Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This USA Housing Market Dataset (Synthetic) contains 300 rows and 10 columns of real estate-related data designed for housing price prediction, trend analysis, and investment insights. It includes key property details such as price, number of bedrooms and bathrooms, square footage, year built, garage spaces, lot size, zip code, crime rate, and school ratings.
This dataset is ideal for: ✅ Machine Learning Models for predicting housing prices ✅ Market Research & Investment Analysis ✅ Exploring Property Trends in the USA ✅ Educational Purposes for Data Science and Analytics
This dataset provides a realistic yet synthetic view of the real estate market, making it useful for data-driven decision-making in the housing industry.
Let me know if you need any modifications!
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
A dataset comprising various variables around housing and demographics for the top 50 American cities by population.
Variables:
Zip Code: Zip code within which the listing is present.
Price: Listed price for the property.
Beds: Number of beds mentioned in the listing.
Baths: Number of baths mentioned in the listing.
Living Space: The total size of the living space, in square feet, mentioned in the listing.
Address: Street address of the listing.
City: City name where the listing is located.
State: State name where the listing is located.
Zip Code Population: The estimated number of individuals within the zip code. Data from Simplemaps.com.
Zip Code Density: The estimated number of individuals per square mile within the zip code. Data from Simplemaps.com.
County: County where the listing is located.
Median Household income: Estimated median household income. Data from the U.S. Census Bureau.
Latitude: Latitude of the zip code. ** Data from Simplemaps.com.**
Longitude: Longitude of the zip code. Data from Simplemaps.com.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Starts in the United States decreased to 1307 Thousand units in August from 1429 Thousand units in July of 2025. This dataset provides the latest reported value for - United States Housing Starts - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
The Housing Data Extracted from Homes.com (USA) dataset is a comprehensive collection of 2 million real estate listings sourced from Homes.com, one of the leading real estate platforms in the United States. This dataset offers detailed insights into the U.S. housing market, making it an invaluable resource for real estate professionals, investors, researchers, and analysts.
The dataset contains extensive property details, including location, price, property type (single-family homes, condos, apartments), number of bedrooms and bathrooms, square footage, lot size, year built, and availability status. Organized in CSV format, it provides users with easy access to structured data for analyzing trends, developing investment strategies, or building real estate applications.
Key Features:
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Housing Inventory Estimate: Total Housing Units in the United States (ETOTALUSQ176N) from Q2 2000 to Q2 2025 about inventories, housing, and USA.
Facebook
Twitterhttps://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Explore the Redfin USA Properties Dataset, available in CSV format. This extensive dataset provides valuable insights into the U.S. real estate market, including detailed property listings, prices, property types, and more across various states and cities. Perfect for those looking to conduct in-depth market analysis, real estate investment research, or financial forecasting.
Key Features:
Who Can Benefit From This Dataset:
Download the Redfin USA Properties Dataset to access essential information on the U.S. housing market, ideal for professionals in real estate, finance, and data analytics. Unlock key insights to make informed decisions in a dynamic market environment.
Looking for deeper insights or a custom data pull from Redfin?
Send a request with just one click and explore detailed property listings, price trends, and housing data.
🔗 Request Redfin Real Estate Data
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains house sale prices for USA County, which includes Seattle. It includes homes sold between July 2014 and May 2017.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive map of USA showing 16 housing market factors such as Median home value,Median family income, First-time home buyer share, etc
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Monthly Supply of New Houses in the United States (MSACSR) from Jan 1963 to Aug 2025 about supplies, new, housing, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Total Housing Inventory in the United States decreased to 1520 Thousands in October from 1530 Thousands in September of 2025. This dataset includes a chart with historical data for the United States Total Housing Inventory.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/36801/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36801/terms
The 2015 American Housing Survey marks the first release of a newly integrated national sample and independent metropolitan area samples. The 2015 release features many variable name revisions, as well as the integration of an AHS Codebook Interactive Tool available on the U.S. Census Bureau We site. This data collection provides information on the characteristics of a national sample of housing units in 2015, including apartments, single-family homes, mobile homes, and vacant housing units. Data from the 15 largest metropolitan areas in the United States are included in the national sample survey (the AHS 2015 Metropolitan Data are also available as ICPSR 36805). The data are presented in three separate parts: Part 1, Household Record (Main Record), Part 2, Person Record, and Part 3, Project Record. Household Record data includes questions about household occupancy and tenure, household exterior and interior structural features, household equipment and appliances, housing problems, housing costs, home improvement, neighborhood features, recent moving information, income, and basic demographic information. The household record data also features four rotating topical modules: Arts and Culture, Food Security, Housing Counseling, and Healthy Homes. Person Record data includes questions about personal disabilities, income, and basic demographic information. Finally, the Project Record data includes questions about home improvement projects. Specific questions were asked about the types of projects, costs, funding sources, and year of completion.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
📝 Dataset Description: This synthetic dataset contains 3,000 residential property listings modeled after real U.S. house sales data (in a Zillow-style format). It is designed for use in real estate analysis, machine learning, data visualization, and web scraping practice.
Each row represents a unique property and includes 16 key features commonly used by real estate agents, investors, and analysts. The data spans multiple U.S. states and cities, with realistic values for price, square footage, bedroom/bathroom count, property type, and more.
✅ Included Fields: Price – Listing price (in USD)
Address, City, State, Zipcode – U.S. formatted property location
Bedrooms, Bathrooms, Area (Sqft) – Core home specs
Lot Size, Year Built, Days on Market
Property Type, MLS ID, Listing Agent, Status
Listing URL – Mock Zillow-style property link
⚙️ Use Cases: Exploratory data analysis (EDA)
Regression/classification model training
Feature engineering and preprocessing
Real estate dashboards and web app mockups
Practice with BeautifulSoup, Pandas, or Power BI
Facebook
TwitterThe AHS is the largest, regular national housing sample survey in the United States. The U.S. Census Bureau conducts the AHS to obtain up-to-date housing statistics for the Department of Housing and Urban Development (HUD). The AHS national survey was conducted annually from 1973-1981 and biennially (every two years) since 1983. Metropolitan area surveys have been conducted annually or biennially since 1974.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Existing Home Sales in the United States increased to 4100 Thousand in October from 4050 Thousand in September of 2025. This dataset provides the latest reported value for - United States Existing Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing Index in the United States decreased to 435.40 points in September from 435.60 points in August of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Selected Housing Characteristics.Table ID.ACSDP1Y2024.DP04.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Data Profiles.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Home Sales in the United States increased to 800 Thousand units in August from 664 Thousand units in July of 2025. This dataset provides the latest reported value for - United States New Home Sales - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By [source]
This comprehensive dataset explores the relationship between housing and weather conditions across North America in 2012. Through a range of climate variables such as temperature, wind speed, humidity, pressure and visibility it provides unique insights into the weather-influenced environment of numerous regions. The interrelated nature of housing parameters such as longitude, latitude, median income, median house value and ocean proximity further enhances our understanding of how distinct climates play an integral part in area real estate valuations. Analyzing these two data sets offers a wealth of knowledge when it comes to understanding what factors can dictate the value and comfort level offered by residential areas throughout North America
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset offers plenty of insights into the effects of weather and housing on North American regions. To explore these relationships, you can perform data analysis on the variables provided.
First, start by examining descriptive statistics (i.e., mean, median, mode). This can help show you the general trend and distribution of each variable in this dataset. For example, what is the most common temperature in a given region? What is the average wind speed? How does this vary across different regions? By looking at descriptive statistics, you can get an initial idea of how various weather conditions and housing attributes interact with one another.
Next, explore correlations between variables. Are certain weather variables correlated with specific housing attributes? Is there a link between wind speeds and median house value? Or between humidity and ocean proximity? Analyzing correlations allows for deeper insights into how different aspects may influence one another for a given region or area. These correlations may also inform broader patterns that are present across multiple North American regions or countries.
Finally, use visualizations to further investigate this relationship between climate and housing attributes in North America in 2012. Graphs allow you visualize trends like seasonal variations or long-term changes over time more easily so they are useful when interpreting large amounts of data quickly while providing larger context beyond what numbers alone can tell us about relationships between different aspects within this dataset
- Analyzing the effect of climate change on housing markets across North America. By looking at temperature and weather trends in combination with housing values, researchers can better understand how climate change may be impacting certain regions differently than others.
- Investigating the relationship between median income, house values and ocean proximity in coastal areas. Understanding how ocean proximity plays into housing prices may help inform real estate investment decisions and urban planning initiatives related to coastal development.
- Utilizing differences in weather patterns across different climates to determine optimal seasonal rental prices for property owners. By analyzing changes in temperature, wind speed, humidity, pressure and visibility from season to season an investor could gain valuable insights into seasonal market trends to maximize their profits from rentals or Airbnb listings over time
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: Weather.csv | Column name | Description | |:---------------------|:-----------------------------------------------| | Date/Time | Date and time of the observation. (Date/Time) | | Temp_C | Temperature in Celsius. (Numeric) | | Dew Point Temp_C | Dew point temperature in Celsius. (Numeric) | | Rel Hum_% | Relative humidity in percent. (Numeric) | | Wind Speed_km/h | Wind speed in kilometers per hour. (Numeric) | | Visibility_km | Visibilit...
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Housing Inventory: Active Listing Count in the United States (ACTLISCOUUS) from Jul 2016 to Oct 2025 about active listing, listing, and USA.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This USA Housing Market Dataset (Synthetic) contains 300 rows and 10 columns of real estate-related data designed for housing price prediction, trend analysis, and investment insights. It includes key property details such as price, number of bedrooms and bathrooms, square footage, year built, garage spaces, lot size, zip code, crime rate, and school ratings.
This dataset is ideal for: ✅ Machine Learning Models for predicting housing prices ✅ Market Research & Investment Analysis ✅ Exploring Property Trends in the USA ✅ Educational Purposes for Data Science and Analytics
This dataset provides a realistic yet synthetic view of the real estate market, making it useful for data-driven decision-making in the housing industry.
Let me know if you need any modifications!