100+ datasets found
  1. P

    HoME Dataset

    • paperswithcode.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Brodeur; Ethan Perez; Ankesh Anand; Florian Golemo; Luca Celotti; Florian Strub; Jean Rouat; Hugo Larochelle; Aaron Courville, HoME Dataset [Dataset]. https://paperswithcode.com/dataset/home
    Explore at:
    Authors
    Simon Brodeur; Ethan Perez; Ankesh Anand; Florian Golemo; Luca Celotti; Florian Strub; Jean Rouat; Hugo Larochelle; Aaron Courville
    Description

    HoME (Household Multimodal Environment) is a multimodal environment for artificial agents to learn from vision, audio, semantics, physics, and interaction with objects and other agents, all within a realistic context. HoME integrates over 45,000 diverse 3D house layouts based on the SUNCG dataset, a scale which may facilitate learning, generalization, and transfer. HoME is an open-source, OpenAI Gym-compatible platform extensible to tasks in reinforcement learning, language grounding, sound-based navigation, robotics, multi-agent learning, and more.

  2. Evaluating Health Home Care Quality

    • kaggle.com
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Evaluating Health Home Care Quality [Dataset]. https://www.kaggle.com/datasets/thedevastator/evaluating-health-home-care-quality
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 23, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Evaluating Health Home Care Quality

    CMS Core Set and Health Home SPA Measures

    By Health Data New York [source]

    About this dataset

    This dataset provides comprehensive measures to evaluate the quality of medical services provided to Medicaid beneficiaries by Health Homes, including the Centers for Medicare & Medicaid Services (CMS) Core Set and Health Home State Plan Amendment (SPA). This allows us to gain insight into how well these health homes are performing in terms of delivering high-quality care. Our data sources include the Medicaid Data Mart, QARR Member Level Files, and New York State Delivery System Inform Incentive Program (DSRIP) Data Warehouse. With this data set you can explore essential indicators such as rates for indicators within scope of Core Set Measures, sub domains, domains and measure descriptions; age categories used; denominators of each measure; level of significance for each indicator; and more! By understanding more about Health Home Quality Measures from this resource you can help make informed decisions about evidence based health practices while also promoting better patient outcomes

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset contains measures that evaluate the quality of care delivered by Health Homes for the Centers for Medicare & Medicaid Services (CMS). With this dataset, you can get an overview of how a health home is performing in terms of quality. You can use this data to compare different health homes and their respective service offerings.

    The data used to create this dataset was collected from Medicaid Data Mart, QARR Member Level Files, and New York State Delivery System Incentive Program (DSRIP) Data Warehouse sources.

    In order to use this dataset effectively, you should start by looking at the columns provided. These include: Measurement Year; Health Home Name; Domain; Sub Domain; Measure Description; Age Category; Denominator; Rate; Level of Significance; Indicator. Each column provides valuable insight into how a particular health home is performing in various measurements of healthcare quality.

    When examining this data, it is important to remember that many variables are included in any given measure and that changes may have occurred over time due to varying factors such as population or financial resources available for healthcare delivery. Furthermore, changes in policy may also affect performance over time so it is important to take these things into account when evaluating the performance of any given health home from one year to the next or when comparing different health homes on a specific measure or set of indicators over time

    Research Ideas

    • Using this dataset, state governments can evaluate the effectiveness of their health home programs by comparing the performance across different domains and subdomains.
    • Healthcare providers and organizations can use this data to identify areas for improvement in quality of care provided by health homes and strategies to reduce disparities between individuals receiving care from health homes.
    • Researchers can use this dataset to analyze how variations in cultural context, geography, demographics or other factors impact delivery of quality health home services across different locations

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: health-home-quality-measures-beginning-2013-1.csv | Column name | Description | |:--------------------------|:----------------------------------------------------| | Measurement Year | The year in which the data was collected. (Integer) | | Health Home Name | The name of the health home. (String) | | Domain | The domain of the measure. (String) | | Sub Domain | The sub domain of the measure. (String) | | Measure Description | A description of the measure. (String) | | Age Category | The age category of the patient. (String) | | Denominator | The denominator of the measure. (Integer) | | Rate | The rate of the measure. (Float) | | Level of Significance | The level of significance of the measure. (String) | | Indicator | The indicator of the measure. (String) |

    Acknowledgements

    ...

  3. d

    Home-Based Homemaker Services

    • catalog.data.gov
    • hub.arcgis.com
    • +1more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DC Health, Cancer and Chronic Disease Prevention Bureau, Public Health Analyst (2025). Home-Based Homemaker Services [Dataset]. https://catalog.data.gov/dataset/home-based-homemaker-services
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    DC Health, Cancer and Chronic Disease Prevention Bureau, Public Health Analyst
    Description

    These resources help with light housework, errands, tasks, or yardwork to help individuals living with dementia remain in their homes. They are often called “homemaker” services. This list does not include many private housekeeping, landscaping, or handyman companies that may not have specific training to meet the needs of older adults. The services included in this list specifically serve local older adults and are inclusive of those with memory loss or dementia. There are several types of providers who can connect older adult to these services including DC Villages, District Organizations (i.e., Lead Agencies), and Private Agencies."

  4. P

    CHiME-Home Dataset

    • paperswithcode.com
    • opendatalab.com
    Updated Sep 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter Foster; Siddharth Sigtia; Sacha Krstulovic; Jon Barker; Mark D. Plumbley (2020). CHiME-Home Dataset [Dataset]. https://paperswithcode.com/dataset/chime-home
    Explore at:
    Dataset updated
    Sep 30, 2020
    Authors
    Peter Foster; Siddharth Sigtia; Sacha Krstulovic; Jon Barker; Mark D. Plumbley
    Description

    CHiME-Home is a dataset for sound source recognition in a domestic environment. It uses around 6.8 hours of domestic environment audio recordings. The recordings were obtained from the CHiME projects – computational hearing in multisource environments – where recording equipment was positioned inside an English Victorian semi-detached house. The recordings were selected from 22 sessions totalling 19.5 hours, with each session made between 7:30 in the morning and 20:00 in the evening. In the considered recordings, the equipment was placed in the lounge (sitting room) near the door opening onto a hallway, with the hallway opening onto a kitchen with no door. With the lounge door typically open, prominent sounds thus may originate from sources both in the lounge and kitchen.

    The choice of permitted labels was motivated by the sources present in the considered acoustic environment: Human speakers (c,m,f); human activity (p); television (v); household appliances (b). Further labels o,S,U respectively relate to any other identifiable sounds, silence, unidentifiable sounds. Labels S,U may respectively only be assigned in isolation. Annotators were acquired to assign at least one label to a chunk, thus annotators may either assign one or more labels from the set {c,m,f,v,p,b,o}, or may alternatively ‘flag’ the chunk using a single label from the set {S,U}.

  5. d

    Realtor.com Dataset | Property Listings | MLS Data | Real Estate Data |...

    • datarade.ai
    .json, .csv, .txt
    Updated Oct 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CrawlBee (2023). Realtor.com Dataset | Property Listings | MLS Data | Real Estate Data | Residential Data | Realtime Real Estate Market Data [Dataset]. https://datarade.ai/data-products/crawlbee-realtor-com-dataset-property-listings-mls-dat-crawlbee
    Explore at:
    .json, .csv, .txtAvailable download formats
    Dataset updated
    Oct 4, 2023
    Dataset authored and provided by
    CrawlBee
    Area covered
    United States of America
    Description

    Our Realtor.com (Multiple Listing Service) dataset represents one of the most exhaustive collections of real estate data available to the industry. It consolidates data from over 500 MLS aggregators across various regions, providing an unparalleled view of the property market.

    Features:

    Property Listings: Each listing provides comprehensive details about a property. This includes its physical address, number of bedrooms and bathrooms, square footage, lot size, type of property (e.g., single-family home, condo, townhome), and more.

    Photographs and Virtual Tours: Visuals are crucial in the property market. Most listings are accompanied by high-quality photographs and, in many cases, virtual or 3D tours that allow potential buyers to explore properties remotely.

    Pricing Information: Listings provide asking prices, and the dataset frequently updates to reflect price changes. Historical price data, which includes initial listing prices and any subsequent reductions or increases, is also available.

    Transaction Histories: For sold properties, the dataset provides information about the date of sale, the sale price, and any discrepancies between the listing and sale prices.

    Agent and Broker Information: Each listing typically has associated details about the property's real estate professional. This might include their name, contact details, and affiliated brokerage.

    Open House Schedules: Open house dates and times are listed for properties that are actively being shown to potential buyers.

    1. Analytical Insights:

    Market Trends: By analyzing the dataset over time, one can glean insights into market dynamics, such as the rate of price appreciation or depreciation in certain areas, the average time properties stay on the market, and seasonality effects.

    Neighborhood Data: With comprehensive geographical data, it becomes possible to understand neighborhood-specific trends. This is invaluable for potential buyers or real estate investors looking to identify burgeoning markets.

    Price Comparisons: Realtors and potential buyers can benchmark properties against similar listings in the same area to determine if a property is priced appropriately.

    1. Utility:

    For Industry Professionals and Analysts: Beyond buyers and sellers, the dataset is a trove of information for real estate agents, brokers, analysts, and investors. They can harness this data to craft strategies, predict market movements, and serve their clients better.

  6. T

    United States New Home Sales

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States New Home Sales [Dataset]. https://tradingeconomics.com/united-states/new-home-sales
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1963 - May 31, 2025
    Area covered
    United States
    Description

    New Home Sales in the United States decreased to 623 Thousand units in May from 722 Thousand units in April of 2025. This dataset provides the latest reported value for - United States New Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  7. d

    Real Estate Data | Property Listing, Sold Properties, Rankings, Agent...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr, Real Estate Data | Property Listing, Sold Properties, Rankings, Agent Datasets | Global Coverage | For Competitive Property Pricing and Investment [Dataset]. https://datarade.ai/data-products/real-estate-property-data-grepsr-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    Grepsr
    Area covered
    Malaysia, Australia, Kazakhstan, Kuwait, South Sudan, Tonga, Spain, Congo (Democratic Republic of the), Iraq, Holy See
    Description

    Extract detailed property data points — address, URL, prices, floor space, overview, parking, agents, and more — from any real estate listings. The Rankings data contains the ranking of properties as they come in the SERPs of different property listing sites. Furthermore, with our real estate agents' data, you can directly get in touch with the real estate agents/brokers via email or phone numbers.

    A. Usecase/Applications possible with the data:

    1. Property pricing - accurate property data for real estate valuation. Gather information about properties and their valuations from Federal, State, or County level websites. Monitor the real estate market across the country and decide the best time to buy or sell based on data

    2. Secure your real estate investment - Monitor foreclosures and auctions to identify investment opportunities. Identify areas within special economic and opportunity zones such as QOZs - cross-map that with commercial or residential listings to identify leads. Ensure the safety of your investments, property, and personnel by analyzing crime data prior to investing.

    3. Identify hot, emerging markets - Gather data about rent, demographic, and population data to expand retail and e-commerce businesses. Helps you drive better investment decisions.

    4. Profile a building’s retrofit history - a building permit is required before the start of any construction activity of a building, such as changing the building structure, remodeling, or installing new equipment. Moreover, many large cities provide public datasets of building permits in history. Use building permits to profile a city’s building retrofit history.

    5. Study market changes - New construction data helps measure and evaluate the size, composition, and changes occurring within the housing and construction sectors.

    6. Finding leads - Property records can reveal a wealth of information, such as how long an owner has currently lived in a home. US Census Bureau data and City-Data.com provide profiles of towns and city neighborhoods as well as demographic statistics. This data is available for free and can help agents increase their expertise in their communities and get a feel for the local market.

    7. Searching for Targeted Leads - Focusing on small, niche areas of the real estate market can sometimes be the most efficient method of finding leads. For example, targeting high-end home sellers may take longer to develop a lead, but the payoff could be greater. Or, you may have a special interest or background in a certain type of home that would improve your chances of connecting with potential sellers. In these cases, focused data searches may help you find the best leads and develop relationships with future sellers.

    How does it work?

    • Analyze sample data
    • Customize parameters to suit your needs
    • Add to your projects
    • Contact support for further customization
  8. w

    Immigration system statistics data tables

    • gov.uk
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Home Office (2025). Immigration system statistics data tables [Dataset]. https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    GOV.UK
    Authors
    Home Office
    Description

    List of the data tables as part of the Immigration System Statistics Home Office release. Summary and detailed data tables covering the immigration system, including out-of-country and in-country visas, asylum, detention, and returns.

    If you have any feedback, please email MigrationStatsEnquiries@homeoffice.gov.uk.

    Accessible file formats

    The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
    If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email MigrationStatsEnquiries@homeoffice.gov.uk
    Please tell us what format you need. It will help us if you say what assistive technology you use.

    Related content

    Immigration system statistics, year ending March 2025
    Immigration system statistics quarterly release
    Immigration system statistics user guide
    Publishing detailed data tables in migration statistics
    Policy and legislative changes affecting migration to the UK: timeline
    Immigration statistics data archives

    Passenger arrivals

    https://assets.publishing.service.gov.uk/media/68258d71aa3556876875ec80/passenger-arrivals-summary-mar-2025-tables.xlsx">Passenger arrivals summary tables, year ending March 2025 (MS Excel Spreadsheet, 66.5 KB)

    ‘Passengers refused entry at the border summary tables’ and ‘Passengers refused entry at the border detailed datasets’ have been discontinued. The latest published versions of these tables are from February 2025 and are available in the ‘Passenger refusals – release discontinued’ section. A similar data series, ‘Refused entry at port and subsequently departed’, is available within the Returns detailed and summary tables.

    Electronic travel authorisation

    https://assets.publishing.service.gov.uk/media/681e406753add7d476d8187f/electronic-travel-authorisation-datasets-mar-2025.xlsx">Electronic travel authorisation detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 56.7 KB)
    ETA_D01: Applications for electronic travel authorisations, by nationality ETA_D02: Outcomes of applications for electronic travel authorisations, by nationality

    Entry clearance visas granted outside the UK

    https://assets.publishing.service.gov.uk/media/68247953b296b83ad5262ed7/visas-summary-mar-2025-tables.xlsx">Entry clearance visas summary tables, year ending March 2025 (MS Excel Spreadsheet, 113 KB)

    https://assets.publishing.service.gov.uk/media/682c4241010c5c28d1c7e820/entry-clearance-visa-outcomes-datasets-mar-2025.xlsx">Entry clearance visa applications and outcomes detailed datasets, year ending March 2025 (MS Excel Spreadsheet, 29.1 MB)
    Vis_D01: Entry clearance visa applications, by nationality and visa type
    Vis_D02: Outcomes of entry clearance visa applications, by nationality, visa type, and outcome

    Additional dat

  9. c

    Home Depot products dataset

    • crawlfeeds.com
    csv, zip
    Updated Jun 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Home Depot products dataset [Dataset]. https://crawlfeeds.com/datasets/home-depot-products-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Unlock valuable insights with our comprehensive Home Depot product dataset. This dataset is meticulously curated, offering detailed information on a wide range of products available at Home Depot.

    Whether you're conducting market research, enhancing your e-commerce platform, or analyzing retail trends, this dataset is an invaluable resource. It includes product names, descriptions, prices, categories, and more. Optimize your projects with high-quality, structured data from one of the largest home improvement retailers in the world.

    Stay ahead in the competitive market with accurate and up-to-date product information.

    Home Depot products latest dataset having around 2 million records. Get in touch with crawl feeds to require any updates in dataset.

    For a closer look at the product-level data we’ve extracted from Home Depot, including pricing, stock status, and detailed specifications, visit the Home Depot dataset page. You can explore sample records and submit a request for tailored extracts directly from there.

  10. d

    Home Ownership Data | USA Coverage | 74% Right Party Contact Rate |...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BatchService, Home Ownership Data | USA Coverage | 74% Right Party Contact Rate | BatchData [Dataset]. https://datarade.ai/data-products/batchservice-home-ownership-data-us-87-million-property-o-batchservice
    Explore at:
    .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset authored and provided by
    BatchService
    Area covered
    United States of America
    Description

    BatchData provides comprehensive home ownership data for 87 million owners of residential homes in the US. We specialize in providing accurate contact information for owners of specific properties, trusted by some of the largest real estate companies for our superior capabilities in accurately unmasking owners of properties that may be hidden behind LLCs and corporate veils.

    Our home ownership data is commonly used to fuel targeted marketing campaigns, generating real estate insights, powering websites/applications with real estate intelligence, and enriching sales and marketing databases with accurate homeowner contact information and surrounding intelligence to improve segmentation and targeting.

    Home ownership data that is linked to a given property includes: - Homeowner Name(s) - Homeowner Cell Phone Number - Homeowner Email Address - Homeowner Mailing Address - Addresses of Properties Owned - Homeowner Portfolio Equity - Total Number of Properties Owned - Property Characteristics of Properties Owned - Homeowner sales, loan, and mortgage information - Property Occupancy Status of Properties Owned - Property Valuation & ARV information of Properties Owned - Ownership Length - Ownership History - Homeowner Age - Homeowner Marital Status - Homeowner Income - and more!

    BatchService is both a data and technology company helping companies in and around the real estate ecosystem achieve faster growth. BatchService specializes in providing accurate B2B and B2C contact data for US property owners, including in-depth intelligence and actionable insights related to their property. Our portfolio of products, services, and go-to-market expertise help companies identify their target market, reach the right prospects, enrich their data, consolidate their data providers, and power their products and services.

  11. T

    United States Existing Home Sales

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Existing Home Sales [Dataset]. https://tradingeconomics.com/united-states/existing-home-sales
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1968 - May 31, 2025
    Area covered
    United States
    Description

    Existing Home Sales in the United States increased to 4030 Thousand in May from 4000 Thousand in April of 2025. This dataset provides the latest reported value for - United States Existing Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  12. d

    Louisville Metro KY – Home Repair

    • catalog.data.gov
    • data.louisvilleky.gov
    • +3more
    Updated Apr 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Louisville/Jefferson County Information Consortium (2023). Louisville Metro KY – Home Repair [Dataset]. https://catalog.data.gov/dataset/louisville-metro-ky-home-repair
    Explore at:
    Dataset updated
    Apr 13, 2023
    Dataset provided by
    Louisville/Jefferson County Information Consortium
    Area covered
    Louisville, Kentucky
    Description

    This program provides funds to homeowners to repair their homes. Many of our residents have homes that are in ill-repair and not suitable for living, but they lack the funding to repair them. This program alleviates this problem, keeping people housed and reducing the burden of needing new housing in the city.Data Dictionary Field Name Field Type Field Description Case_Id Integer Unique identifier Case_Status Text Case status of the application Case_ProgramYear Date program involved in implementation of the project. ZipCode Text Geographic indicator for the residence Contact_DistrictLocation Integer The council district the property belongs to in Louisville. Contact_Neighborhood Text The neighborhood the property belongs to in Louisville. InquiryForm_1978 Text If the building was built before 1978. InquiryForm_Children Text Is the applicant having children. InquiryForm_Disabled Text Is the applicant have disable. InquiryForm_Elderly Text Is the applicant elderly. Household_Size Integer Number of individuals in the household of the applicants Household_AMIRatio Integer Area median income range Borrower_1_Ethnicity Text Ethnicity of the applicants Borrower_1_Gender Text Gender of the applicants Borrower_1_Race Text Race of the applicants Funding_ARP_AmericanRescuePlan Float Amount committed to the applicants.

  13. T

    United States Home Ownership Rate

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Home Ownership Rate [Dataset]. https://tradingeconomics.com/united-states/home-ownership-rate
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1965 - Mar 31, 2025
    Area covered
    United States
    Description

    Home Ownership Rate in the United States decreased to 65.10 percent in the first quarter of 2025 from 65.70 percent in the fourth quarter of 2024. This dataset provides the latest reported value for - United States Home Ownership Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  14. Live tables on housing supply: indicators of new supply

    • gov.uk
    • s3.amazonaws.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2025). Live tables on housing supply: indicators of new supply [Dataset]. https://www.gov.uk/government/statistical-data-sets/live-tables-on-house-building
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Ministry of Housing, Communities and Local Government
    Description

    Local authorities compiling this data or other interested parties may wish to see notes and definitions for house building which includes P2 full guidance notes.

    Live tables

    Data from live tables 253 and 253a is also published as http://opendatacommunities.org/def/concept/folders/themes/house-building" class="govuk-link">Open Data (linked data format).

    https://assets.publishing.service.gov.uk/media/68541eb5a3a282804858153b/LiveTable213.ods">Table 213: permanent dwellings started and completed, by tenure, England (quarterly)

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">26.7 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

    https://assets.publishing.service.gov.uk/media/68541ee7a3a282804858153c/LiveTable217.ods">Table 217: permanent dwellings started and completed by tenure and region (quarterly)

     <p class="gem-c-attachment_metadata"><span class="gem-c-attachment_attribute"><abbr title="OpenDocument Spreadsheet" class="gem-c-attachment_abbr">ODS</abbr></span>, <span class="gem-c-attachment_attribute">113 KB</span></p>
    
    
    
      <p class="gem-c-attachment_metadata">
       This file is in an <a href="https://www.gov.uk/guidance/using-open-document-formats-odf-in-your-organisation" target="_self" class="govuk-link">OpenDocument</a> format
    

  15. C

    Home Health Agencies & Hospice Annual Utilization Report - Complete Data Set...

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    docx, html, pdf, xlsx
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Access and Information (2025). Home Health Agencies & Hospice Annual Utilization Report - Complete Data Set [Dataset]. https://data.chhs.ca.gov/dataset/home-health-hospice-annual-utilization-report-complete-data-set
    Explore at:
    pdf(710547), pdf(1345091), pdf(385514), xlsx, html, pdf(385267), pdf, pdf(273057), xlsx(6190478), xlsx(3973446), pdf(370739), xlsx(3882949), xlsx(6602040), pdf(282631), xlsx(5208476), pdf(385645), xlsx(3435902), pdf(283427), pdf(285755), xlsx(4178795), xlsx(3622724), docx, pdf(285009), pdf(698273), pdf(374306), pdf(445975)Available download formats
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Department of Health Care Access and Information
    Description

    Home Health Agencies (HHA) provide at home skilled nursing, personal care and therapeutic services. Hospices provide palliative care and alleviate the physical, emotional, social and spiritual discomforts of an individual who is experiencing the last phases of life due to the existence of a terminal disease. In addition, hospices provide supportive care for the primary care giver and the family of the hospice patient. Home health agencies and hospices submit an annual utilization report to the Office at the end of each calendar year. The report includes information on services capacity, visits, utilization, patient characteristics, and capital/equipment expenditures, and gross revenues. The documentation, including report forms, is available for each reporting year.

  16. d

    Residential Existing Homes (One to Four Units) Energy Efficiency Projects...

    • catalog.data.gov
    • data.ny.gov
    • +2more
    Updated Jan 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2024). Residential Existing Homes (One to Four Units) Energy Efficiency Projects with Income-based Incentives by Customer Type: Beginning 2010 [Dataset]. https://catalog.data.gov/dataset/residential-existing-homes-one-to-four-units-energy-efficiency-projects-with-income-based-
    Explore at:
    Dataset updated
    Jan 26, 2024
    Dataset provided by
    data.ny.gov
    Description

    IMPORTANT! PLEASE READ DISCLAIMER BEFORE USING DATA. The Residential Existing Homes Program is a market transformation program that uses Building Performance Institute (BPI) Goldstar contractors to install comprehensive energy-efficient improvements. The program is designed to use building science and a whole-house approach to reduce energy use in the State’s existing one-to-four family and low-rise multifamily residential buildings and capture heating fuel and electricity-related savings. The Program provides income-based incentives, including an assisted subsidy for households with income up to 80% of the State or Median County Income, whichever is higher to install eligible energy efficiency improvements including building shell measures, high efficiency heating and cooling measures, ENERGY STAR appliances and lighting. D I S C L A I M E R: Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, and First Year Energy Savings $ Estimate represent contractor reported savings derived from energy modeling software calculations and not actual realized energy savings. The accuracy of the Estimated Annual kWh Savings and Estimated Annual MMBtu Savings for projects has been evaluated by an independent third party. The results of the impact analysis indicate that, on average, actual savings amount to 35 percent of the Estimated Annual kWh Savings and 65 percent of the Estimated Annual MMBtu Savings. The analysis did not evaluate every single project, but rather a sample of projects from 2007 and 2008, so the results are applicable to the population on average but not necessarily to any individual project which could have over or under achieved in comparison to the evaluated savings. The results from the impact analysis will be updated when more recent information is available. Many factors influence the degree to which estimated savings are realized, including proper calibration of the savings model and the savings algorithms used in the modeling software. Some reasons individual households may realize savings different from those projected include, but are not limited to, changes in the number or needs of household members, changes in occupancy schedules, changes in energy usage behaviors, changes to appliances and electronics installed in the home, and beginning or ending a home business. Beginning November 2017, the Program requires the use of HPXML-compliant modeling software tools and data quality protocols have been implemented to more accurately project savings. For more information, please refer to the Evaluation Report published on NYSERDA’s website at: http://www.nyserda.ny.gov/-/media/Files/Publications/PPSER/Program-Evaluation/2012ContractorReports/2012-HPwES-Impact-Report-with-Appendices.pdf. The New York Residential Existing Homes (One to Four Units) dataset includes the following data points for projects completed during Green Jobs Green-NY, beginning November 15, 2010: Home Performance Project ID, Home Performance Site ID, Project County, Project City, Project Zip, Gas Utility, Electric Utility, Project Completion Date, Customer Type, Low-Rise or Home Performance Indicator, Total Project Cost (USD), Total Incentives (USD), Type of Program Financing, Amount Financed Through Program (USD), Pre-Retrofit Home Heating Fuel Type, Year Home Built, Size of Home, Volume of Home, Number of Units, Measure Type, Estimated Annual kWh Savings, Estimated Annual MMBtu Savings, First Year Energy Savings $ Estimate (USD), Homeowner Received Green Jobs-Green NY Free/Reduced Cost Audit (Y/N). How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov.

  17. d

    U.S. State, Territorial, and County Stay-At-Home Orders: March 15-May 5 by...

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). U.S. State, Territorial, and County Stay-At-Home Orders: March 15-May 5 by County by Day [Dataset]. https://catalog.data.gov/dataset/u-s-state-territorial-and-county-stay-at-home-orders-march-15-may-5-county-and-july-7-stat
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    Centers for Disease Control and Prevention
    Area covered
    United States
    Description

    State, territorial, and county executive orders, administrative orders, resolutions, and proclamations are collected from government websites and cataloged and coded using Microsoft Excel by one coder with one or more additional coders conducting quality assurance. Data were collected to determine when individuals in states, territories, and counties were subject to executive orders, administrative orders, resolutions, and proclamations for COVID-19 that require or recommend people stay in their homes. These data are derived from the publicly available state, territorial, and county executive orders, administrative orders, resolutions, and proclamations (“orders”) for COVID-19 that expressly require or recommend individuals stay at home found by the CDC, COVID-19 Community Intervention and At-Risk Task Force, Monitoring and Evaluation Team & CDC, Center for State, Tribal, Local, and Territorial Support, Public Health Law Program from March 15 through May 5, 2020. These data will be updated as new orders are collected. Any orders not available through publicly accessible websites are not included in these data. Only official copies of the documents or, where official copies were unavailable, official press releases from government websites describing requirements were coded; news media reports on restrictions were excluded. Recommendations not included in an order are not included in these data. These data do not include mandatory business closures, curfews, or limitations on public or private gatherings. These data do not necessarily represent an official position of the Centers for Disease Control and Prevention.

  18. d

    Autoscraping | Zillow USA Real Estate Data | 10M Listings with Pricing &...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AutoScraping, Autoscraping | Zillow USA Real Estate Data | 10M Listings with Pricing & Market Insights [Dataset]. https://datarade.ai/data-products/autoscraping-s-zillow-usa-real-estate-data-10m-listings-wit-autoscraping
    Explore at:
    .json, .csv, .xls, .sqlAvailable download formats
    Dataset authored and provided by
    AutoScraping
    Area covered
    United States
    Description

    Autoscraping's Zillow USA Real Estate Data is a comprehensive and meticulously curated dataset that covers over 10 million property listings across the United States. This data product is designed to meet the needs of professionals across various sectors, including real estate investment, market analysis, urban planning, and academic research. Our dataset is unique in its depth, accuracy, and timeliness, ensuring that users have access to the most relevant and actionable information available.

    What Makes Our Data Unique? The uniqueness of our data lies in its extensive coverage and the precision of the information provided. Each property listing is enriched with detailed attributes, including but not limited to, full addresses, asking prices, property types, number of bedrooms and bathrooms, lot size, and Zillow’s proprietary value and rent estimates. This level of detail allows users to perform in-depth analyses, make informed decisions, and gain a competitive edge in their respective fields.

    Furthermore, our data is continually updated to reflect the latest market conditions, ensuring that users always have access to current and accurate information. We prioritize data quality, and each entry is carefully validated to maintain a high standard of accuracy, making this dataset one of the most reliable on the market.

    Data Sourcing: The data is sourced directly from Zillow, one of the most trusted names in the real estate industry. By leveraging Zillow’s extensive real estate database, Autoscraping ensures that users receive data that is not only comprehensive but also highly reliable. Our proprietary scraping technology ensures that data is extracted efficiently and without errors, preserving the integrity and accuracy of the original source. Additionally, we implement strict data processing and validation protocols to filter out any inconsistencies or outdated information, further enhancing the quality of the dataset.

    Primary Use-Cases and Vertical Applications: Autoscraping's Zillow USA Real Estate Data is versatile and can be applied across a variety of use cases and industries:

    Real Estate Investment: Investors can use this data to identify lucrative opportunities, analyze market trends, and compare property values across different regions. The detailed pricing and valuation data allow for comprehensive due diligence and risk assessment.

    Market Analysis: Market researchers can leverage this dataset to track real estate trends, evaluate the performance of different property types, and assess the impact of economic factors on property values. The dataset’s nationwide coverage makes it ideal for both local and national market studies.

    Urban Planning and Development: Urban planners and developers can use the data to identify growth areas, plan new developments, and assess the demand for different property types in various regions. The detailed location data is particularly valuable for site selection and zoning analysis.

    Academic Research: Universities and research institutions can utilize this data for studies on housing markets, urbanization, and socioeconomic trends. The comprehensive nature of the dataset allows for a wide range of academic applications.

    Integration with Our Broader Data Offering: Autoscraping's Zillow USA Real Estate Data is part of our broader data portfolio, which includes various datasets focused on real estate, market trends, and consumer behavior. This dataset can be seamlessly integrated with our other offerings to provide a more holistic view of the market. For example, combining this data with our consumer demographic datasets can offer insights into the relationship between property values and demographic trends.

    By choosing Autoscraping's data products, you gain access to a suite of complementary datasets that can be tailored to meet your specific needs. Whether you’re looking to gain a comprehensive understanding of the real estate market, identify new investment opportunities, or conduct advanced research, our data offerings are designed to provide you with the insights you need.

  19. F

    Median Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Median Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/MSPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Apr 23, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q1 2025 about sales, median, housing, and USA.

  20. Amount of data created, consumed, and stored 2010-2023, with forecasts to...

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2028 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching *** zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than *** zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just * percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of **** percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached *** zettabytes.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Simon Brodeur; Ethan Perez; Ankesh Anand; Florian Golemo; Luca Celotti; Florian Strub; Jean Rouat; Hugo Larochelle; Aaron Courville, HoME Dataset [Dataset]. https://paperswithcode.com/dataset/home

HoME Dataset

Household Multimodal Environment

Explore at:
Authors
Simon Brodeur; Ethan Perez; Ankesh Anand; Florian Golemo; Luca Celotti; Florian Strub; Jean Rouat; Hugo Larochelle; Aaron Courville
Description

HoME (Household Multimodal Environment) is a multimodal environment for artificial agents to learn from vision, audio, semantics, physics, and interaction with objects and other agents, all within a realistic context. HoME integrates over 45,000 diverse 3D house layouts based on the SUNCG dataset, a scale which may facilitate learning, generalization, and transfer. HoME is an open-source, OpenAI Gym-compatible platform extensible to tasks in reinforcement learning, language grounding, sound-based navigation, robotics, multi-agent learning, and more.

Search
Clear search
Close search
Google apps
Main menu