brucewlee1/mmlu-high-school-world-history dataset hosted on Hugging Face and contributed by the HF Datasets community
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Data includes: board and school information, grade 3 and 6 EQAO student achievements for reading, writing and mathematics, and grade 9 mathematics EQAO and OSSLT. Data excludes private schools, Education and Community Partnership Programs (ECPP), summer, night and continuing education schools.
How Are We Protecting Privacy?
Results for OnSIS and Statistics Canada variables are suppressed based on school population size to better protect student privacy. In order to achieve this additional level of protection, the Ministry has used a methodology that randomly rounds a percentage either up or down depending on school enrolment. In order to protect privacy, the ministry does not publicly report on data when there are fewer than 10 individuals represented.
The information in the School Information Finder is the most current available to the Ministry of Education at this time, as reported by schools, school boards, EQAO and Statistics Canada. The information is updated as frequently as possible.
This information is also available on the Ministry of Education's School Information Finder website by individual school.
Descriptions for some of the data types can be found in our glossary.
School/school board and school authority contact information are updated and maintained by school boards and may not be the most current version. For the most recent information please visit: https://data.ontario.ca/dataset/ontario-public-school-contact-information.
This data tracks four-year graduation rates from high schools located within the City of Tempe, with data publicly available through the Arizona Department of Education.Values of ā8888ā are used when there are too few to count, and values of ā9999ā are used where there is no data available. This page provides data for the High School Graduation Rate performance measure. The performance measure dashboard is available at 3.08 High School Graduation Rates. Additional Information Source: Contact: Marie RaymondContact E-Mail: Marie_Raymond@tempe.govContact Phone: 480-585-7818Data Source: Tempe High School DistrictData Source Type: Excel Preparation Method: Arizona Department of Education (ADE) generated Excel Spreadsheets- available at https://www.azed.gov/accountability-research/data/Publish Frequency: AnnuallyPublish Method: ManualData Dictionary
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By City of Baltimore [source]
This dataset from the Baltimore Neighborhood Indicators Alliance-Jacob France Institute (BNIA-JFI) gathers information about education and youth across Baltimore. Through tracking 27 indicators grouped into seven categories - student enrollment and demographics, dropout rate and high school completion, student attendance, suspensions and expulsions, elementary and middle school student achievement, high school performance, youth labor force participation, and youth civic engagement - BNIA-JFI paints a comprehensive picture of education trends within the city limits. Data sourced from the Baltimore City Public School System (BCPSS), American Community Survey (ACS), as well as Maryland Department of Education allows for cross program comparison to better map connections between educational outcomes affected by neighborhood context. The 2009-2010 school year was used based on readily available data with an approximated 3.4% of address unable to be matched or geocoded and therefore not included in these calculations. Leveraging this data provides perspective to help guide decisions made at local government level that could impact thousands of lives in years ahead
For more datasets, click here.
- šØ Your notebook can be here! šØ!
This dataset contains valuable information about the educational performance and youth engagement in Baltimore City. It provides data on 27 indicators, grouped into seven categories: student enrollment and demographics; dropout rate and high school completion; student attendance, suspensions and expulsions; elementary and middle school student achievement; high school performance; youth labor force participation; and youth civic engagement. This dataset can be used to answer important questions about education in Baltimore, such as examining the relationship between community conditions and educational outcomes.
Before using this dataset, itās important to understand the source of data for each indicator (e.g., Baltimore City Public School System, American Community Survey) so you can understand potential limitations inherent in each data set. Additionally, keep in mind that this dataset does not include students whose home address cannot be geocoded or matched between datasets due to inconsistency of information or other issues - this means that comparisons between some of these indicators may not be as accurate as is achievable with other datasets available from sources such as the Maryland Department of Education or the Baltimore City Public Schools System.
Once you are familiar with where the data comes from you can use it to answer these questions by exploring different trends within Baltimore city over time:
- How have student enrollment numbers changed over time?
- What has been the overall trend in dropout rates across elementary schools?
- Are there any differences in student attendance based on school type?
- What correlations exist between neighborhood community characteristics (such as crime rates or poverty levels), and academic achievement scores?
- How have rates of labor force participation among adolescents shifted year-over-year?
And more! By looking at trends by geography within this diverse city we can gain valuable insight into what factors may play a role influencing educational outcomes for children growing up in different areas around Baltimore City - an essential step for developing methodologies for successful policy interventions targeting our most vulnerable populations!
- Analyzing the correlation between student achievement and socio-economic status of the neighborhoods in which students live.
- Creating targeted policies that are tailored to address specific educational issues showcased in each Baltimore neighborhood demographic.
- Using data visualizations to demonstrate to residents and community leaders how their area is performing compared to other communities in terms of education, dropout rates, suspension rates, and more
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. [See Other Information](https://creativecommons.org/public...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual two or more races student percentage from 2009 to 2023 for Rim Of The World Senior High School vs. California and Rim Of The World Unified School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: School Enrollment: Secondary: Female: % Net data was reported at 92.215 % in 2015. This records an increase from the previous number of 90.026 % for 2014. United States US: School Enrollment: Secondary: Female: % Net data is updated yearly, averaging 89.309 % from Dec 1987 (Median) to 2015, with 21 observations. The data reached an all-time high of 92.215 % in 2015 and a record low of 85.694 % in 2002. United States US: School Enrollment: Secondary: Female: % Net data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Databaseās USA ā Table US.World Bank: Education Statistics. Net enrollment rate is the ratio of children of official school age who are enrolled in school to the population of the corresponding official school age. Secondary education completes the provision of basic education that began at the primary level, and aims at laying the foundations for lifelong learning and human development, by offering more subject- or skill-oriented instruction using more specialized teachers.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
The dashboard project collects new data in each country using three new instruments: a School Survey, a Policy Survey, and a Survey of Public Officials. Data collection involves school visits, classroom observations, legislative reviews, teacher and student assessments, and interviews with teachers, principals, and public officials. In addition, the project draws on some existing data sources to complement the new data it collects. A major objective of the GEPD project was to develop focused, cost-effective instruments and data-collection procedures, so that the dashboard can be inexpensive enough to be applied (and re-applied) in many countries. The team achieved this by streamlining and simplifying existing instruments, and thereby reducing the time required for data collection and training of enumerators.
National
Schools, teachers, students, public officials
Sample survey data [ssd]
The aim of the Global Education Policy Dashboard school survey is to produce nationally representative estimates, which will be able to detect changes in the indicators over time at a minimum power of 80% and with a 0.05 significance level. We also wish to detect differences by urban/rural location. For our school survey, we will employ a two-stage random sample design, where in the first stage a sample of typically around 200 schools, based on local conditions, is drawn, chosen in advance by the Bank staff. In the second stage, a sample of teachers and students will be drawn to answer questions from our survey modules, chosen in the field. A total of 10 teachers will be sampled for absenteeism. Five teachers will be interviewed and given a content knowledge exam. Three 1st grade students will be assessed at random, and a classroom of 4th grade students will be assessed at random. Stratification will be based on the schoolās urban/rural classification and based on region. When stratifying by region, we will work with our partners within the country to make sure we include all relevant geographical divisions. For our Survey of Public Officials, we will sample a total of 200 public officials. Roughly 60 officials are typically surveyed at the federal level, while 140 officials will be surveyed at the regional/district level. For selection of officials at the regional and district level, we will employ a cluster sampling strategy, where roughly 10 regional offices (or whatever the secondary administrative unit is called) are chosen at random from among the regions in which schools were sampled. Then among these 10 regions, we also typically select around 10 districts (tertiary administrative level units) from among the districts in which schools werer sampled. The result of this sampling approach is that for 10 clusters we will have links from the school to the district office to the regional office to the central office. Within the regions/districts, five or six officials will be sampled, including the head of organization, HR director, two division directors from finance and planning, and one or two randomly selected professional employees among the finance, planning, and one other service related department chosen at random. At the federal level, we will interview the HR director, finance director, planning director, and three randomly selected service focused departments. In addition to the directors of each of these departments, a sample of 9 professional employees will be chosen in each department at random on the day of the interview.
The sample for the Global Education Policy Dashboard in SLE was based in part on a previous sample of 260 schools which were part of an early EGRA study. Details from the sampling for that study are quoted below. An additional booster sample of 40 schools was chosen to be representative of smaller schools of less than 30 learners.
EGRA Details:
"The sampling frame began with the 2019 Annual School Census (ASC) list of primary schools as provided by UNICEF/MBSSE where the sample of 260 schools for this study were obtained from an initial list of 7,154 primary schools. Only schools that meet a pre-defined selection criteria were eligible for sampling.
To achieve the recommended sample size of 10 learners per grade, schools that had an enrolment of at least 30 learners in Grade 2 in 2019 were considered. To achieve a high level of confidence in the findings and generate enough data for analysis, the selection criteria only considered schools that: ⢠had an enrolment of at least 30 learners in grade 1; and ⢠had an active grade 4 in 2019 (enrolment not zero)
The sample was taken from a population of 4,597 primary schools that met the eligibility criteria above, representing 64.3% of all the 7,154 primary schools in Sierra Leone (as per the 2019 school census). Schools with higher numbers of learners were purposefully selected to ensure the sample size could be met in each site.
As a result, a sample of 260 schools were drawn using proportional to size allocation with simple random sampling without replacement in each stratum. In the population, there were 16 districts and five school ownership categories (community, government, mission/religious, private and others). A total of 63 strata were made by forming combinations of the 16 districts and school ownership categories. In each stratum, a sample size was computed proportional to the total population and samples were drawn randomly without replacement. Drawing from other EGRA/EGMA studies conducted by Montrose in the past, a backup sample of up to 78 schools (30% of the sample population) with which enumerator teams can replace sample schools was also be drawn.
In the distribution of sampled schools by ownership, majority of the sampled schools are owned by mission/religious group (62.7%, n=163) followed by the government owned schools at 18.5% (n=48). Additionally, in school distribution by district, majority of the sampled schools (54%) were found in Bo, Kambia, Kenema, Kono, Port Loko and Kailahun districts. Refer to annex 9. for details on the population and sample distribution by district."
Because of the restriction that at least 30 learners were available in Grade 2, we chose to add an additional 40 schools to the sample from among smaller schools, with between 3 and 30 grade 2 students. The objective of this supplement was to make the sample more nationally representative, as the restriction reduced the sampling frame for the EGRA/EGMA sample by over 1,500 schools from 7,154 to 4,597.
The 40 schools were chosen in a manner consistent with the original set of EGRA/EGMA schools. The 16 districts formed the strata. In each stratum, the number of schools selected were proportional to the total population of the stratum, and within stratum schools were chosen with probability proportional to size.
Computer Assisted Personal Interview [capi]
The dashboard project collects new data in each country using three new instruments: a School Survey, a Policy Survey, and a Survey of Public Officials. Data collection involves school visits, classroom observations, legislative reviews, teacher and student assessments, and interviews with teachers, principals, and public officials. In addition, the project draws on some existing data sources to complement the new data it collects. A major objective of the GEPD project was to develop focused, cost-effective instruments and data-collection procedures, so that the dashboard can be inexpensive enough to be applied (and re-applied) in many countries. The team achieved this by streamlining and simplifying existing instruments, and thereby reducing the time required for data collection and training of enumerators.
More information pertaining to each of the three instruments can be found below: - School Survey: The School Survey collects data primarily on practices (the quality of service delivery in schools), but also on some de facto policy indicators. It consists of streamlined versions of existing instrumentsāincluding Service Delivery Surveys on teachers and inputs/infrastructure, Teach on pedagogical practice, Global Early Child Development Database (GECDD) on school readiness of young children, and the Development World Management Survey (DWMS) on management qualityātogether with new questions to fill gaps in those instruments. Though the number of modules is similar to the full version of the Service Delivery Indicators (SDI) Survey, the number of items and the complexity of the questions within each module is significantly lower. The School Survey includes 8 short modules: School Information, Teacher Presence, Teacher Survey, Classroom Observation, Teacher Assessment, Early Learner Direct Assessment, School Management Survey, and 4th-grade Student Assessment. For a team of two enumerators, it takes on average about 4 hours to collect all information in a given school. For more information, refer to the Frequently Asked Questions.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2018-2019 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the āEntities and Attributesā metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 175 new records, the removal of 468 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6682 records.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual hispanic student percentage from 1991 to 2023 for Rim Of The World Senior High School vs. California and Rim Of The World Unified School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual total students amount from 2007 to 2023 for New World High School
The research sets out to compare how British and German staff and students are changing in response to neoliberal influences in higher education. In the past, these two countries had a reasonably synoptic vision of values in higher education endorsing personal development, collegial community, pursuit of knowledge and academic freedom. Currently, a market forces model based on competition and choice is relativising some of these traditional values, and has penetrated much more deeply in the UK than in Germany. The research investigates whether expectations, academic values, work satisfaction levels and conceptions of human relationships now actually differ across the two systems: it finds, for example, that high study satisfaction on the part of UK students is āpaid forā by low job satisfaction on the part of staff. Methodologically, it is based upon surveys and interviews conducted among staff and students in 12 universities in each country. The data reveal participantsā perceptions of the strengths and weaknesses of each system, specifically in relation to Education. It highlights which features of modern-day academic life are accepted or rejected by staff, and what attitudes they take towards market-oriented reform. The UK staff feel over-worked, underpaid and downwardly mobile in terms of status in comparison with their German counterparts, but there is a love of the job that overrides all these negative feelings. Semi-structured interviews with staff in twelve HE institutions in the UK and twelve in the Federal Republic of Germany (FRG), and during the course of these interviews staff were asked to fill in questionnaires. Students too were given questionnaires, normally distributed during or at the end of class so as to avoid non-response rates. A sample of 90 staff was aimed for in each country; 87 in the UK and 82 in the FRG completed both questionnaires and interviews. 1489 UK students and 986 FRG students completed the questionnaire.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of āš° How Good Are Teens At Spotting Fake News?ā provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/teen-fake-news-poll-on-after-schoole on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Great write-up by Katie Notopoulos of BuzzFeed News: Teens Think They're Really Good At Spotting Fake News
After School, the largest teen-focused social network, surveyed its users on the issue of fake news. Over several days, tens of thousands of high school students in all 50 states participated in the poll.
Questions asked include:
Have you heard of āfake news stories?"
Are you good at spotting fake news stories?
If you see someone someone sharing fake news stories, what do you do?
Do you believe most news articles are true?
If a news article wasn't telling the truth, do you think you could tell?
Out of the more than 39,000 students who answered the question "have you heard of fake news stories?" 21% of teens had never heard of it. For full results, please look through the data below.
Data slices
Click links below to see survey results broken out and subset in interesting ways
Screenshots
https://media.data.world/NjfnCUgmQtjgbZp3BX64_Q1.png" alt="Q1.png" style="">
https://media.data.world/wFiE1eF3Q12yJ5dsPGLS_Q2.png" alt="Q2.png" style="">
https://media.data.world/aRHALJCwTmnSTvJQqxFB_Q3.png" alt="Q3.png" style="">
This dataset was created by After School and contains around 30000 samples along with City, Total Events, technical information and other features such as: - Event Category - City - and more.
- Analyze Total Events in relation to Event Category
- Study the influence of City on Total Events
- More datasets
If you use this dataset in your research, please credit After School
--- Original source retains full ownership of the source dataset ---
The number of students in regular programs for youth, general programs for adults, and vocational programs for youth and adults in public and private/independent schools, and home-schooling at the elementary-secondary level, by school type and program type.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of āInternational Educational Attainment by Year & Ageā provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/international-comp-attainmente on 13 February 2022.
--- Dataset description provided by original source is as follows ---
The National Center for Education Statistics (NCES) is the primary federal entity for collecting and analyzing data related to education in the U.S. and other nations. NCES is located within the U.S. Department of Education and the Institute of Education Sciences. NCES fulfills a Congressional mandate to collect, collate, analyze, and report complete statistics on the condition of American education; conduct and publish reports; and review and report on education activities internationally.
- Table 603.10. Percentage of the population 25 to 64 years old who completed high school, by age group and country: Selected years, 2001 through 2012
- Table 603.20. Percentage of the population 25 to 64 years old who attained selected levels of postsecondary education, by age group and country: 2001 and 2012
- Table 603.30. Percentage of the population 25 to 64 years old who attained a bachelor's or higher degree, by age group and country: Selected years, 1999 through 2012
- Table 603.40 Percentage of the population 25 to 64 years old who attained a postsecondary vocational degree, by age group and country: Selected years, 1999 through 2012
- Table 603.50 Number of bachelor's degree recipients per 100 persons at the typical minimum age of graduation, by sex and country: Selected years, 2005 through 2012
- Table 603.60. Percentage of postsecondary degrees awarded to women, by field of study and country: 2013
- Table 603.70. Percentage of bachelor's or equivalent degrees awarded in mathematics, science, and engineering, by field of study and country: 2013
- Table 603.80. Percentage of master's or equivalent degrees and of doctoral or equivalent degrees awarded in mathematics, science, and engineering, by field of study and country: 2013
- Table 603.90. Employment to population ratios of -25 to 64-year-olds, by sex, highest level of educational attainment, and country: 2014
Source: https://nces.ed.gov/programs/digest/current_tables.asp
This dataset was created by National Center for Education Statistics and contains around 100 samples along with Unnamed: 20, Unnamed: 24, technical information and other features such as: - Unnamed: 11 - Unnamed: 16 - and more.
- Analyze Unnamed: 15 in relation to Unnamed: 6
- Study the influence of Unnamed: 1 on Unnamed: 10
- More datasets
If you use this dataset in your research, please credit National Center for Education Statistics
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual white student percentage from 1991 to 2023 for Rim Of The World Senior High School vs. California and Rim Of The World Unified School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual american indian student percentage from 2003 to 2023 for Rim Of The World Senior High School vs. California and Rim Of The World Unified School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual asian student percentage from 1991 to 2023 for Rim Of The World Senior High School vs. California and Rim Of The World Unified School District
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual distribution of students across grade levels in New World High School
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual total students amount from 2007 to 2023 for High School Of World Cultures
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset tracks annual graduation rate from 2013 to 2023 for Rim Of The World Senior High School vs. California and Rim Of The World Unified School District
brucewlee1/mmlu-high-school-world-history dataset hosted on Hugging Face and contributed by the HF Datasets community