators under "Data Across States," users can view results by age, gender/ sex, or race/ ethnicity. Data Notes KIDS COUNT started in 1990. The most recent year of data is 2009 (or 2008 depending on the state, with some data available from 2010). Data is available on the national and state level, and for some states, at the county and city level.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset includes the attendance rate for public school students PK-12 by student group and by district during the 2022-2023 school year.
Student groups include:
Students experiencing homelessness Students with disabilities Students who qualify for free/reduced lunch English learners All high needs students Non-high needs students Students by race/ethnicity (Hispanic/Latino of any race, Black or African American, White, All other races)
Attendance rates are provided for each student group by district and for the state. Students who are considered high needs include students who are English language learners, who receive special education, or who qualify for free and reduced lunch.
When no attendance data is displayed in a cell, data have been suppressed to safeguard student confidentiality, or to ensure that statistics based on a very small sample size are not interpreted as equally representative as those based on a sufficiently larger sample size. For more information on CSDE data suppression policies, please visit http://edsight.ct.gov/relatedreports/BDCRE%20Data%20Suppression%20Rules.pdf.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Children Out of School: Primary data was reported at 949,282.000 Person in 1996. This records an increase from the previous number of 679,354.000 Person for 1995. United States US: Children Out of School: Primary data is updated yearly, averaging 884,689.000 Person from Dec 1975 (Median) to 1996, with 9 observations. The data reached an all-time high of 4,238,648.000 Person in 1975 and a record low of 284,529.000 Person in 1990. United States US: Children Out of School: Primary data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Children out of school are the number of primary-school-age children not enrolled in primary or secondary school.; ; UNESCO Institute for Statistics; Sum; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Report on Demographic Data in New York City Public Schools, 2020-21Enrollment counts are based on the November 13 Audited Register for 2020. Categories with total enrollment values of zero were omitted. Pre-K data includes students in 3-K. Data on students with disabilities, English language learners, and student poverty status are as of March 19, 2021. Due to missing demographic information in rare cases and suppression rules, demographic categories do not always add up to total enrollment and/or citywide totals. NYC DOE "Eligible for free or reduced-price lunch” counts are based on the number of students with families who have qualified for free or reduced-price lunch or are eligible for Human Resources Administration (HRA) benefits. English Language Arts and Math state assessment results for students in grade 9 are not available for inclusion in this report, as the spring 2020 exams did not take place. Spring 2021 ELA and Math test results are not included in this report for K-8 students in 2020-21. Due to the COVID-19 pandemic’s complete transformation of New York City’s school system during the 2020-21 school year, and in accordance with New York State guidance, the 2021 ELA and Math assessments were optional for students to take. As a result, 21.6% of students in grades 3-8 took the English assessment in 2021 and 20.5% of students in grades 3-8 took the Math assessment. These participation rates are not representative of New York City students and schools and are not comparable to prior years, so results are not included in this report. Dual Language enrollment includes English Language Learners and non-English Language Learners. Dual Language data are based on data from STARS; as a result, school participation and student enrollment in Dual Language programs may differ from the data in this report. STARS course scheduling and grade management software applications provide a dynamic internal data system for school use; while standard course codes exist, data are not always consistent from school to school. This report does not include enrollment at District 75 & 79 programs. Students enrolled at Young Adult Borough Centers are represented in the 9-12 District data but not the 9-12 School data. “Prior Year” data included in Comparison tabs refers to data from 2019-20. “Year-to-Year Change” data included in Comparison tabs indicates whether the demographics of a school or special program have grown more or less similar to its district or attendance zone (or school, for special programs) since 2019-20. Year-to-year changes must have been at least 1 percentage point to qualify as “More Similar” or “Less Similar”; changes less than 1 percentage point are categorized as “No Change”. The admissions method tab contains information on the admissions methods used for elementary, middle, and high school programs during the Fall 2020 admissions process. Fall 2020 selection criteria are included for all programs with academic screens, including middle and high school programs. Selection criteria data is based on school-reported information. Fall 2020 Diversity in Admissions priorities is included for applicable middle and high school programs. Note that the data on each school’s demographics and performance includes all students of the given subgroup who were enrolled in the school on November 13, 2020. Some of these students may not have been admitted under the admissions method(s) shown, as some students may have enrolled in the school outside the centralized admissions process (via waitlist, over-the-counter, or transfer), and schools may have changed admissions methods over the past few years. Admissions methods are only reported for grades K-12. "3K and Pre-Kindergarten data are reported at the site level. See below for definitions of site types included in this report. Additionally, please note that this report excludes all students at District 75 sites, reflecting slightly lower enrollment than our total of 60,265 students
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Children Out of School: Female: % of Female Primary School Age data was reported at 3.854 % in 1996. This records an increase from the previous number of 2.865 % for 1995. United States US: Children Out of School: Female: % of Female Primary School Age data is updated yearly, averaging 3.460 % from Dec 1986 (Median) to 1996, with 8 observations. The data reached an all-time high of 5.721 % in 1986 and a record low of 1.033 % in 1990. United States US: Children Out of School: Female: % of Female Primary School Age data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Children out of school are the percentage of primary-school-age children who are not enrolled in primary or secondary school. Children in the official primary age group that are in preprimary education should be considered out of school.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Adjusted Net Enrollment Rate: Primary: Male: % of Primary School Age Children data was reported at 93.137 % in 2015. This records an increase from the previous number of 92.551 % for 2014. United States US: Adjusted Net Enrollment Rate: Primary: Male: % of Primary School Age Children data is updated yearly, averaging 94.128 % from Dec 1986 (Median) to 2015, with 25 observations. The data reached an all-time high of 98.628 % in 1991 and a record low of 91.823 % in 2004. United States US: Adjusted Net Enrollment Rate: Primary: Male: % of Primary School Age Children data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Education Statistics. Adjusted net enrollment is the number of pupils of the school-age group for primary education, enrolled either in primary or secondary education, expressed as a percentage of the total population in that age group.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual distribution of students across grade levels in American History High School
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual distribution of students across grade levels in American Senior High School
This dataset was created by Schubert de Abreu
Released under Other (specified in description)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Children Out of School: Primary: Male data was reported at 511,381.000 Person in 1996. This records an increase from the previous number of 358,341.000 Person for 1995. United States US: Children Out of School: Primary: Male data is updated yearly, averaging 428,453.500 Person from Dec 1986 (Median) to 1996, with 8 observations. The data reached an all-time high of 820,709.000 Person in 1986 and a record low of 149,723.000 Person in 1991. United States US: Children Out of School: Primary: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Children out of school are the number of primary-school-age children not enrolled in primary or secondary school.; ; UNESCO Institute for Statistics; Sum; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Children Out of School: Primary: Female data was reported at 437,901.000 Person in 1996. This records an increase from the previous number of 321,013.000 Person for 1995. United States US: Children Out of School: Primary: Female data is updated yearly, averaging 373,553.500 Person from Dec 1986 (Median) to 1996, with 8 observations. The data reached an all-time high of 561,183.000 Person in 1986 and a record low of 106,133.000 Person in 1990. United States US: Children Out of School: Primary: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Children out of school are the number of primary-school-age children not enrolled in primary or secondary school.; ; UNESCO Institute for Statistics; Sum; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:
Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.
This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.