6 datasets found
  1. c

    Top 15 States by Estimated Number of Homeless People in 2024

    • consumershield.com
    csv
    Updated Jun 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ConsumerShield Research Team (2025). Top 15 States by Estimated Number of Homeless People in 2024 [Dataset]. https://www.consumershield.com/articles/how-many-homeless-us
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    ConsumerShield Research Team
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The graph displays the top 15 states by an estimated number of homeless people in the United States for the year 2025. The x-axis represents U.S. states, while the y-axis shows the number of homeless individuals in each state. California has the highest homeless population with 187,084 individuals, followed by New York with 158,019, while Hawaii places last in this dataset with 11,637. This bar graph highlights significant differences across states, with some states like California and New York showing notably higher counts compared to others, indicating regional disparities in homelessness levels across the country.

  2. Rate of homelessness in the U.S. 2023, by state

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Rate of homelessness in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/727847/homelessness-rate-in-the-us-by-state/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    When analyzing the ratio of homelessness to state population, New York, Vermont, and Oregon had the highest rates in 2023. However, Washington, D.C. had an estimated ** homeless individuals per 10,000 people, which was significantly higher than any of the 50 states. Homeless people by race The U.S. Department of Housing and Urban Development performs homeless counts at the end of January each year, which includes people in both sheltered and unsheltered locations. The estimated number of homeless people increased to ******* in 2023 – the highest level since 2007. However, the true figure is likely to be much higher, as some individuals prefer to stay with family or friends - making it challenging to count the actual number of homeless people living in the country. In 2023, nearly half of the people experiencing homelessness were white, while the number of Black homeless people exceeded *******. How many veterans are homeless in America? The  number of homeless veterans in the United States has halved since 2010. The state of California, which is currently suffering a homeless crisis, accounted for the highest number of homeless veterans in 2022. There are many causes of homelessness among veterans of the U.S. military, including post-traumatic stress disorder (PTSD), substance abuse problems, and a lack of affordable housing.

  3. d

    Global hotspots of climate-related disasters (dataset related to the paper...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Donatti, Camila (2024). Global hotspots of climate-related disasters (dataset related to the paper Donatti etal.2024) [Dataset]. http://doi.org/10.7910/DVN/TFBAOH
    Explore at:
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Donatti, Camila
    Time period covered
    Jan 1, 2000 - Dec 31, 2020
    Description

    This dataset "Global hotspots of climate related disasters" shows the number of people impacted by climate-related disasters recorded in the EM-DAT database between 2000 and 2020. This dataset was used to prepare the maps and the analysis of the paper Donatti C.I., Nicholas K., Fedele G., Delforge D., Speybroeck N., Moraga P., Blatter J., Below R., Zvoleff A. 2024. Global hotspots of climate-related disasters. International Journal of Disaster Risk Reduction. https://doi.org/10.1016/j.ijdrr.2024.104488. This dataset includes information on people impacted by Drought, tropical cyclones, flash flood, riverine flood, forest fire, land fire, heat wave, landslide and mudslide. Data on coastal flood was not included because the database only had recordings until 2013. Data on disaster sub-types “landslides” and “mudslides” as presented in the EM-DAT were further combined as one single climate-related disaster (“land and mudslides”) for the analyses. Likewise, data on disaster sub-types “forest fire” and “land fire” were further combined as one climate-related disaster (“wildfire”). The data was accessed directly from the EM-DAT database and then summarized as show in the dataset. We used this database, downloaded on June 2nd 2021, to access data on “total affected” people and the “total deaths” per disaster event impacting a country (i.e., an entry in the EM-DAT), which were combined in this study to create the variable “total people impacted”. In the EM-DAT database, “total affected” represents the sum of people “injured,” “affected,” and “homeless” resulting from a particular event. “Injured” were considered those that have suffered from physical injuries, trauma, or an illness requiring immediate medical assistance, including people hospitalized, as a direct result of a disaster, “affected” were considered people requiring immediate assistance during an emergency and “homeless” were considered those whose homes were destroyed or heavily damaged and therefore needed shelter after an event. “Total deaths” include people that have died or were considered missing, those whose whereabouts since the disaster were unknown and presumed dead based on official figures. More details can be found under “documentation, data structure and content description” at emdat.be. In the dataset, "ADM-CODE" refers to the code used to identify each administrative area, which refers to the code of FAO's Global Administrative Unit Layer, GAUL.

  4. HackerEarth Challenge : Adopt a Buddy

    • kaggle.com
    zip
    Updated Aug 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aadarsh Srivastava (2020). HackerEarth Challenge : Adopt a Buddy [Dataset]. https://www.kaggle.com/aadarsh168/hackerearth-challenge-adopt-a-buddy
    Explore at:
    zip(553282 bytes)Available download formats
    Dataset updated
    Aug 14, 2020
    Authors
    Aadarsh Srivastava
    Description

    Problem statement Having a pet is one of life’s most fulfilling experiences. Your pets spoil you with their love, compassion, and loyalty. And dare anyone lay a finger on you in your pet’s presence, they are in for a lot of trouble. Thanks to social media, videos of clumsy and fussy (yet adorable) pets from across the globe entertain you all day long. Their love is pure and infinite. So, in return, all pets deserve a warm and loving family, indeed. And occasional boops, of course.

    Numerous organizations across the world provide shelter to all homeless animals until they are adopted into a new home. However, finding a loving family for them can be a daunting task at times. This International Homeless Animals Day, we present a Machine Learning challenge to you: Adopt a buddy.

    The brighter side of the pandemic is an increase in animal adoption and fostering. To ensure that their customers stay indoors, a leading pet adoption agency plans on creating a virtual-tour experience, showcasing all animals available in their shelter. To enable that, you have been tasked to build a Machine Learning model that determines the type and breed of the animal-based on its physical attributes and other factors.

    Dataset The dataset consists of parameters such as a unique ID assigned to each animal that is up for adoption, the date on which they arrived at the shelter, their physical attributes such as color, length, and height, among other factors.

    The benefits of practicing this problem by using Machine Learning techniques are as follows:

    This challenge will help you to actively enhance your knowledge of multi-label classification. It is one of the basic building blocks of Machine Learning We challenge you to build a predictive model that detects the type and breed of an animal-based on its condition, appearance, and other factors.

    Prizes Considering these unprecedented times that the world is facing due to the Coronavirus pandemic, we wish to do our bit and contribute the prize money for the welfare of society.

    Overview Machine Learning is an application of Artificial Intelligence (AI) that provides systems with the ability to automatically learn and improve from experiences without being explicitly programmed. Machine Learning is a Science that determines patterns in data. These patterns provide a deeper meaning to problems. First, it helps you understand the problems better and then solve the same with elegance.

    Here is the new HackerEarth Machine Learning Challenge—Adopt a buddy

    This challenge is designed to help you improve your Machine Learning skills by competing and learning from fellow participants.

    Why should you participate? To analyze and implement multiple algorithms, and determine which is more appropriate for a problem. To get hands-on experience of Machine Learning problems.

    Who should participate? Working professionals. Data Science or Machine Learning enthusiasts. College students (if you understand the basics of predictive modeling).

  5. Empirical Evidence for Synchrony in the Evolution of TB Cases and HIV+...

    • plos.figshare.com
    • figshare.com
    doc
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mojdeh Mohtashemi; L. Masae Kawamura (2023). Empirical Evidence for Synchrony in the Evolution of TB Cases and HIV+ Contacts among the San Francisco Homeless [Dataset]. http://doi.org/10.1371/journal.pone.0008851
    Explore at:
    docAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Mojdeh Mohtashemi; L. Masae Kawamura
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    San Francisco
    Description

    The re-emergence of tuberculosis (TB) in the mid-1980s in many parts of the world, including the United States, is often attributed to the emergence and rapid spread of human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS). Although it is well established that TB transmission is particularly amplified in populations with high HIV prevalence, the epidemiology of interaction between TB and HIV is not well understood. This is partly due to the scarcity of HIV-related data, a consequence of the voluntary nature of HIV status reporting and testing, and partly due to current practices of screening high risk populations through separate surveillance programs for HIV and TB. The San Francisco Department of Public Health, TB Control Program, has been conducting active surveillance among the San Francisco high-risk populations since the early 1990s. We present extensive TB surveillance data on HIV and TB infection among the San Francisco homeless to investigate the association between the TB cases and their HIV+ contacts. We applied wavelet coherence and phase analyses to the TB surveillance data from January 1993 through December 2005, to establish and quantify statistical association and synchrony in the highly non-stationary and ostensibly non-periodic waves of TB cases and their HIV+ contacts in San Francisco. When stratified by homelessness, we found that the evolution of TB cases and their HIV+ contacts is highly coherent over time and locked in phase at a specific periodic scale among the San Francisco homeless, but no significant association was observed for the non-homeless. This study confirms the hypothesis that the dynamics of HIV and TB are significantly intertwined and that HIV is likely a key factor in the sustenance of TB transmission among the San Francisco homeless. The findings of this study underscore the importance of contact tracing in detection of HIV+ individuals that may otherwise remain undetected, and thus highlights the ever-increasing need for HIV-related data and an integrative approach to monitoring high-risk populations with respect to HIV and TB transmission.

  6. Sri Lanka LK: Droughts, Floods, Extreme Temperatures: Average 1990-2009: %...

    • ceicdata.com
    Updated May 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Sri Lanka LK: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population [Dataset]. https://www.ceicdata.com/en/sri-lanka/land-use-protected-areas-and-national-wealth/lk-droughts-floods-extreme-temperatures-average-19902009--of-population
    Explore at:
    Dataset updated
    May 15, 2018
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2009
    Area covered
    Sri Lanka
    Description

    Sri Lanka LK: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population data was reported at 2.160 % in 2009. Sri Lanka LK: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population data is updated yearly, averaging 2.160 % from Dec 2009 (Median) to 2009, with 1 observations. Sri Lanka LK: Droughts, Floods, Extreme Temperatures: Average 1990-2009: % of Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sri Lanka – Table LK.World Bank: Land Use, Protected Areas and National Wealth. Droughts, floods and extreme temperatures is the annual average percentage of the population that is affected by natural disasters classified as either droughts, floods, or extreme temperature events. A drought is an extended period of time characterized by a deficiency in a region's water supply that is the result of constantly below average precipitation. A drought can lead to losses to agriculture, affect inland navigation and hydropower plants, and cause a lack of drinking water and famine. A flood is a significant rise of water level in a stream, lake, reservoir or coastal region. Extreme temperature events are either cold waves or heat waves. A cold wave can be both a prolonged period of excessively cold weather and the sudden invasion of very cold air over a large area. Along with frost it can cause damage to agriculture, infrastructure, and property. A heat wave is a prolonged period of excessively hot and sometimes also humid weather relative to normal climate patterns of a certain region. Population affected is the number of people injured, left homeless or requiring immediate assistance during a period of emergency resulting from a natural disaster; it can also include displaced or evacuated people. Average percentage of population affected is calculated by dividing the sum of total affected for the period stated by the sum of the annual population figures for the period stated.; ; EM-DAT: The OFDA/CRED International Disaster Database: www.emdat.be, Université Catholique de Louvain, Brussels (Belgium), World Bank.; ;

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ConsumerShield Research Team (2025). Top 15 States by Estimated Number of Homeless People in 2024 [Dataset]. https://www.consumershield.com/articles/how-many-homeless-us

Top 15 States by Estimated Number of Homeless People in 2024

Explore at:
csvAvailable download formats
Dataset updated
Jun 9, 2025
Dataset authored and provided by
ConsumerShield Research Team
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Area covered
United States
Description

The graph displays the top 15 states by an estimated number of homeless people in the United States for the year 2025. The x-axis represents U.S. states, while the y-axis shows the number of homeless individuals in each state. California has the highest homeless population with 187,084 individuals, followed by New York with 158,019, while Hawaii places last in this dataset with 11,637. This bar graph highlights significant differences across states, with some states like California and New York showing notably higher counts compared to others, indicating regional disparities in homelessness levels across the country.

Search
Clear search
Close search
Google apps
Main menu