38 datasets found
  1. d

    Open Data Website Traffic

    • catalog.data.gov
    • data.lacity.org
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2025). Open Data Website Traffic [Dataset]. https://catalog.data.gov/dataset/open-data-website-traffic
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.lacity.org
    Description

    Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly

  2. A

    ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘Popular Website Traffic Over Time ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-popular-website-traffic-over-time-62e4/latest
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Popular Website Traffic Over Time ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/popular-website-traffice on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Background

    Have you every been in a conversation and the question comes up, who uses Bing? This question comes up occasionally because people wonder if these sites have any views. For this research study, we are going to be exploring popular website traffic for many popular websites.

    Methodology

    The data collected originates from SimilarWeb.com.

    Source

    For the analysis and study, go to The Concept Center

    This dataset was created by Chase Willden and contains around 0 samples along with 1/1/2017, Social Media, technical information and other features such as: - 12/1/2016 - 3/1/2017 - and more.

    How to use this dataset

    • Analyze 11/1/2016 in relation to 2/1/2017
    • Study the influence of 4/1/2017 on 1/1/2017
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Chase Willden

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  3. P

    Wiki Dataset

    • paperswithcode.com
    Updated Jan 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Wiki Dataset [Dataset]. https://paperswithcode.com/dataset/wiki
    Explore at:
    Dataset updated
    Jan 20, 2023
    Description

    Context There's a story behind every dataset and here's your opportunity to share yours.

    Content What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.

    Acknowledgements We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  4. i

    Netflix

    • ieee-dataport.org
    Updated Oct 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danil Shamsimukhametov (2021). Netflix [Dataset]. https://ieee-dataport.org/documents/youtube-netflix-web-dataset-encrypted-traffic-classification
    Explore at:
    Dataset updated
    Oct 1, 2021
    Authors
    Danil Shamsimukhametov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    YouTube
    Description

    YouTube flows

  5. P

    Traffic Dataset

    • paperswithcode.com
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Traffic Dataset [Dataset]. https://paperswithcode.com/dataset/traffic
    Explore at:
    Dataset updated
    Mar 13, 2024
    Description

    Abstract: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations.

    Data Set CharacteristicsNumber of InstancesAreaAttribute CharacteristicsNumber of AttributesDate DonatedAssociated TasksMissing Values
    Multivariate2101ComputerReal472020-11-17RegressionN/A

    Source: Liang Zhao, liang.zhao '@' emory.edu, Emory University.

    Data Set Information: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations. Specifically, the traffic volume is measured every 15 minutes at 36 sensor locations along two major highways in Northern Virginia/Washington D.C. capital region. The 47 features include: 1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), 2) week day (7 features), 3) hour of day (24 features), 4) road direction (4 features), 5) number of lanes (1 feature), and 6) name of the road (1 feature). The goal is to predict the traffic volume 15 minutes into the future for all sensor locations. With a given road network, we know the spatial connectivity between sensor locations. For the detailed data information, please refer to the file README.docx.

    Attribute Information: The 47 features include: (1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), (2) week day (7 features), (3) hour of day (24 features), (4) road direction (4 features), (5) number of lanes (1 feature), and (6) name of the road (1 feature).

    Relevant Papers: Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]

    Citation Request: To use these datasets, please cite the papers:

    Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]

  6. Google Analytics Sample

    • kaggle.com
    zip
    Updated Sep 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2019). Google Analytics Sample [Dataset]. https://www.kaggle.com/bigquery/google-analytics-sample
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 19, 2019
    Dataset provided by
    Googlehttp://google.com/
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website.

    Content

    The sample dataset contains Google Analytics 360 data from the Google Merchandise Store, a real ecommerce store. The Google Merchandise Store sells Google branded merchandise. The data is typical of what you would see for an ecommerce website. It includes the following kinds of information:

    Traffic source data: information about where website visitors originate. This includes data about organic traffic, paid search traffic, display traffic, etc. Content data: information about the behavior of users on the site. This includes the URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions that occur on the Google Merchandise Store website.

    Fork this kernel to get started.

    Acknowledgements

    Data from: https://bigquery.cloud.google.com/table/bigquery-public-data:google_analytics_sample.ga_sessions_20170801

    Banner Photo by Edho Pratama from Unsplash.

    Inspiration

    What is the total number of transactions generated per device browser in July 2017?

    The real bounce rate is defined as the percentage of visits with a single pageview. What was the real bounce rate per traffic source?

    What was the average number of product pageviews for users who made a purchase in July 2017?

    What was the average number of product pageviews for users who did not make a purchase in July 2017?

    What was the average total transactions per user that made a purchase in July 2017?

    What is the average amount of money spent per session in July 2017?

    What is the sequence of pages viewed?

  7. d

    Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B...

    • datarade.ai
    .csv
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Consumer Edge (2025). Click Global Data | Web Traffic Data + Transaction Data | Consumer and B2B Shopper Insights | 59 Countries, 3-Day Lag, Daily Delivery [Dataset]. https://datarade.ai/data-products/click-global-data-web-traffic-data-transaction-data-con-consumer-edge
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Mar 13, 2025
    Dataset authored and provided by
    Consumer Edge
    Area covered
    Congo, Marshall Islands, Bermuda, Bosnia and Herzegovina, Finland, El Salvador, Sri Lanka, South Africa, Montserrat, Nauru
    Description

    Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights

    Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.

    Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.

    Use Case: Analyze Year Over Year Growth Rate by Region

    Problem A public investor wants to understand how a company’s year-over-year growth differs by region.

    Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends

    Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume

    Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels

    Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.

    Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer

  8. 🕵️ Phishing Websites Data

    • kaggle.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sairaj Adhav (2025). 🕵️ Phishing Websites Data [Dataset]. https://www.kaggle.com/datasets/sai10py/phishing-websites-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sairaj Adhav
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Phishing Websites Dataset

    Overview

    This dataset is designed to aid in the analysis and detection of phishing websites. It contains various features that help distinguish between legitimate and phishing websites based on their structural, security, and behavioral attributes.

    Dataset Information

    • Total Columns: 31 (30 Features + 1 Target)
    • Target Variable: Result (Indicates whether a website is phishing or legitimate)

    Features Description

    URL-Based Features

    • Prefix_Suffix – Checks if the URL contains a hyphen (-), which is commonly used in phishing domains.
    • double_slash_redirecting – Detects if the URL redirects using //, which may indicate a phishing attempt.
    • having_At_Symbol – Identifies the presence of @ in the URL, which can be used to deceive users.
    • Shortining_Service – Indicates whether the URL uses a shortening service (e.g., bit.ly, tinyurl).
    • URL_Length – Measures the length of the URL; phishing URLs tend to be longer.
    • having_IP_Address – Checks if an IP address is used in place of a domain name, which is suspicious.

    Domain-Based Features

    • having_Sub_Domain – Evaluates the number of subdomains; phishing sites often have excessive subdomains.
    • SSLfinal_State – Indicates whether the website has a valid SSL certificate (secure connection).
    • Domain_registeration_length – Measures the duration of domain registration; phishing sites often have short lifespans.
    • age_of_domain – The age of the domain in days; older domains are usually more trustworthy.
    • DNSRecord – Checks if the domain has valid DNS records; phishing domains may lack these.

    Webpage-Based Features

    • Favicon – Determines if the website uses an external favicon (which can be a sign of phishing).
    • port – Identifies if the site is using suspicious or non-standard ports.
    • HTTPS_token – Checks if "HTTPS" is included in the URL but is used deceptively.
    • Request_URL – Measures the percentage of external resources loaded from different domains.
    • URL_of_Anchor – Analyzes anchor tags (<a> links) and their trustworthiness.
    • Links_in_tags – Examines <meta>, <script>, and <link> tags for external links.
    • SFH (Server Form Handler) – Determines if form actions are handled suspiciously.
    • Submitting_to_email – Checks if forms submit data directly to an email instead of a web server.
    • Abnormal_URL – Identifies if the website’s URL structure is inconsistent with common patterns.
    • Redirect – Counts the number of redirects; phishing websites may have excessive redirects.

    Behavior-Based Features

    • on_mouseover – Checks if the website changes content when hovered over (used in deceptive techniques).
    • RightClick – Detects if right-click functionality is disabled (phishing sites may disable it).
    • popUpWindow – Identifies the presence of pop-ups, which can be used to trick users.
    • Iframe – Checks if the website uses <iframe> tags, often used in phishing attacks.

    Traffic & Search Engine Features

    • web_traffic – Measures the website’s Alexa ranking; phishing sites tend to have low traffic.
    • Page_Rank – Google PageRank score; phishing sites usually have a low PageRank.
    • Google_Index – Checks if the website is indexed by Google (phishing sites may not be indexed).
    • Links_pointing_to_page – Counts the number of backlinks pointing to the website.
    • Statistical_report – Uses external sources to verify if the website has been reported for phishing.

    Target Variable

    • Result – The classification label (1: Legitimate, -1: Phishing)

    Usage

    This dataset is valuable for:
    Machine Learning Models – Developing classifiers for phishing detection.
    Cybersecurity Research – Understanding patterns in phishing attacks.
    Browser Security Extensions – Enhancing anti-phishing tools.

  9. m

    Network traffic and code for machine learning classification

    • data.mendeley.com
    Updated Feb 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Víctor Labayen (2020). Network traffic and code for machine learning classification [Dataset]. http://doi.org/10.17632/5pmnkshffm.2
    Explore at:
    Dataset updated
    Feb 20, 2020
    Authors
    Víctor Labayen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is a set of network traffic traces in pcap/csv format captured from a single user. The traffic is classified in 5 different activities (Video, Bulk, Idle, Web, and Interactive) and the label is shown in the filename. There is also a file (mapping.csv) with the mapping of the host's IP address, the csv/pcap filename and the activity label.

    Activities:

    Interactive: applications that perform real-time interactions in order to provide a suitable user experience, such as editing a file in google docs and remote CLI's sessions by SSH. Bulk data transfer: applications that perform a transfer of large data volume files over the network. Some examples are SCP/FTP applications and direct downloads of large files from web servers like Mediafire, Dropbox or the university repository among others. Web browsing: contains all the generated traffic while searching and consuming different web pages. Examples of those pages are several blogs and new sites and the moodle of the university. Vídeo playback: contains traffic from applications that consume video in streaming or pseudo-streaming. The most known server used are Twitch and Youtube but the university online classroom has also been used. Idle behaviour: is composed by the background traffic generated by the user computer when the user is idle. This traffic has been captured with every application closed and with some opened pages like google docs, YouTube and several web pages, but always without user interaction.

    The capture is performed in a network probe, attached to the router that forwards the user network traffic, using a SPAN port. The traffic is stored in pcap format with all the packet payload. In the csv file, every non TCP/UDP packet is filtered out, as well as every packet with no payload. The fields in the csv files are the following (one line per packet): Timestamp, protocol, payload size, IP address source and destination, UDP/TCP port source and destination. The fields are also included as a header in every csv file.

    The amount of data is stated as follows:

    Bulk : 19 traces, 3599 s of total duration, 8704 MBytes of pcap files Video : 23 traces, 4496 s, 1405 MBytes Web : 23 traces, 4203 s, 148 MBytes Interactive : 42 traces, 8934 s, 30.5 MBytes Idle : 52 traces, 6341 s, 0.69 MBytes

    The code of our machine learning approach is also included. There is a README.txt file with the documentation of how to use the code.

  10. Google Analytics Sample

    • console.cloud.google.com
    Updated Jul 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Obfuscated%20Google%20Analytics%20360%20data&inv=1&invt=AbzttQ (2017). Google Analytics Sample [Dataset]. https://console.cloud.google.com/marketplace/product/obfuscated-ga360-data/obfuscated-ga360-data
    Explore at:
    Dataset updated
    Jul 15, 2017
    Dataset provided by
    Googlehttp://google.com/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset provides 12 months (August 2016 to August 2017) of obfuscated Google Analytics 360 data from the Google Merchandise Store , a real ecommerce store that sells Google-branded merchandise, in BigQuery. It’s a great way analyze business data and learn the benefits of using BigQuery to analyze Analytics 360 data Learn more about the data The data includes The data is typical of what an ecommerce website would see and includes the following information:Traffic source data: information about where website visitors originate, including data about organic traffic, paid search traffic, and display trafficContent data: information about the behavior of users on the site, such as URLs of pages that visitors look at, how they interact with content, etc. Transactional data: information about the transactions on the Google Merchandise Store website.Limitations: All users have view access to the dataset. This means you can query the dataset and generate reports but you cannot complete administrative tasks. Data for some fields is obfuscated such as fullVisitorId, or removed such as clientId, adWordsClickInfo and geoNetwork. “Not available in demo dataset” will be returned for STRING values and “null” will be returned for INTEGER values when querying the fields containing no data.This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery

  11. d

    City of Pittsburgh Traffic Count

    • datasets.ai
    • data.wprdc.org
    15, 8
    Updated Sep 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County / City of Pittsburgh / Western PA Regional Data Center (2024). City of Pittsburgh Traffic Count [Dataset]. https://datasets.ai/datasets/city-of-pittsburgh-traffic-count
    Explore at:
    15, 8Available download formats
    Dataset updated
    Sep 11, 2024
    Dataset authored and provided by
    Allegheny County / City of Pittsburgh / Western PA Regional Data Center
    Area covered
    Pittsburgh
    Description

    This traffic-count data is provided by the City of Pittsburgh's Department of Mobility & Infrastructure (DOMI). Counters were deployed as part of traffic studies, including intersection studies, and studies covering where or whether to install speed humps. In some cases, data may have been collected by the Southwestern Pennsylvania Commission (SPC) or BikePGH.

    Data is currently available for only the most-recent count at each location.

    Traffic count data is important to the process for deciding where to install speed humps. According to DOMI, they may only be legally installed on streets where traffic counts fall below a minimum threshhold. Residents can request an evaluation of their street as part of DOMI's Neighborhood Traffic Calming Program. The City has also shared data on the impact of the Neighborhood Traffic Calming Program in reducing speeds.

    Different studies may collect different data. Speed hump studies capture counts and speeds. SPC and BikePGH conduct counts of cyclists. Intersection studies included in this dataset may not include traffic counts, but reports of individual studies may be requested from the City. Despite the lack of count data, intersection studies are included to facilitate data requests.

    Data captured by different types of counting devices are included in this data. StatTrak counters are in use by the City, and capture data on counts and speeds. More information about these devices may be found on the company's website. Data includes traffic counts and average speeds, and may also include separate counts of bicycles.

    Tubes are deployed by both SPC and BikePGH and used to count cyclists. SPC may also deploy video counters to collect data.

    NOTE: The data in this dataset has not updated since 2021 because of a broken data feed. We're working to fix it.

  12. Personal Ecommerce Website Ad cost & viewer count

    • kaggle.com
    Updated Apr 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Micheal_Knight (2025). Personal Ecommerce Website Ad cost & viewer count [Dataset]. https://www.kaggle.com/datasets/michealknight/personal-ecommerce-website-ad-cost-and-viewer-count
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 18, 2025
    Dataset provided by
    Kaggle
    Authors
    Micheal_Knight
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    📊 Dataset Description: Daily Website Traffic and Engagement Metrics

    This dataset contains daily web traffic and user engagement information for a live website, recorded over an extended period. It provides a comprehensive view of how user activity on the platform varies in response to marketing initiatives and temporal factors such as weekends and holidays.

    The dataset is particularly suited for time series forecasting, seasonality analysis, and marketing effectiveness studies. It is valuable for both academic and practical applications in fields such as digital analytics, marketing strategy, and predictive modeling.

    🧾 Use Case Scenarios:

    • Forecasting future page views using past behavior and external influencing factors
    • Evaluating the impact of advertising spend on web traffic and ROI
    • Detecting seasonality and weekly/cyclical patterns in user engagement
    • Developing time-aware models for resource planning (e.g., server load, content drops)
    • Training and benchmarking time series models such as ARIMA, SARIMA, RNN, LSTM, and GRU
  13. Z

    Data from: CESNET-QUIC22: A large one-month QUIC network traffic dataset...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hynek, Karel (2024). CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7409923
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset provided by
    Šiška, Pavel
    Luxemburk, Jan
    Čejka, Tomáš
    Lukačovič, Andrej
    Hynek, Karel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please refer to the original data article for further data description: Jan Luxemburk et al. CESNET-QUIC22: A large one-month QUIC network traffic dataset from backbone lines, Data in Brief, 2023, 108888, ISSN 2352-3409, https://doi.org/10.1016/j.dib.2023.108888. We recommend using the CESNET DataZoo python library, which facilitates the work with large network traffic datasets. More information about the DataZoo project can be found in the GitHub repository https://github.com/CESNET/cesnet-datazoo. The QUIC (Quick UDP Internet Connection) protocol has the potential to replace TLS over TCP, which is the standard choice for reliable and secure Internet communication. Due to its design that makes the inspection of QUIC handshakes challenging and its usage in HTTP/3, there is an increasing demand for research in QUIC traffic analysis. This dataset contains one month of QUIC traffic collected in an ISP backbone network, which connects 500 large institutions and serves around half a million people. The data are delivered as enriched flows that can be useful for various network monitoring tasks. The provided server names and packet-level information allow research in the encrypted traffic classification area. Moreover, included QUIC versions and user agents (smartphone, web browser, and operating system identifiers) provide information for large-scale QUIC deployment studies. Data capture The data was captured in the flow monitoring infrastructure of the CESNET2 network. The capturing was done for four weeks between 31.10.2022 and 27.11.2022. The following list provides per-week flow count, capture period, and uncompressed size:

    W-2022-44

    Uncompressed Size: 19 GB Capture Period: 31.10.2022 - 6.11.2022 Number of flows: 32.6M W-2022-45

    Uncompressed Size: 25 GB Capture Period: 7.11.2022 - 13.11.2022 Number of flows: 42.6M W-2022-46

    Uncompressed Size: 20 GB Capture Period: 14.11.2022 - 20.11.2022 Number of flows: 33.7M W-2022-47

    Uncompressed Size: 25 GB Capture Period: 21.11.2022 - 27.11.2022 Number of flows: 44.1M CESNET-QUIC22

    Uncompressed Size: 89 GB Capture Period: 31.10.2022 - 27.11.2022 Number of flows: 153M

    Data description The dataset consists of network flows describing encrypted QUIC communications. Flows were created using ipfixprobe flow exporter and are extended with packet metadata sequences, packet histograms, and with fields extracted from the QUIC Initial Packet, which is the first packet of the QUIC connection handshake. The extracted handshake fields are the Server Name Indication (SNI) domain, the used version of the QUIC protocol, and the user agent string that is available in a subset of QUIC communications. Packet Sequences Flows in the dataset are extended with sequences of packet sizes, directions, and inter-packet times. For the packet sizes, we consider payload size after transport headers (UDP headers for the QUIC case). Packet directions are encoded as ±1, +1 meaning a packet sent from client to server, and -1 a packet from server to client. Inter-packet times depend on the location of communicating hosts, their distance, and on the network conditions on the path. However, it is still possible to extract relevant information that correlates with user interactions and, for example, with the time required for an API/server/database to process the received data and generate the response to be sent in the next packet. Packet metadata sequences have a length of 30, which is the default setting of the used flow exporter. We also derive three fields from each packet sequence: its length, time duration, and the number of roundtrips. The roundtrips are counted as the number of changes in the communication direction (from packet directions data); in other words, each client request and server response pair counts as one roundtrip. Flow statistics Flows also include standard flow statistics, which represent aggregated information about the entire bidirectional flow. The fields are: the number of transmitted bytes and packets in both directions, the duration of flow, and packet histograms. Packet histograms include binned counts of packet sizes and inter-packet times of the entire flow in both directions (more information in the PHISTS plugin documentation There are eight bins with a logarithmic scale; the intervals are 0-15, 16-31, 32-63, 64-127, 128-255, 256-511, 512-1024, >1024 [ms or B]. The units are milliseconds for inter-packet times and bytes for packet sizes. Moreover, each flow has its end reason - either it was idle, reached the active timeout, or ended due to other reasons. This corresponds with the official IANA IPFIX-specified values. The FLOW_ENDREASON_OTHER field represents the forced end and lack of resources reasons. The end of flow detected reason is not considered because it is not relevant for UDP connections. Dataset structure The dataset flows are delivered in compressed CSV files. CSV files contain one flow per row; data columns are summarized in the provided list below. For each flow data file, there is a JSON file with the number of saved and seen (before sampling) flows per service and total counts of all received (observed on the CESNET2 network), service (belonging to one of the dataset's services), and saved (provided in the dataset) flows. There is also the stats-week.json file aggregating flow counts of a whole week and the stats-dataset.json file aggregating flow counts for the entire dataset. Flow counts before sampling can be used to compute sampling ratios of individual services and to resample the dataset back to the original service distribution. Moreover, various dataset statistics, such as feature distributions and value counts of QUIC versions and user agents, are provided in the dataset-statistics folder. The mapping between services and service providers is provided in the servicemap.csv file, which also includes SNI domains used for ground truth labeling. The following list describes flow data fields in CSV files:

    ID: Unique identifier SRC_IP: Source IP address DST_IP: Destination IP address DST_ASN: Destination Autonomous System number SRC_PORT: Source port DST_PORT: Destination port PROTOCOL: Transport protocol QUIC_VERSION QUIC: protocol version QUIC_SNI: Server Name Indication domain QUIC_USER_AGENT: User agent string, if available in the QUIC Initial Packet TIME_FIRST: Timestamp of the first packet in format YYYY-MM-DDTHH-MM-SS.ffffff TIME_LAST: Timestamp of the last packet in format YYYY-MM-DDTHH-MM-SS.ffffff DURATION: Duration of the flow in seconds BYTES: Number of transmitted bytes from client to server BYTES_REV: Number of transmitted bytes from server to client PACKETS: Number of packets transmitted from client to server PACKETS_REV: Number of packets transmitted from server to client PPI: Packet metadata sequence in the format: [[inter-packet times], [packet directions], [packet sizes]] PPI_LEN: Number of packets in the PPI sequence PPI_DURATION: Duration of the PPI sequence in seconds PPI_ROUNDTRIPS: Number of roundtrips in the PPI sequence PHIST_SRC_SIZES: Histogram of packet sizes from client to server PHIST_DST_SIZES: Histogram of packet sizes from server to client PHIST_SRC_IPT: Histogram of inter-packet times from client to server PHIST_DST_IPT: Histogram of inter-packet times from server to client APP: Web service label CATEGORY: Service category FLOW_ENDREASON_IDLE: Flow was terminated because it was idle FLOW_ENDREASON_ACTIVE: Flow was terminated because it reached the active timeout FLOW_ENDREASON_OTHER: Flow was terminated for other reasons

    Link to other CESNET datasets

    https://www.liberouter.org/technology-v2/tools-services-datasets/datasets/ https://github.com/CESNET/cesnet-datazoo Please cite the original data article:

    @article{CESNETQUIC22, author = {Jan Luxemburk and Karel Hynek and Tomáš Čejka and Andrej Lukačovič and Pavel Šiška}, title = {CESNET-QUIC22: a large one-month QUIC network traffic dataset from backbone lines}, journal = {Data in Brief}, pages = {108888}, year = {2023}, issn = {2352-3409}, doi = {https://doi.org/10.1016/j.dib.2023.108888}, url = {https://www.sciencedirect.com/science/article/pii/S2352340923000069} }

  14. Annual Average Daily Traffic TDA

    • gis-fdot.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Jul 21, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Transportation (2017). Annual Average Daily Traffic TDA [Dataset]. https://gis-fdot.opendata.arcgis.com/datasets/annual-average-daily-traffic-tda
    Explore at:
    Dataset updated
    Jul 21, 2017
    Dataset authored and provided by
    Florida Department of Transportationhttps://www.fdot.gov/
    Area covered
    Description

    The FDOT Annual Average Daily Traffic feature class provides spatial information on Annual Average Daily Traffic section breaks for the state of Florida. In addition, it provides affiliated traffic information like KFCTR, DFCTR and TFCTR among others. This dataset is maintained by the Transportation Data & Analytics office (TDA). The source spatial data for this hosted feature layer was created on: 06/14/2025.Download Data: Enter Guest as Username to download the source shapefile from here: https://ftp.fdot.gov/file/d/FTP/FDOT/co/planning/transtat/gis/shapefiles/aadt.zip

  15. d

    Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant

    • datarade.ai
    .csv, .xls
    Updated Jun 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swash (2023). Swash Web Browsing Clickstream Data - 1.5M Worldwide Users - GDPR Compliant [Dataset]. https://datarade.ai/data-products/swash-blockchain-bitcoin-and-web3-enthusiasts-swash
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jun 27, 2023
    Dataset authored and provided by
    Swash
    Area covered
    India, Saint Vincent and the Grenadines, Jordan, Belarus, Jamaica, Uzbekistan, Latvia, Liechtenstein, Russian Federation, Monaco
    Description

    Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.

    Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.

    User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.

    Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.

    GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.

    Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.

    High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.

    Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.

    Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.

  16. P

    Alexa Domains Dataset

    • paperswithcode.com
    • opendatalab.com
    Updated Feb 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isaac Corley; Jonathan Lwowski; Justin Hoffman (2001). Alexa Domains Dataset [Dataset]. https://paperswithcode.com/dataset/gagan-bhatia
    Explore at:
    Dataset updated
    Feb 1, 2001
    Authors
    Isaac Corley; Jonathan Lwowski; Justin Hoffman
    Description

    This dataset is composed of the URLs of the top 1 million websites. The domains are ranked using the Alexa traffic ranking which is determined using a combination of the browsing behavior of users on the website, the number of unique visitors, and the number of pageviews. In more detail, unique visitors are the number of unique users who visit a website on a given day, and pageviews are the total number of user URL requests for the website. However, multiple requests for the same website on the same day are counted as a single pageview. The website with the highest combination of unique visitors and pageviews is ranked the highest

  17. s

    CTU-13 dataset

    • stratosphereips.org
    • kaggle.com
    bz2
    Updated Feb 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sebastian Garcia; Martin Grill; Jan Stiborek; Alejandro Zunino (2018). CTU-13 dataset [Dataset]. http://doi.org/10.1016/j.cose.2014.05.011
    Explore at:
    bz2Available download formats
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    Stratosphere Lab, Department of Electrical Engineering, Czech Technical University
    Authors
    Sebastian Garcia; Martin Grill; Jan Stiborek; Alejandro Zunino
    License

    Attribution 2.0 (CC BY 2.0)https://creativecommons.org/licenses/by/2.0/
    License information was derived automatically

    Time period covered
    Aug 10, 2011 - Aug 16, 2011
    Area covered
    Prague, Czech Republic
    Description

    The CTU-13 is a dataset of botnet traffic that was captured in the CTU University, Czech Republic, in 2011. The goal of the dataset was to have a large capture of real botnet traffic mixed with normal traffic and background traffic. The CTU-13 dataset consists in thirteen captures (called scenarios) of different botnet samples. On each scenario we executed a specific malware, which used several protocols and performed different actions.

  18. g

    Visiting address for the computer hotel

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Visiting address for the computer hotel [Dataset]. https://gimi9.com/dataset/eu_https-data-norge-no-node-2147
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Visitor numbers for the data hotel (hotel.difi.no) showing page views per dataset, and for quarter datasets, many page views that are of different formats (JSON, JSONP, XML, complete download, etc.). In addition, an approximate count for traffic (in bytes) per. dataset. The boiler for data is data about page views in AWStats. These tala are queued through a program that sums up traffic per dataset and filters out unrelevant traffic. For explanation of the various fields, including mulege values, see field definitions. OBS. Please note that statistics before 2017 are incorrect. This is a technical problem that causes us to lack traffic data for larger or smaller periods. For example, one lacks of years of data for over 100 days. Ideas for use — Create a web app that shows statistics per data set, graph for page views over time. — Summing up traffic per data settlement There may be errors in the dataset. Use the comments section if you have any questions, comments or other comments!

  19. e

    OGD Portal: Daily usage by record (since January 2024)

    • data.europa.eu
    csv, excel xls, json +5
    Updated Apr 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kanton-basel-landschaft (2025). OGD Portal: Daily usage by record (since January 2024) [Dataset]. https://data.europa.eu/data/datasets/12610-kanton-basel-landschaft?locale=en
    Explore at:
    n3, rdf xml, csv, json-ld, json, rdf turtle, parquet, excel xlsAvailable download formats
    Dataset updated
    Apr 6, 2025
    Dataset authored and provided by
    kanton-basel-landschaft
    License

    http://dcat-ap.ch/vocabulary/licenses/terms_byhttp://dcat-ap.ch/vocabulary/licenses/terms_by

    Description

    The data on the use of the data sets on the OGD portal BL (data.bl.ch) are collected and published by the specialist and coordination office OGD BL. Contains the day the usage was measured.dataset_title: The title of the dataset_id record: The technical ID of the dataset.visitors: Specifies the number of daily visitors to the record. Visitors are recorded by counting the unique IP addresses that recorded access on the day of the survey. The IP address represents the network address of the device from which the portal was accessed.interactions: Includes all interactions with any record on data.bl.ch. A visitor can trigger multiple interactions. Interactions include clicks on the website (searching datasets, filters, etc.) as well as API calls (downloading a dataset as a JSON file, etc.).RemarksOnly calls to publicly available datasets are shown.IP addresses and interactions of users with a login of the Canton of Basel-Landschaft - in particular of employees of the specialist and coordination office OGD - are removed from the dataset before publication and therefore not shown.Calls from actors that are clearly identifiable as bots by the user agent header are also not shown.Combinations of dataset and date for which no use occurred (Visitors == 0 & Interactions == 0) are not shown.Due to synchronization problems, data may be missing by the day.

  20. d

    Traffic Route Stats - Dataset - data.govt.nz - discover and use data

    • catalogue.data.govt.nz
    • portal.zero.govt.nz
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Traffic Route Stats - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/traffic-route-stats2
    Explore at:
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vehicle travel time and delay data on routes in Hamilton City, based on Bluetooth sensor records. To get data for this dataset, please call the API directly talking to the HCC Data Warehouse: https://api.hcc.govt.nz/OpenData/get_traffic_route_stats?Page=1&Start_Date=2021-06-02&End_Date=2021-06-03. For this API, there are three mandatory parameters: Page, Start_Date, End_Date. Sample values for these parameters are in the link above. When calling the API for the first time, please always start with Page 1. Then from the returned JSON, you can see more information such as the total page count and page size. For help on using the API in your preferred data analysis software, please contact dale.townsend@hcc.govt.nz. NOTE: Anomalies and missing data may be present in the dataset. Column_InfoRoute_Id, int : Unique route identifierTravel_Time, int : Average travel time in seconds to travel along the routeDelay, int : Average travel delay in seconds, calculated as the difference between the free flow travel time and observed travel timeExcess_Delay, int : Excess Delay is similar to Delay, but it ignores recurring (expected) delays associated with peak times of dayDate, varchar : Starting date and time for the recorded delay and travel time, in 15 minute periods Relationship This table reference to table Traffic_Route Analytics For convenience Hamilton City Council has also built a Quick Analytics Dashboard over this dataset that you can access here. Disclaimer Hamilton City Council does not make any representation or give any warranty as to the accuracy or exhaustiveness of the data released for public download. Levels, locations and dimensions of works depicted in the data may not be accurate due to circumstances not notified to Council. A physical check should be made on all levels, locations and dimensions before starting design or works. Hamilton City Council shall not be liable for any loss, damage, cost or expense (whether direct or indirect) arising from reliance upon or use of any data provided, or Council's failure to provide this data. While you are free to crop, export and re-purpose the data, we ask that you attribute the Hamilton City Council and clearly state that your work is a derivative and not the authoritative data source. Please include the following statement when distributing any work derived from this data: ‘This work is derived entirely or in part from Hamilton City Council data; the provided information may be updated at any time, and may at times be out of date, inaccurate, and/or incomplete.'

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.lacity.org (2025). Open Data Website Traffic [Dataset]. https://catalog.data.gov/dataset/open-data-website-traffic

Open Data Website Traffic

Explore at:
Dataset updated
Jun 21, 2025
Dataset provided by
data.lacity.org
Description

Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly

Search
Clear search
Close search
Google apps
Main menu