55 datasets found
  1. d

    Open Data Website Traffic

    • catalog.data.gov
    • data.lacity.org
    • +1more
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2025). Open Data Website Traffic [Dataset]. https://catalog.data.gov/dataset/open-data-website-traffic
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.lacity.org
    Description

    Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly

  2. Daily website visitors (time series regression)

    • kaggle.com
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bob Nau (2020). Daily website visitors (time series regression) [Dataset]. https://www.kaggle.com/bobnau/daily-website-visitors/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 20, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bob Nau
    Description

    Context

    This file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.

    Content

    The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.

    Inspiration

    This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.

  3. d

    Website Analytics

    • catalog.data.gov
    • data.nola.gov
    • +4more
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.nola.gov (2025). Website Analytics [Dataset]. https://catalog.data.gov/dataset/website-analytics
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    data.nola.gov
    Description

    This data about nola.gov provides a window into how people are interacting with the the City of New Orleans online. The data comes from a unified Google Analytics account for New Orleans. We do not track individuals and we anonymize the IP addresses of all visitors.

  4. Google Analytics Sample

    • console.cloud.google.com
    Updated Jul 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Obfuscated%20Google%20Analytics%20360%20data&inv=1&invt=Ab4rzg (2017). Google Analytics Sample [Dataset]. https://console.cloud.google.com/marketplace/product/obfuscated-ga360-data/obfuscated-ga360-data
    Explore at:
    Dataset updated
    Jul 15, 2017
    Dataset provided by
    Googlehttp://google.com/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery

  5. d

    Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B...

    • datarade.ai
    .csv
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge (2025). Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B Shopper Insights | 59 Countries, 3-Day Lag, Daily Delivery [Dataset]. https://datarade.ai/data-products/click-global-data-web-traffic-data-transaction-data-con-consumer-edge
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Consumer Edge
    Area covered
    Marshall Islands, Congo, Bermuda, Finland, South Africa, El Salvador, Nauru, Bosnia and Herzegovina, Montserrat, Sri Lanka
    Description

    Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.

    Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.

    Use Case: Analyze Year Over Year Growth Rate by Region

    Problem A public investor wants to understand how a company’s year-over-year growth differs by region.

    Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends

    Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume

    Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels

    Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.

    Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer

  6. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  7. Website Metrics

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FEMA/Office of External Affairs/Communication Division (2025). Website Metrics [Dataset]. https://catalog.data.gov/dataset/website-metrics
    Explore at:
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Description

    Per the Federal Digital Government Strategy, the Department of Homeland Security Metrics Plan, and the Open FEMA Initiative, FEMA is providing the following web performance metrics with regards to FEMA.gov.rnrnInformation in this dataset includes total visits, avg visit duration, pageviews, unique visitors, avg pages/visit, avg time/page, bounce ratevisits by source, visits by Social Media Platform, and metrics on new vs returning visitors.rnrnExternal Affairs strives to make all communications accessible. If you have any challenges accessing this information, please contact FEMAWebTeam@fema.dhs.gov.

  8. n

    FOI-01782 - Datasets - Open Data Portal

    • opendata.nhsbsa.net
    Updated Mar 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). FOI-01782 - Datasets - Open Data Portal [Dataset]. https://opendata.nhsbsa.net/dataset/foi-01782
    Explore at:
    Dataset updated
    Mar 21, 2024
    Description

    Thank you for explaining that you don’t collect data on the number of abandoned applications. Alternatively, please could you share the website analytics which shows the number of visitors to each webpage, from this information we can compare against form completion rates and if there is a particular drop in traffic on certain pages/questions? Response A copy of the information is attached. Please read the below notes to ensure correct understanding of the data. Attached is raw data covering individual page hits from 19 February 2024 to 17 March 2024. Please be advised that our Data Analysts have viewed the Google analytics for the Healthy Start website pages, and despite the search options including country, regions and town or city, the data provided within these fields is an approximation and cannot be guaranteed as a true location of a user. We believe that Google analytics geo location capabilities are based on IP (Internet Protocol) addresses which may not resolve to a true location, and instead could be based off the users ISP (Internet Service Provider) server location. Therefore, please be aware that this raw data is not reliable.

  9. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    India, Saint Vincent and the Grenadines, Jordan, Belarus, Jamaica, Uzbekistan, Liechtenstein, Russian Federation, Latvia, Monaco
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  10. D

    Exhibit of Datasets

    • ssh.datastations.nl
    pdf
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    P.K. Doorn; L. Breure; P.K. Doorn; L. Breure (2024). Exhibit of Datasets [Dataset]. http://doi.org/10.17026/SS/TLTMIR
    Explore at:
    pdf(6387646), pdf(2009614), pdf(21694737), pdf(7119932), pdf(7368953), pdf(2266022), pdf(5957611), pdf(2372244), pdf(3506939), pdf(7233056), pdf(3825954), pdf(1165676), pdf(2683520), pdf(602628), pdf(1968819), pdf(12429754), pdf(1802813), pdf(8847011), pdf(8196391), pdf(559663), pdf(4024461), pdf(1992824), pdf(1541567), pdf(2404227)Available download formats
    Dataset updated
    Sep 2, 2024
    Dataset provided by
    DANS Data Station Social Sciences and Humanities
    Authors
    P.K. Doorn; L. Breure; P.K. Doorn; L. Breure
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2016 - 2020
    Dataset funded by
    Data Archiving and Networked Services
    Description

    The Exhibit of Datasets was an experimental project with the aim of providing concise introductions to research datasets in the humanities and social sciences deposited in a trusted repository and thus made accessible for the long term. The Exhibit consists of so-called 'showcases', short webpages summarizing and supplementing the corresponding data papers, published in the Research Data Journal for the Humanities and Social Sciences. The showcase is a quick introduction to such a dataset, a bit longer than an abstract, with illustrations, interactive graphs and other multimedia (if available). As a rule it also offers the option to get acquainted with the data itself, through an interactive online spreadsheet, a data sample or link to the online database of a research project. Usually, access to these datasets requires several time consuming actions, such as downloading data, installing the appropriate software and correctly uploading the data into these programs. This makes it difficult for interested parties to quickly assess the possibilities for reuse in other projects. The Exhibit aimed to help visitors of the website to get the right information at a glance by: - Attracting attention to (recently) acquired deposits: showing why data are interesting. - Providing a concise overview of the dataset's scope and research background; more details are to be found, for example, in the associated data paper in the Research Data Journal (RDJ). - Bringing together references to the location of the dataset and to more detailed information elsewhere, such as the project website of the data producers. - Allowing visitors to explore (a sample of) the data without downloading and installing associated software at first (see below). - Publishing related multimedia content, such as videos, animated maps, slideshows etc., which are currently difficult to include in online journals as RDJ. - Making it easier to review the dataset. The Exhibit would also have been the right place to publish these reviews in the same way as a webshop publishes consumer reviews of a product, but this could not yet be achieved within the limited duration of the project. Note (1) The text of the showcase is a summary of the corresponding data paper in RDJ, and as such a compilation made by the Exhibit editor. In some cases a section 'Quick start in Reusing Data' is added, whose text is written entirely by the editor. (2) Various hyperlinks such as those to pages within the Exhibit website will no longer work. The interactive Zoho spreadsheets are also no longer available because this facility has been discontinued.

  11. A web tracking data set of online browsing behavior of 2,148 users

    • zenodo.org
    • explore.openaire.eu
    • +1more
    application/gzip, txt +1
    Updated May 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juhi Kulshrestha; Juhi Kulshrestha; Marcos Oliveira; Marcos Oliveira; Orkut Karacalik; Denis Bonnay; Claudia Wagner; Orkut Karacalik; Denis Bonnay; Claudia Wagner (2021). A web tracking data set of online browsing behavior of 2,148 users [Dataset]. http://doi.org/10.5281/zenodo.4757574
    Explore at:
    zip, txt, application/gzipAvailable download formats
    Dataset updated
    May 14, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Juhi Kulshrestha; Juhi Kulshrestha; Marcos Oliveira; Marcos Oliveira; Orkut Karacalik; Denis Bonnay; Claudia Wagner; Orkut Karacalik; Denis Bonnay; Claudia Wagner
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This anonymized data set consists of one month's (October 2018) web tracking data of 2,148 German users. For each user, the data contains the anonymized URL of the webpage the user visited, the domain of the webpage, category of the domain, which provides 41 distinct categories. In total, these 2,148 users made 9,151,243 URL visits, spanning 49,918 unique domains. For each user in our data set, we have self-reported information (collected via a survey) about their gender and age.

    We acknowledge the support of Respondi AG, which provided the web tracking and survey data free of charge for research purposes, with special thanks to François Erner and Luc Kalaora at Respondi for their insights and help with data extraction.

    The data set is analyzed in the following paper:

    • Kulshrestha, J., Oliveira, M., Karacalik, O., Bonnay, D., Wagner, C. "Web Routineness and Limits of Predictability: Investigating Demographic and Behavioral Differences Using Web Tracking Data." Proceedings of the International AAAI Conference on Web and Social Media. 2021. https://arxiv.org/abs/2012.15112.

    The code used to analyze the data is also available at https://github.com/gesiscss/web_tracking.

    If you use data or code from this repository, please cite the paper above and the Zenodo link.

  12. D

    Monthly Page Views to CDC.gov

    • data.cdc.gov
    • data.virginia.gov
    • +6more
    application/rdfxml +5
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Associate Director for Communication, Division of News and Electronic Media (2025). Monthly Page Views to CDC.gov [Dataset]. https://data.cdc.gov/Web-Metrics/Monthly-Page-Views-to-CDC-gov/rq85-buyi
    Explore at:
    xml, application/rdfxml, json, csv, application/rssxml, tsvAvailable download formats
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Office of the Associate Director for Communication, Division of News and Electronic Media
    Description

    For more information on CDC.gov metrics please see http://www.cdc.gov/metrics/

  13. g

    Statistics, compilation of visits to TCN websites

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics, compilation of visits to TCN websites [Dataset]. https://gimi9.com/dataset/eu_01c2fafa-25cb-4aae-9729-b86ee4851a6b/
    Explore at:
    Description

    Statistics on the visits to the websites of the institutions located on the single platform of the websites of national and local authorities. Statistics do not reflect all website visitors, but only those who have consented to statistical cookies.

  14. E-commerce - Users of a French C2C fashion store

    • kaggle.com
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeffrey Mvutu Mabilama (2024). E-commerce - Users of a French C2C fashion store [Dataset]. https://www.kaggle.com/jmmvutu/ecommerce-users-of-a-french-c2c-fashion-store/notebooks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    Kaggle
    Authors
    Jeffrey Mvutu Mabilama
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    French
    Description

    Foreword

    This users dataset is a preview of a much bigger dataset, with lots of related data (product listings of sellers, comments on listed products, etc...).

    My Telegram bot will answer your queries and allow you to contact me.

    Context

    There are a lot of unknowns when running an E-commerce store, even when you have analytics to guide your decisions.

    Users are an important factor in an e-commerce business. This is especially true in a C2C-oriented store, since they are both the suppliers (by uploading their products) AND the customers (by purchasing other user's articles).

    This dataset aims to serve as a benchmark for an e-commerce fashion store. Using this dataset, you may want to try and understand what you can expect of your users and determine in advance how your grows may be.

    • For instance, if you see that most of your users are not very active, you may look into this dataset to compare your store's performance.

    If you think this kind of dataset may be useful or if you liked it, don't forget to show your support or appreciation with an upvote/comment. You may even include how you think this dataset might be of use to you. This way, I will be more aware of specific needs and be able to adapt my datasets to suits more your needs.

    This dataset is part of a preview of a much larger dataset. Please contact me for more.

    Content

    The data was scraped from a successful online C2C fashion store with over 10M registered users. The store was first launched in Europe around 2009 then expanded worldwide.

    Visitors vs Users: Visitors do not appear in this dataset. Only registered users are included. "Visitors" cannot purchase an article but can view the catalog.

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Questions you might want to answer using this dataset:

    • Are e-commerce users interested in social network feature ?
    • Are my users active enough (compared to those of this dataset) ?
    • How likely are people from other countries to sign up in a C2C website ?
    • How many users are likely to drop off after years of using my service ?

    Example works:

    • Report(s) made using SQL queries can be found on the data.world page of the dataset.
    • Notebooks may be found on the Kaggle page of the dataset.

    License

    CC-BY-NC-SA 4.0

    For other licensing options, contact me.

  15. The Items Dataset

    • zenodo.org
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Egan; Patrick Egan (2024). The Items Dataset [Dataset]. http://doi.org/10.5281/zenodo.10964134
    Explore at:
    Dataset updated
    Nov 13, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Patrick Egan; Patrick Egan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset originally created 03/01/2019 UPDATE: Packaged on 04/18/2019 UPDATE: Edited README on 04/18/2019

    I. About this Data Set This data set is a snapshot of work that is ongoing as a collaboration between Kluge Fellow in Digital Studies, Patrick Egan and an intern at the Library of Congress in the American Folklife Center. It contains a combination of metadata from various collections that contain audio recordings of Irish traditional music. The development of this dataset is iterative, and it integrates visualizations that follow the key principles of trust and approachability. The project, entitled, “Connections In Sound” invites you to use and re-use this data.

    The text available in the Items dataset is generated from multiple collections of audio material that were discovered at the American Folklife Center. Each instance of a performance was listed and “sets” or medleys of tunes or songs were split into distinct instances in order to allow machines to read each title separately (whilst still noting that they were part of a group of tunes). The work of the intern was then reviewed before publication, and cross-referenced with the tune index at www.irishtune.info. The Items dataset consists of just over 1000 rows, with new data being added daily in a separate file.

    The collections dataset contains at least 37 rows of collections that were located by a reference librarian at the American Folklife Center. This search was complemented by searches of the collections by the scholar both on the internet at https://catalog.loc.gov and by using card catalogs.

    Updates to these datasets will be announced and published as the project progresses.

    II. What’s included? This data set includes:

    • The Items Dataset – a .CSV containing Media Note, OriginalFormat, On Website, Collection Ref, Missing In Duplication, Collection, Outside Link, Performer, Solo/multiple, Sub-item, type of tune, Tune, Position, Location, State, Date, Notes/Composer, Potential Linked Data, Instrument, Additional Notes, Tune Cleanup. This .CSV is the direct export of the Items Google Spreadsheet

    III. How Was It Created? These data were created by a Kluge Fellow in Digital Studies and an intern on this program over the course of three months. By listening, transcribing, reviewing, and tagging audio recordings, these scholars improve access and connect sounds in the American Folklife Collections by focusing on Irish traditional music. Once transcribed and tagged, information in these datasets is reviewed before publication.

    IV. Data Set Field Descriptions

    IV

    a) Collections dataset field descriptions

    • ItemId – this is the identifier for the collection that was found at the AFC
    • Viewed – if the collection has been viewed, or accessed in any way by the researchers.
    • On LOC – whether or not there are audio recordings of this collection available on the Library of Congress website.
    • On Other Website – if any of the recordings in this collection are available elsewhere on the internet
    • Original Format – the format that was used during the creation of the recordings that were found within each collection
    • Search – this indicates the type of search that was performed in order that resulted in locating recordings and collections within the AFC
    • Collection – the official title for the collection as noted on the Library of Congress website
    • State – The primary state where recordings from the collection were located
    • Other States – The secondary states where recordings from the collection were located
    • Era / Date – The decade or year associated with each collection
    • Call Number – This is the official reference number that is used to locate the collections, both in the urls used on the Library website, and in the reference search for catalog cards (catalog cards can be searched at this address: https://memory.loc.gov/diglib/ihas/html/afccards/afccards-home.html)
    • Finding Aid Online? – Whether or not a finding aid is available for this collection on the internet

    b) Items dataset field descriptions

    • id – the specific identification of the instance of a tune, song or dance within the dataset
    • Media Note – Any information that is included with the original format, such as identification, name of physical item, additional metadata written on the physical item
    • Original Format – The physical format that was used when recording each specific performance. Note: this field is used in order to calculate the number of physical items that were created in each collection such as 32 wax cylinders.
    • On Webste? – Whether or not each instance of a performance is available on the Library of Congress website
    • Collection Ref – The official reference number of the collection
    • Missing In Duplication – This column marks if parts of some recordings had been made available on other websites, but not all of the recordings were included in duplication (see recordings from Philadelphia Céilí Group on Villanova University website)
    • Collection – The official title of the collection given by the American Folklife Center
    • Outside Link – If recordings are available on other websites externally
    • Performer – The name of the contributor(s)
    • Solo/multiple – This field is used to calculate the amount of solo performers vs group performers in each collection
    • Sub-item – In some cases, physical recordings contained extra details, the sub-item column was used to denote these details
    • Type of item – This column describes each individual item type, as noted by performers and collectors
    • Item – The item title, as noted by performers and collectors. If an item was not described, it was entered as “unidentified”
    • Position – The position on the recording (in some cases during playback, audio cassette player counter markers were used)
    • Location – Local address of the recording
    • State – The state where the recording was made
    • Date – The date that the recording was made
    • Notes/Composer – The stated composer or source of the item recorded
    • Potential Linked Data – If items may be linked to other recordings or data, this column was used to provide examples of potential relationships between them
    • Instrument – The instrument(s) that was used during the performance
    • Additional Notes – Notes about the process of capturing, transcribing and tagging recordings (for researcher and intern collaboration purposes)
    • Tune Cleanup – This column was used to tidy each item so that it could be read by machines, but also so that spelling mistakes from the Item column could be corrected, and as an aid to preserving iterations of the editing process

    V. Rights statement The text in this data set was created by the researcher and intern and can be used in many different ways under creative commons with attribution. All contributions to Connections In Sound are released into the public domain as they are created. Anyone is free to use and re-use this data set in any way they want, provided reference is given to the creators of these datasets.

    VI. Creator and Contributor Information

    Creator: Connections In Sound

    Contributors: Library of Congress Labs

    VII. Contact Information Please direct all questions and comments to Patrick Egan via www.twitter.com/drpatrickegan or via his website at www.patrickegan.org. You can also get in touch with the Library of Congress Labs team via LC-Labs@loc.gov.

  16. e

    Longitudinal navigation log data on the Radboud University web domain -...

    • b2find.eudat.eu
    Updated Apr 28, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Longitudinal navigation log data on the Radboud University web domain - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/31f242e7-01fe-5a59-85f3-0fb23d51b0a9
    Explore at:
    Dataset updated
    Apr 28, 2016
    Description

    We have collected the access logs for our university's web domain over a time span of 4.5 years. We now release the pre-processed web server log of a 3-month period for research into user navigation behavior. We preprocessed the data so that only successful GET requests of web pages by non-bot users are kept. The information that is included per entry is: unique user id, timestamp, GET request (URL), status code, the size of the object returned to the client, and the referrer URL. The resulting size of the 3-month collection is 9.6M page visits (190K unique URLs) by 744K unique visitors. The data collection allows for research on, among other things, user navigation, browsing and stopping behavior and web user clustering.

  17. g

    OGD Portal: Daily usage by record (since January 2024) | gimi9.com

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OGD Portal: Daily usage by record (since January 2024) | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_12610-kanton-basel-landschaft
    Explore at:
    Description

    The data on the use of the data sets on the OGD portal BL (data.bl.ch) are collected and published by the specialist and coordination office OGD BL. Contains the day the usage was measured.dataset_title: The title of the dataset_id record: The technical ID of the dataset.visitors: Specifies the number of daily visitors to the record. Visitors are recorded by counting the unique IP addresses that recorded access on the day of the survey. The IP address represents the network address of the device from which the portal was accessed.interactions: Includes all interactions with any record on data.bl.ch. A visitor can trigger multiple interactions. Interactions include clicks on the website (searching datasets, filters, etc.) as well as API calls (downloading a dataset as a JSON file, etc.).RemarksOnly calls to publicly available datasets are shown.IP addresses and interactions of users with a login of the Canton of Basel-Landschaft - in particular of employees of the specialist and coordination office OGD - are removed from the dataset before publication and therefore not shown.Calls from actors that are clearly identifiable as bots by the user agent header are also not shown.Combinations of dataset and date for which no use occurred (Visitors == 0 & Interactions == 0) are not shown.Due to synchronization problems, data may be missing by the day.

  18. s

    Child Health Clinic Visits in Primary Health Care per 1000 Persons Aged 0-7...

    • store.smartdatahub.io
    Updated Mar 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Child Health Clinic Visits in Primary Health Care per 1000 Persons Aged 0-7 - Sotkanet - Finland - Datasets - This service has been deprecated - please visit https://www.smartdatahub.io/ to access data. See the About page for details. // [Dataset]. https://store.smartdatahub.io/dataset/fi_sotkanet_child_health_clinic_visits_in_primary_health_care_per_1000_persons_aged_0_7
    Explore at:
    Dataset updated
    Mar 7, 2019
    Area covered
    Finland
    Description

    This dataset collection contains information about child health clinic visits in primary health care per 1000 persons aged 0-7 in Finland. The dataset belongs to the 'Sotkanet' website, which provides various data related to social and health indicators in Finland. The table named 'Child Health Clinic Visits in Primary Health Care per 1000 Persons Aged 0-7 - Sotkanet - Finland' is included in this dataset collection and is sourced from the Sotkanet website.

  19. Spotify Top 50 Tracks 2023

    • kaggle.com
    Updated Feb 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    yuka_with_data (2024). Spotify Top 50 Tracks 2023 [Dataset]. https://www.kaggle.com/datasets/yukawithdata/spotify-top-tracks-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 8, 2024
    Dataset provided by
    Kaggle
    Authors
    yuka_with_data
    Description

    💁‍♀️Please take a moment to carefully read through this description and metadata to better understand the dataset and its nuances before proceeding to the Suggestions and Discussions section.

    Dataset Description:

    This dataset compiles the tracks from Spotify's official "Top Tracks of 2023" playlist, showcasing the most popular and influential music of the year according to Spotify's streaming data. It represents a wide range array of genres, artists, and musical styles that have defined the musical landscapes of 2023. Each track in the dataset is detailed with a variety of features, popularity, and metadata. This dataset serves as an excellent resource for music enthusiasts, data analysts, and researchers aiming to explore music trends or develop music recommendation systems based on empirical data.

    Data Collection and Processing:

    Obtaining the Data:

    The data was obtained directly from the Spotify Web API, specifically from the "Top Tracks of 2023" official playlist curated by Spotify. The Spotify API provides detailed information about tracks, artists, and albums through various endpoints.

    Data Processing:

    To process and structure the data, I developed Python scripts using data science libraries such as pandas for data manipulation and spotipy for API interactions specifically for Spotify data retrieval.

    Workflow:

    1. Authentification
    2. API Requests
    3. Data Cleaning and Transformation
    4. Saving the Data

    Attribute Descriptions:

    • artist_name: the artist name
    • track_name: the title of the track
    • is_explicit: Indicates whether the track contains explicit content
    • album_release_date: The date when the track was released
    • genres: A list of genres associated with the track's artist(s)
    • danceability: A measure from 0.0 to 1.0 indicating how suitable a track is for dancing based on a combination of musical elements
    • valence: A measure from 0.0 to 1.0 indicating the musical positiveness conveyed by a track
    • energy: A measure from 0.0 to 1.0 representing a perceptual measure of intensity and activity
    • loudness: The overall loudness of a track in decibels (dB)
    • acousticness: A measure from 0.0 to 1.0 whether the track is acoustic.
    • instrumentalness: Predicts whether a track contains no vocals
    • liveness: Detects the presence of an audience in the recordings
    • speechiness: Detects the presence of spoken words in a track
    • key: The key the track is in. Integers map to pitches using standard Pitch Class notation.
    • tempo: The overall estimated tempo of a track in beats per minute (BPM)
    • mode: Modality of the track
    • duration_ms: The length of the track in milliseconds
    • time_signature: An estimated overall time signature of a track
    • popularity: A score between 0 and 100, with 100 being the most popular

    Possible Data Projects

    • Trends Analysis
    • Genre Popularity
    • Mood and Music
    • Comparison with other tracks

    Disclaimer and Responsible Use:

    • This dataset, derived from Spotify's "Top Tracks of 2023" playlist, is intended for educational, research, and analysis purposes only. Users are urged to use this data responsibly and ethically.
    • Users should comply with Spotify's Terms of Service and Developer Policies when using this dataset.
    • The dataset includes music track information such as names and artist details, which are subject to copyright. While the dataset presents this information for analytical purposes, it does not convey any rights to the music itself.
    • Users of the dataset must ensure that their use does not infringe on the rights of copyright holders. Any analysis, distribution, or derivative work should respect the intellectual property rights of all parties and comply with applicable laws.
    • The dataset is provided "as is," without warranty, and the creator disclaims any legal liability for the use of the dataset by others. Users are responsible for ensuring their use of the dataset is legal and ethical.
    • For the most accurate and up-to-date information regarding Spotify's music, playlists, and policies, users are encouraged to refer directly to Spotify's official website. This ensures that users have access to the latest details directly from the source.
    • The creator/maintainer of this dataset is not affiliated with Spotify, any third-party entities, or artists mentioned within the dataset. This project is independent and has not been authorized, sponsored, or otherwise approved by Spotify or any other mentioned entities.

    Contribution

    I encourage users who discover new insights, propose dataset enhancements, or craft analytics that illuminate aspects of the dataset's focus to share their findings with the community. - Kaggle Notebooks: To facilitate sharing and collaboration, users are encouraged to create and share their analyses through Kaggle notebooks. For ease of use, start your notebook by clicking "New Notebook" atop this dataset’s page on K...

  20. O

    Parking — Occupancy forecasting

    • data.qld.gov.au
    • researchdata.edu.au
    html
    Updated Jul 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brisbane City Council (2025). Parking — Occupancy forecasting [Dataset]. https://www.data.qld.gov.au/dataset/parking-occupancy-forecasting
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jul 30, 2025
    Dataset authored and provided by
    Brisbane City Council
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is available on Brisbane City Council’s open data website – data.brisbane.qld.gov.au. The site provides additional features for viewing and interacting with the data and for downloading the data in various formats.

    The Brisbane City Council parking occupancy forecasting data is provided to be accessed by third party web or app developers to develop tools to provide Brisbane residents and visitors with likely parking availability within a paid parking area.

    The parking occupancy forecasting data is compiled using advanced analytics and machine learning to estimate paid parking availability. The solution uses parking occupancy survey data, parking meter transaction data and other traffic and environmental data.

    This dataset is linked to the open data called Parking — Meter locations. The field called MOBILE_ZONE is used to link the datasets. MOBILE_ZONE is a seven-digit mobile payment zone number that may include one or many parking meter numbers.

    Additional information on parking meters can be found on the Brisbane City Council website.

    The Brisbane City Council parking occupancy forecasting data includes parking data for all of Council’s parking meters. The data attributes used in this resource and their descriptions can be found in the Parking — Occupancy forecasting — metadata — CSV resource in this dataset.

    The Data and resources section of this dataset contains further information for this dataset.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.lacity.org (2025). Open Data Website Traffic [Dataset]. https://catalog.data.gov/dataset/open-data-website-traffic

Open Data Website Traffic

Explore at:
Dataset updated
Jun 21, 2025
Dataset provided by
data.lacity.org
Description

Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly

Search
Clear search
Close search
Google apps
Main menu