Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset provides detailed information on website traffic, including page views, session duration, bounce rate, traffic source, time spent on page, previous visits, and conversion rate.
This dataset can be used for various analyses such as:
This dataset was generated for educational purposes and is not from a real website. It serves as a tool for learning data analysis and machine learning techniques.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.
The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:
Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.
Fork this kernel to get started.
Banner Photo by Edho Pratama from Unsplash.
What is the total number of transactions generated per device browser in July 2017?
The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?
What was the average number of product pageviews for users who made a purchase in July 2017?
What was the average number of product pageviews for users who did not make a purchase in July 2017?
What was the average total transactions per user that made a purchase in July 2017?
What is the average amount of money spent per session in July 2017?
What is the sequence of pages viewed?
Facebook
TwitterComprehensive dataset analyzing Walmart.com's daily website traffic, including 16.7 million daily visits, device distribution, geographic patterns, and competitive benchmarking data.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This dataset originates from DataCamp. Many users have reposted copies of the CSV on Kaggle, but most of those uploads omit the original instructions, business context, and problem framing. In this upload, I’ve included that missing context in the About Dataset so the reader of my notebook or any other notebook can fully understand how the data was intended to be used and the intended problem framing.
Note: I have also uploaded a visualization of the workflow I personally took to tackle this problem, but it is not part of the dataset itself.
Additionally, I created a PowerPoint presentation based on my work in the notebook, which you can download from here:
PPTX Presentation
From: Head of Data Science
Received: Today
Subject: New project from the product team
Hey!
I have a new project for you from the product team. Should be an interesting challenge. You can see the background and request in the email below.
I would like you to perform the analysis and write a short report for me. I want to be able to review your code as well as read your thought process for each step. I also want you to prepare and deliver the presentation for the product team - you are ready for the challenge!
They want us to predict which recipes will be popular 80% of the time and minimize the chance of showing unpopular recipes. I don't think that is realistic in the time we have, but do your best and present whatever you find.
You can find more details about what I expect you to do here. And information on the data here.
I will be on vacation for the next couple of weeks, but I know you can do this without my support. If you need to make any decisions, include them in your work and I will review them when I am back.
Good Luck!
From: Product Manager - Recipe Discovery
To: Head of Data Science
Received: Yesterday
Subject: Can you help us predict popular recipes?
Hi,
We haven't met before but I am responsible for choosing which recipes to display on the homepage each day. I have heard about what the data science team is capable of and I was wondering if you can help me choose which recipes we should display on the home page?
At the moment, I choose my favorite recipe from a selection and display that on the home page. We have noticed that traffic to the rest of the website goes up by as much as 40% if I pick a popular recipe. But I don't know how to decide if a recipe will be popular. More traffic means more subscriptions so this is really important to the company.
Can your team: - Predict which recipes will lead to high traffic? - Correctly predict high traffic recipes 80% of the time?
We need to make a decision on this soon, so I need you to present your results to me by the end of the month. Whatever your results, what do you recommend we do next?
Look forward to seeing your presentation.
Tasty Bytes was founded in 2020 in the midst of the Covid Pandemic. The world wanted inspiration so we decided to provide it. We started life as a search engine for recipes, helping people to find ways to use up the limited supplies they had at home.
Now, over two years on, we are a fully fledged business. For a monthly subscription we will put together a full meal plan to ensure you and your family are getting a healthy, balanced diet whatever your budget. Subscribe to our premium plan and we will also deliver the ingredients to your door.
This is an example of how a recipe may appear on the website, we haven't included all of the steps but you should get an idea of what visitors to the site see.
Tomato Soup
Servings: 4
Time to make: 2 hours
Category: Lunch/Snack
Cost per serving: $
Nutritional Information (per serving) - Calories 123 - Carbohydrate 13g - Sugar 1g - Protein 4g
Ingredients: - Tomatoes - Onion - Carrot - Vegetable Stock
Method: 1. Cut the tomatoes into quarters….
The product manager has tried to make this easier for us and provided data for each recipe, as well as whether there was high traffic when the recipe was featured on the home page.
As you will see, they haven't given us all of the information they have about each recipe.
You can find the data here.
I will let you decide how to process it, just make sure you include all your decisions in your report.
Don't forget to double check the data really does match what they say - it might not.
| Column Name | Details |
|---|---|
| recipe | Numeric, unique identifier of recipe |
| calories | Numeric, number of calories |
| carbohydrate | Numeric, amount of carbohydrates in grams |
| sugar | Numeric, amount of sugar in grams |
| protein | Numeric, amount of prote... |
Facebook
TwitterThis data about nola.gov provides a window into how people are interacting with the the City of New Orleans online. The data comes from a unified Google Analytics account for New Orleans. We do not track individuals and we anonymize the IP addresses of all visitors.
Facebook
TwitterComprehensive dataset analyzing Amazon's daily website visits, traffic patterns, seasonal trends, and comparative analysis with other ecommerce platforms based on May 2025 data.
Facebook
TwitterThis file contains 5 years of daily time series data for several measures of traffic on a statistical forecasting teaching notes website whose alias is statforecasting.com. The variables have complex seasonality that is keyed to the day of the week and to the academic calendar. The patterns you you see here are similar in principle to what you would see in other daily data with day-of-week and time-of-year effects. Some good exercises are to develop a 1-day-ahead forecasting model, a 7-day ahead forecasting model, and an entire-next-week forecasting model (i.e., next 7 days) for unique visitors.
The variables are daily counts of page loads, unique visitors, first-time visitors, and returning visitors to an academic teaching notes website. There are 2167 rows of data spanning the date range from September 14, 2014, to August 19, 2020. A visit is defined as a stream of hits on one or more pages on the site on a given day by the same user, as identified by IP address. Multiple individuals with a shared IP address (e.g., in a computer lab) are considered as a single user, so real users may be undercounted to some extent. A visit is classified as "unique" if a hit from the same IP address has not come within the last 6 hours. Returning visitors are identified by cookies if those are accepted. All others are classified as first-time visitors, so the count of unique visitors is the sum of the counts of returning and first-time visitors by definition. The data was collected through a traffic monitoring service known as StatCounter.
This file and a number of other sample datasets can also be found on the website of RegressIt, a free Excel add-in for linear and logistic regression which I originally developed for use in the course whose website generated the traffic data given here. If you use Excel to some extent as well as Python or R, you might want to try it out on this dataset.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery
Facebook
TwitterPer the Federal Digital Government Strategy, the Department of Homeland Security Metrics Plan, and the Open FEMA Initiative, FEMA is providing the following web performance metrics with regards to FEMA.gov.rnrnInformation in this dataset includes total visits, avg visit duration, pageviews, unique visitors, avg pages/visit, avg time/page, bounce ratevisits by source, visits by Social Media Platform, and metrics on new vs returning visitors.rnrnExternal Affairs strives to make all communications accessible. If you have any challenges accessing this information, please contact FEMAWebTeam@fema.dhs.gov.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was obtained from website visit data. These are real data. It contains monthly visit information of the tr-metaverse.com website hosted on Linux. Day Hit Hit% Files Files% Pages Pages% Visit Visit% Sites Sites% Kbytes Kbytes% It consists of fields. Values with a % sign next to them are numbers in percent. 30-day visit data from the beginning of the month to the end of the month. Day: Day index number, which day of the month Hit: How much reach there is in general Hit%: How much access there is overall in percentage Files: How many visits have been made as files Files%: Percentage in files Pages Pages% Visit: Number of unique visitors Visit%: Unique visitor rate sites sites% Kbytes: how much data has been downloaded Kbytes%: percentage in data
Facebook
TwitterUnlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.
Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.
User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.
Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.
GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.
Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.
High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.
Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.
Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.
Facebook
TwitterThe Get It Done program allows residents and visitors to report certain types of non-emergency problems to the City using the Get It Done mobile app, web app, or by telephone. This dataset contains all Get It Done reports the City has received since the program launched in May 2016. New! We have reorganized the data into a single file of currently open reports and closed reports by year. Users who would prefer to get reports by problem type should refer to the datasets for: 72-hour parking violations Graffiti Illegal Dumping Potholes The scope of this data is limited to information from the reports citizen users submit through Get It Done. The data includes fields for the date and time a report was submitted, what the problem was, the location of the problem, and the date when the user was notified that the City addressed the problem. This data does not include details about any work performed to fix a problem or the date and time work was completed. Reports that are referred outside of the Get It Done system have a status of “Referred”. Please note that this data includes every user-submitted report and should not be considered an official record of City maintenance work. For example, users might submit problems that have already been reported, that are the responsibility of another government agency or private business, that cannot be found or verified, or that are already scheduled to be fixed in a long-term maintenance plan. The details about how the City addressed each report are outside of the scope of this dataset. If you have any questions about this data, please contact pandatech@sandiego.gov. If you have questions about your Get It Done report, please refer to your confirmation email.
Facebook
TwitterData Dictionary: https://docs.google.com/spreadsheets/d/1ItvGzNG8O_Yj97Tf6am4T-QyhnxP-BeIRjm7ZaUeAxs/edit#gid=1499621902 GreenThumb provides programming and material support to over 550 community gardens in New York City. NYC Parks GreenThumb staff visit all active community gardens under the jurisdiction of NYC Parks once each calendar year, subject to staff capacity. These site visits typically occur during the summer months and representatives of licensed garden groups are invited to attend. During these site visits, NYC Parks GreenThumb staff observe and record quantitative and qualitative information related to the physical status of the garden, as well as its ongoing operation, maintenance, and programming. This information is used by NYC Parks GreenThumb to inform maintenance needs at the garden and to help NYC Parks GreenThumb understand the needs of garden groups so that we can plan accordingly. In addition, this information is necessary for NYC Parks GreenThumb to confirm that publicly accessible community gardens under its jurisdiction are being operated in safe manner and in accordance with the NYC Parks GreenThumb License Agreement and applicable NYS and NYC laws and regulations. NYC Parks GreenThumb may conduct additional site visits as deemed necessary.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This anonymized data set consists of one month's (October 2018) web tracking data of 2,148 German users. For each user, the data contains the anonymized URL of the webpage the user visited, the domain of the webpage, category of the domain, which provides 41 distinct categories. In total, these 2,148 users made 9,151,243 URL visits, spanning 49,918 unique domains. For each user in our data set, we have self-reported information (collected via a survey) about their gender and age.
We acknowledge the support of Respondi AG, which provided the web tracking and survey data free of charge for research purposes, with special thanks to François Erner and Luc Kalaora at Respondi for their insights and help with data extraction.
The data set is analyzed in the following paper:
The code used to analyze the data is also available at https://github.com/gesiscss/web_tracking.
If you use data or code from this repository, please cite the paper above and the Zenodo link.
Users are advised that some domains in this data set may link to potentially questionable or inappropriate content. The domains have not been individually reviewed, as content verification was not the primary objective of this data set. Therefore, user discretion is strongly recommended when accessing or scraping any content from these domains.
Facebook
TwitterResearch data on traffic exchange limitations including low-quality traffic characteristics, search engine penalty risks, and comparison with effective alternatives like SEO and content marketing strategies.
Facebook
TwitterDisclaimer: PLEASE READ THIS AGREEMENT CAREFULLY BEFORE USING THIS DATA SET. BY USING THIS DATA SET, YOU ARE CONSENTING TO BE OBLIGATED AND BECOME A PARTY TO THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS AND CONDITIONS BELOW YOU SHOULD NOT ACCESS OR USE THIS DATA SET. This data set is presented as a public service that provides Internet accessibility to information provided by the City of Los Angeles and to other City, State, and Federal information. Due to the dynamic nature of the information contained within this data set and the data set’s reliance on information from outside sources, the City of Los Angeles does not guarantee the accuracy or reliability of the information transmitted from this data set. This data set and all materials contained on it are distributed and transmitted on an “as is” and “as available” basis without any warranties of any kind, whether expressed or implied, including without limitation, warranties of title or implied warranties of merchantability or fitness for a particular purpose. The City of Los Angeles is not responsible for any special, indirect, incidental, punitive, or consequential damages that may arise from the use of, or the inability to use the data set and/or materials contained on the data set, or that result from mistakes, omissions, interruptions, deletion of files, errors, defects, delays in operation, or transmission, or any failure of performance, whether the material is provided by the City of Los Angeles or a third-party. The City of Los Angeles reserves the right to modify, update, or alter these Terms and Conditions of use at any time. Your continued use of this Site constitutes your agreement to comply with such modifications. The information provided on this data set, and its links to other related web sites, are provided as a courtesy to our web site visitors only, and are in no manner an endorsement, recommendation, or approval of any person, any product, or any service contained on any other web site. Description: Monthly revenue generated by conveyances of real property over $5 million, from when applicable transfer tax collection began on April 1, 2023 to present. Consistent with the ULA ordinance, the property sale value thresholds and their corresponding tax rates will be adjusted annually based on the Bureau of Labor Statistics Chained Consumer Price Index.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Redirect Notice: The website https://transbase.sfgov.org/ is no longer in operation. Visitors to Transbase will be redirected to this page where they can view, visualize, and download Traffic Crash data.A. SUMMARYThis table contains all crashes resulting in an injury in the City of San Francisco. Fatality year-to-date crash data is obtained from the Office of the Chief Medical Examiner (OME) death records, and only includes those cases that meet the San Francisco Vision Zero Fatality Protocol maintained by the San Francisco Department of Public Health (SFDPH), San Francisco Police Department (SFPD), and San Francisco Municipal Transportation Agency (SFMTA). Injury crash data is obtained from SFPD’s Interim Collision System for 2018 through the current year-to-date, Crossroads Software Traffic Collision Database (CR) for years 2013-2017 and the Statewide Integrated Transportation Record System (SWITRS) maintained by the California Highway Patrol for all years prior to 2013. Only crashes with valid geographic information are mapped. All geocodable crash data is represented on the simplified San Francisco street centerline model maintained by the Department of Public Works (SFDPW). Collision injury data is queried and aggregated on a quarterly basis. Crashes occurring at complex intersections with multiple roadways are mapped onto a single point and injury and fatality crashes occurring on highways are excluded.The crash, party, and victim tables have a relational structure. The traffic crashes table contains information on each crash, one record per crash. The party table contains information from all parties involved in the crashes, one record per party. Parties are individuals involved in a traffic crash including drivers, pedestrians, bicyclists, and parked vehicles. The victim table contains information about each party injured in the collision, including any passengers. Injury severity is included in the victim table. For example, a crash occurs (1 record in the crash table) that involves a driver party and a pedestrian party (2 records in the party table). Only the pedestrian is injured and thus is the only victim (1 record in the victim table). To learn more about the traffic injury datasets, see the TIMS documentationB. HOW THE DATASET IS CREATEDTraffic crash injury data is collected from the California Highway Patrol 555 Crash Report as submitted by the police officer within 30 days after the crash occurred. All fields that match the SWITRS data schema are programmatically extracted, de-identified, geocoded, and loaded into TransBASE. See Section D below for details regarding TransBASE. C. UPDATE PROCESSAfter review by SFPD and SFDPH staff, the data is made publicly available approximately a month after the end of the previous quarter (May for Q1, August for Q2, November for Q3, and February for Q4). D. HOW TO USE THIS DATASETThis data is being provided as public information as defined under San Francisco and California public records laws. SFDPH, SFMTA, and SFPD cannot limit or restrict the use of this data or its interpretation by other parties in any way. Where the data is communicated, distributed, reproduced, mapped, or used in any other way, the user should acknowledge TransBASE.sfgov.org as the source of the data, provide a reference to the original data source where also applicable, include the date the data was pulled, and note any caveats specified in the associated metadata documentation provided. However, users should not attribute their analysis or interpretation of this data to the City of San Francisco. While the data has been collected and/or produced for the use of the City of San Francisco, it cannot guarantee its accuracy or completeness. Accordingly, the City of San Francisco, including SFDPH, SFMTA, and SFPD make no representation as to the accuracy of the information or its suitability for any purpose and disclaim any liability for omissions or errors that may be contained therein. As all data is associated with methodological assumptions and limitations, the City recommends that users review methodological documentation associated with the data prior to its analysis, interpretation, or communication.This dataset can also be queried on the TransBASE Dashboard. TransBASE is a geospatially enabled database maintained by SFDPH that currently includes over 200 spatially referenced variables from multiple agencies and across a range of geographic scales, including infrastructure, transportation, zoning, sociodemographic, and collision data, all linked to an intersection or street segment. TransBASE facilitates a data-driven approach to understanding and addressing transportation-related health issues,informed by a large and growing evidence base regarding the importance of transportation system design and land use decisions for health. TransBASE’s purpose is to inform public and private efforts to improve transportation system safety, sustainability, community health and equity in San Francisco.E. RELATED DATASETSTraffic Crashes Resulting in Injury: Parties InvolvedTraffic Crashes Resulting in Injury: Victims InvolvedTransBASE DashboardiSWITRSTIMSData pushed to ArcGIS Online on November 5, 2025 at 4:19 PM by SFGIS.Data from: https://data.sfgov.org/d/ubvf-ztfxDescription of dataset columns:
unique_id
unique table row identifier
cnn_intrsctn_fkey
nearest intersection centerline node key
cnn_sgmt_fkey
nearest street centerline segment key (empty if crash occurred at intersection)
case_id_pkey
unique crash report number
tb_latitude
latitude of crash (WGS 84)
tb_longitude
longitude of crash (WGS 84)
geocode_source
geocode source
geocode_location
geocode location
collision_datetime
the date and time when the crash occurred
collision_date
the date when the crash occurred
collision_time
the time when the crash occurred (24 hour time)
accident_year
the year when the crash occurred
month
month crash occurred
day_of_week
day of the week crash occurred
time_cat
generic time categories
juris
jurisdiction
officer_id
officer ID
reporting_district
SFPD reporting district
beat_number
SFPD beat number
primary_rd
the road the crash occurred on
secondary_rd
a secondary reference road that DISTANCE and DIRECT are measured from
distance
offset distance from secondary road
direction
direction of offset distance
weather_1
the weather condition at the time of the crash
weather_2
the weather condition at the time of the crash, if a second description is necessary
collision_severity
the injury level severity of the crash (highest level of injury in crash)
type_of_collision
type of crash
mviw
motor vehicle involved with
ped_action
pedestrian action involved
road_surface
road surface
road_cond_1
road condition
road_cond_2
road condition, if a second description is necessary
lighting
lighting at time of crash
control_device
control device status
intersection
indicates whether the crash occurred in an intersection
vz_pcf_code
California vehicle code primary collision factor violated
vz_pcf_group
groupings of similar vehicle codes violated
vz_pcf_description
description of vehicle code violated
vz_pcf_link
link to California vehicle code section
number_killed
counts victims in the crash with degree of injury of fatal
number_injured
counts victims in the crash with degree of injury of severe, visible, or complaint of pain
street_view
link to Google Streetview
dph_col_grp
generic crash groupings based on parties involved
dph_col_grp_description
description of crash groupings
party_at_fault
party number indicated as being at fault
party1_type
party 1 vehicle type
party1_dir_of_travel
party 1 direction of travel
party1_move_pre_acc
party 1 movement preceding crash
party2_type
party 2 vehicle type (empty if no party 2)
party2_dir_of_travel
party 2 direction of travel (empty if no party 2)
party2_move_pre_acc
party 2 movement preceding crash (empty if no party 2)
point
geometry type of crash location
data_as_of
date data added to the source system
data_updated_at
date data last updated the source system
data_loaded_at
date data last loaded here (in the open data portal)
analysis_neighborhood
supervisor_district
police_district
Current Police Districts
This column was automatically created in order to record in what polygon from the dataset 'Current Police Districts' (qgnn-b9vv) the point in column 'point' is located. This enables the creation of region maps (choropleths) in the visualization canvas and data lens.
Current Supervisor Districts
This column was automatically created in order to record in what polygon from the dataset 'Current Supervisor Districts' (26cr-cadq) the point in column 'point' is located. This
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder.
Facebook
Twitter
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Asset inventory data for a variety of structures and infrastructure relating to water systems or drainage in urban areas. The features in this dataset are measured by length and represent linear features such as pipe networks or open drains. The information is extracted from the asset inventory database on a daily basis. Items identified have been geolocated over a long period of time and through various methods, including information provided by 3rd parties. In general, asset locations are obtained from as built diagrams and as such may not be validated in all circumstances. The asset inventory is frequently updated and modification can be made to the asset data structure (asset hierarchy) without prior notification. Due to a wide range of source information all asset locations should be verified through the Asset Information Officers and or site visits. This is an incomplete dataset, other information is held and maintained independently.The primary purpose of this inventory is for asset valuations. The inventory is utilised in forward works and capital work planning. Information on Water Supply assets for service requests is displayed on 3 Waters map. The Water Supply network is an integral part of the land use and consents process, however site visits should be done to validate the status, position and condition of assets.Waikato OneView does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Locations and dimensions of assets depicted in the data may not be accurate due to circumstances not notified to Council. While you are free to crop, export and re-purpose the data, we ask that you attribute the Waikato OneView and clearly state that your work is a derivative and not the authoritative data source.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset provides detailed information on website traffic, including page views, session duration, bounce rate, traffic source, time spent on page, previous visits, and conversion rate.
This dataset can be used for various analyses such as:
This dataset was generated for educational purposes and is not from a real website. It serves as a tool for learning data analysis and machine learning techniques.