100+ datasets found
  1. Average daily time spent on social media worldwide 2012-2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Average daily time spent on social media worldwide 2012-2025 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    As of February 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usage Currently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events and friends. Global impact of social media Social media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased polarization in politics, and heightened everyday distractions.

  2. Daily Social Media Active Users

    • kaggle.com
    zip
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shaik Barood Mohammed Umar Adnaan Faiz (2025). Daily Social Media Active Users [Dataset]. https://www.kaggle.com/datasets/umeradnaan/daily-social-media-active-users
    Explore at:
    zip(126814 bytes)Available download formats
    Dataset updated
    May 5, 2025
    Authors
    Shaik Barood Mohammed Umar Adnaan Faiz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description:

    The "Daily Social Media Active Users" dataset provides a comprehensive and dynamic look into the digital presence and activity of global users across major social media platforms. The data was generated to simulate real-world usage patterns for 13 popular platforms, including Facebook, YouTube, WhatsApp, Instagram, WeChat, TikTok, Telegram, Snapchat, X (formerly Twitter), Pinterest, Reddit, Threads, LinkedIn, and Quora. This dataset contains 10,000 rows and includes several key fields that offer insights into user demographics, engagement, and usage habits.

    Dataset Breakdown:

    • Platform: The name of the social media platform where the user activity is tracked. It includes globally recognized platforms, such as Facebook, YouTube, and TikTok, that are known for their large, active user bases.

    • Owner: The company or entity that owns and operates the platform. Examples include Meta for Facebook, Instagram, and WhatsApp, Google for YouTube, and ByteDance for TikTok.

    • Primary Usage: This category identifies the primary function of each platform. Social media platforms differ in their primary usage, whether it's for social networking, messaging, multimedia sharing, professional networking, or more.

    • Country: The geographical region where the user is located. The dataset simulates global coverage, showcasing users from diverse locations and regions. It helps in understanding how user behavior varies across different countries.

    • Daily Time Spent (min): This field tracks how much time a user spends on a given platform on a daily basis, expressed in minutes. Time spent data is critical for understanding user engagement levels and the popularity of specific platforms.

    • Verified Account: Indicates whether the user has a verified account. This feature mimics real-world patterns where verified users (often public figures, businesses, or influencers) have enhanced status on social media platforms.

    • Date Joined: The date when the user registered or started using the platform. This data simulates user account history and can provide insights into user retention trends or platform growth over time.

    Context and Use Cases:

    • This synthetic dataset is designed to offer a privacy-friendly alternative for analytics, research, and machine learning purposes. Given the complexities and privacy concerns around using real user data, especially in the context of social media, this dataset offers a clean and secure way to develop, test, and fine-tune applications, models, and algorithms without the risks of handling sensitive or personal information.

    Researchers, data scientists, and developers can use this dataset to:

    • Model User Behavior: By analyzing patterns in daily time spent, verified status, and country of origin, users can model and predict social media engagement behavior.

    • Test Analytics Tools: Social media monitoring and analytics platforms can use this dataset to simulate user activity and optimize their tools for engagement tracking, reporting, and visualization.

    • Train Machine Learning Algorithms: The dataset can be used to train models for various tasks like user segmentation, recommendation systems, or churn prediction based on engagement metrics.

    • Create Dashboards: This dataset can serve as the foundation for creating user-friendly dashboards that visualize user trends, platform comparisons, and engagement patterns across the globe.

    • Conduct Market Research: Business intelligence teams can use the data to understand how various demographics use social media, offering valuable insights into the most engaged regions, platform preferences, and usage behaviors.

    • Sources of Inspiration: This dataset is inspired by public data from industry reports, such as those from Statista, DataReportal, and other market research platforms. These sources provide insights into the global user base and usage statistics of popular social media platforms. The synthetic nature of this dataset allows for the use of realistic engagement metrics without violating any privacy concerns, making it an ideal tool for educational, analytical, and research purposes.

    The structure and design of the dataset are based on real-world usage patterns and aim to represent a variety of users from different backgrounds, countries, and activity levels. This diversity makes it an ideal candidate for testing data-driven solutions and exploring social media trends.

    Future Considerations:

    As the social media landscape continues to evolve, this dataset can be updated or extended to include new platforms, engagement metrics, or user behaviors. Future iterations may incorporate features like post frequency, follower counts, engagement rates (likes, comments, shares), or even sentiment analysis from user-generated content.

    By leveraging this dataset, analysts and data scientists can create better, more effective strategies ...

  3. Average daily time spent on social media worldwide 2012-2024

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Average daily time spent on social media worldwide 2012-2024 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How much time do people spend on social media?

                  As of 2024, the average daily social media usage of internet users worldwide amounted to 143 minutes per day, down from 151 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of three hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in
                  the U.S. was just two hours and 16 minutes. Global social media usageCurrently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively.
                  People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events friends. Global impact of social mediaSocial media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general.
                  During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased a polarization in politics and heightened everyday distractions.
    
  4. Number of global social network users 2017-2028

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  5. Average Time Spent By A User On Social Media

    • kaggle.com
    Updated Jan 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yasshoozer Joshua (2024). Average Time Spent By A User On Social Media [Dataset]. https://www.kaggle.com/datasets/imyjoshua/average-time-spent-by-a-user-on-social-media/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yasshoozer Joshua
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This is dummy data, that I have generated by using the 'NumPy' Library of Python. This data shows how much a user spends time on their devices using Social Media.

    I generated this data to train an AI model for myself for practice purposes only.

    The description for each column is as follows:

    • age: The age of the user.
    • gender: The gender identity of the user (Male, Female, Non-binary).
    • demographics: The type of area the user resides in (Urban, Suburban, Rural).
    • interests: The user's primary area of interest or hobby.
    • device_type: The type of device used by the user (Mobile).
    • location:The country of residence for the user.
    • platform: The social media platform where the user spends time.
    • profession: The user's occupation or professional status.
    • income: The yearly income of the user.
    • indebt: Indicates whether the user is in debt (True or False).
    • homeowner: Indicates whether the user owns a home (True or False).
    • owns_cars: Indicates whether the user owns cars (True or False).
  6. Social Media and Mental Health

    • kaggle.com
    zip
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SouvikAhmed071 (2023). Social Media and Mental Health [Dataset]. https://www.kaggle.com/datasets/souvikahmed071/social-media-and-mental-health
    Explore at:
    zip(10944 bytes)Available download formats
    Dataset updated
    Jul 18, 2023
    Authors
    SouvikAhmed071
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This dataset was originally collected for a data science and machine learning project that aimed at investigating the potential correlation between the amount of time an individual spends on social media and the impact it has on their mental health.

    The project involves conducting a survey to collect data, organizing the data, and using machine learning techniques to create a predictive model that can determine whether a person should seek professional help based on their answers to the survey questions.

    This project was completed as part of a Statistics course at a university, and the team is currently in the process of writing a report and completing a paper that summarizes and discusses the findings in relation to other research on the topic.

    The following is the Google Colab link to the project, done on Jupyter Notebook -

    https://colab.research.google.com/drive/1p7P6lL1QUw1TtyUD1odNR4M6TVJK7IYN

    The following is the GitHub Repository of the project -

    https://github.com/daerkns/social-media-and-mental-health

    Libraries used for the Project -

    Pandas
    Numpy
    Matplotlib
    Seaborn
    Sci-kit Learn
    
  7. Facebook users worldwide 2017-2027

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Facebook users worldwide 2017-2027 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years. User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).

  8. Social Media Mental Health Indicators Dataset

    • kaggle.com
    zip
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sonal Shinde (2025). Social Media Mental Health Indicators Dataset [Dataset]. https://www.kaggle.com/datasets/sonalshinde123/social-media-mental-health-indicators-dataset
    Explore at:
    zip(80135 bytes)Available download formats
    Dataset updated
    Nov 26, 2025
    Authors
    Sonal Shinde
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Overview

    This dataset captures the relationship between social media usage, screen-time behavior, and daily lifestyle factors such as sleep duration and interaction quality. It is useful for analyzing patterns that may influence mental well-being, digital habits, and behavioral trends among users.

    The data contains individual-level entries with details like daily screen time, social media time, positive vs. negative interactions, demographic information, and sleep hours. It is ideal for:

    • Exploratory data analysis
    • Behavioral pattern modeling
    • Correlation studies
    • Prediction tasks (e.g., sleep prediction, mood trend analysis)
    • Student ML/NLP/data analytics projects

    Column Description:

    Column NameDescription
    person_nameName or identifier of the person.
    ageAge of the individual in years.
    dateThe date on which the data was recorded.
    genderGender of the user (Male, Female, Other).
    platformPrimary social media platform the person uses.
    daily_screen_time_minTotal daily device screen time in minutes.
    social_media_time_minTotal time spent on social media in minutes per day.
    negative_interactions_countNumber of negative or harmful interactions experienced online.
    positive_interactions_countNumber of positive or supportive interactions experienced online.
    sleep_hoursTotal number of hours the person sleeps per day.
  9. Global social network penetration 2019-2028

    • statista.com
    • de.statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Global social network penetration 2019-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    The global social media penetration rate in was forecast to continuously increase between 2024 and 2028 by in total 11.6 (+18.19 percent). After the ninth consecutive increasing year, the penetration rate is estimated to reach 75.31 and therefore a new peak in 2028. Notably, the social media penetration rate of was continuously increasing over the past years.

  10. r

    Abbreviated FOMO and social media dataset

    • researchdata.edu.au
    • figshare.mq.edu.au
    Updated Jul 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ron Rapee; McEvoy, Peter; Maree J. Abbott; Madeleine Ferrari; Eyal Karin; Danielle Einstein; Carol Dabb; Anne McMaugh (2022). Abbreviated FOMO and social media dataset [Dataset]. http://doi.org/10.25949/20188298.V1
    Explore at:
    Dataset updated
    Jul 7, 2022
    Dataset provided by
    Macquarie University
    Authors
    Ron Rapee; McEvoy, Peter; Maree J. Abbott; Madeleine Ferrari; Eyal Karin; Danielle Einstein; Carol Dabb; Anne McMaugh
    Description

    This database is comprised of 951 participants who provided self-report data online in their school classrooms. The data was collected in 2016 and 2017. The dataset is comprised of 509 males (54%) and 442 females (46%). Their ages ranged from 12 to 16 years (M = 13.69, SD = 0.72). Seven participants did not report their age. The majority were born in Australia (N = 849, 89%). The next most common countries of birth were China (N = 24, 2.5%), the UK (N = 23, 2.4%), and the USA (N = 9, 0.9%). Data were drawn from students at five Australian independent secondary schools.

    The data contains item responses for the Spence Children’s Anxiety Scale (SCAS; Spence, 1998) which is comprised of 44 items. The Social media question asked about frequency of use with the question “How often do you use social media?”. The response options ranged from constantly to once a week or less. Items measuring Fear of Missing Out were included and incorporated the following five questions based on the APS Stress and Wellbeing in Australia Survey (APS, 2015). These were “When I have a good time it is important for me to share the details online; I am afraid that I will miss out on something if I don’t stay connected to my online social networks; I feel worried and uncomfortable when I can’t access my social media accounts; I find it difficult to relax or sleep after spending time on social networking sites; I feel my brain burnout with the constant connectivity of social media. Internal consistency for this measure was α = .81. Self compassion was measured using the 12-item short-form of the Self-Compassion Scale (SCS-SF; Raes et al., 2011).

    The data set has the option of downloading an excel file (composed of two worksheet tabs) or CSV files 1) Data and 2) Variable labels.

    References:

    Australian Psychological Society. (2015). Stress and wellbeing in Australia survey. https://www.headsup.org.au/docs/default-source/default-document-library/stress-and-wellbeing-in-australia-report.pdf?sfvrsn=7f08274d_4

    Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the self-compassion scale. Clinical Psychology and Psychotherapy, 18(3), 250-255. https://doi.org/10.1002/cpp.702

    Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545-566. https://doi.org/10.1016/S0005-7967(98)00034-5

  11. Social Media Analysis

    • kaggle.com
    zip
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Han Aksoy (2024). Social Media Analysis [Dataset]. https://www.kaggle.com/datasets/hanaksoy/social-media-analysis
    Explore at:
    zip(726 bytes)Available download formats
    Dataset updated
    Aug 20, 2024
    Authors
    Han Aksoy
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    hello everyone. I wanted to share here my data set, which is completely my own product of imagination and has no connection with the real data that I wrote for my own data analysis training, for analysts working on data analysis. have fun:))))))

    UserId: Unique identifier for each user in the data set

    UsageDuration: Total time spent by the user on social media in hours

    Age: Age of the user in years

    Country: Country of residence of the user

    TotalLikes: Total number of likes giving by the user in a day

  12. Data from: Dark Side Of Social Media

    • kaggle.com
    zip
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Roshan Riaz (2024). Dark Side Of Social Media [Dataset]. https://www.kaggle.com/datasets/muhammadroshaanriaz/time-wasters-on-social-media/code
    Explore at:
    zip(36893 bytes)Available download formats
    Dataset updated
    Jul 8, 2024
    Authors
    Muhammad Roshan Riaz
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Time-Wasters on Social Media Dataset Overview The "Time-Wasters on Social Media" dataset offers a detailed look into user behavior and engagement with social media platforms. It captures various attributes that can help analyze the impact of social media on users' time and productivity. This dataset is valuable for researchers, marketers, and social scientists aiming to understand the nuances of social media consumption.

    This dataset was generated using synthetic data techniques with the help of NumPy and pandas. The data is artificially created to simulate real-world social media usage patterns for research and analysis purposes.

    Columns Description UserID: A unique identifier assigned to each user. Age: The age of the user. Gender: The gender of the user. Location: The geographical location of the user. Income: The annual income of the user. Debt: Tells If the is in Debt or Not. Owns Property: Indicates whether the user owns any property (Yes/No). Profession: The profession or job title of the user. Demographics: Additional demographic information about the user (Rural or Urban Life). Platform: The social media platform used by the user (e.g., Facebook, Instagram, TikTok). Total Time Spent: The total time the user has spent on the platform. Number of Sessions: The number of sessions the user has had on the platform. Video ID: A unique identifier for each video watched. Video Category: The category of the video watched (e.g., Entertainment, Gaming, Pranks, Vlog). Video Length: The length of the video watched. Engagement: The engagement level of the user with the video (e.g., Likes, Comments). Importance Score: A score representing the perceived importance of the video to the user. Time Spent On Video: The amount of time the user spent watching the video. Number of Videos Watched: The total number of videos watched by the user. Scroll Rate: The rate at which the user scrolls through content. Frequency: How frequently the user logs into the platform. Productivity Loss: The amount of productivity lost due to time spent on social media. Satisfaction: The satisfaction level of the user with the content consumed. Watch Reason: The reason why the user watched the video (e.g., Entertainment, Information). DeviceType: The type of device used to access the platform (e.g., Mobile, Desktop). OS: The operating system of the device used. Watch Time: The specific time of day when the user watched the video. Self Control: The user's self-assessed level of self-control while using the platform. Addiction Level: The user's self-assessed level of addiction to social media. Current Activity: The activity the user was engaged in before using the platform. ConnectionType: The type of internet connection used by the user (e.g., Wi-Fi, Mobile Data).

    Usage This dataset can be utilized to:

    Analyze patterns in social media usage. Understand demographic differences in platform engagement. Examine the impact of social media on productivity. Develop strategies to improve user engagement and satisfaction. Study the correlation between social media usage and various demographic factors.

  13. Data from: The Effects of Social Media on Mental Health

    • kaggle.com
    zip
    Updated Dec 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shabda Mocharla (2023). The Effects of Social Media on Mental Health [Dataset]. https://www.kaggle.com/datasets/shabdamocharla/social-media-mental-health
    Explore at:
    zip(7302 bytes)Available download formats
    Dataset updated
    Dec 14, 2023
    Authors
    Shabda Mocharla
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    In the last two decades, social media usage has surged, reaching nearly five billion users worldwide in 2022. Unfortunately, there is a rise in mental health issues during that same time. Through a two-phase data analysis, this project studies the patterns of mental health influenced by social media. Analyzing data from 479 individuals across various platforms, the study employs K-means clustering to categorize mental health states into three groups, each indicating varying levels of professional/intervention needs. In the subsequent supervised learning phase, predictive models, including the Naive Bayes model with an under-sampled dataset and the Decision Tree model with an oversampled dataset, were developed to determine mental health categories, achieving an accuracy of 60.42%. These models, developed with comprehensive predictors, offer valuable insights for future research and the need for interventions addressing mental health challenges linked to social media use. Table 1 displays the variables, their descriptions, and value types. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13828311%2Fd9e0fb90d862e58aba958a14b3b8dcea%2FScreen%20Shot%202023-12-14%20at%2012.27.20%20PM.png?generation=1702578478575969&alt=media" alt="">

    Phase I : Unsupervised Learning Techniques K-means Clustering Model

    Using the elbow method pictured below in plot 1, we could visualize the optimal number of clusters (K), and then perform the K-means clustering with the optimal K. Several values for K were considered, and models were created for K = 2, 3, 4, 5, 6, 7, and 8, which were then compared. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13828311%2Fa77706842d108c7fbee363c1192b763a%2FScreen%20Shot%202023-12-14%20at%2012.08.01%20PM.png?generation=1702577407983039&alt=media" alt="">

    In table 4 we can see the comparison of the bss/tss ratios. K = 3 is the last model with a significant jump and therefore is the optimal model. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13828311%2F9a44382d9c08a616bd0248f150b85526%2FScreen%20Shot%202023-12-14%20at%2012.08.20%20PM.png?generation=1702577436944201&alt=media" alt="">

    In Table 5, we can observe the cluster centers for each variable within each cluster in the K-means clustering model with k = 3.https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13828311%2Fdf92bc28b65f67d88efa3b8a96295dcc%2FScreen%20Shot%202023-12-14%20at%2012.09.13%20PM.png?generation=1702577557552624&alt=media" alt="">

    Based on the above cluster centers, we could interpret the cluster groups as shown in the table 6 below: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13828311%2F1d0624052cfc9ce50e7bc5b404d916d0%2FScreen%20Shot%202023-12-14%20at%2012.08.34%20PM.png?generation=1702577449886328&alt=media" alt="">

    Phase II: Supervised Learning Techniques

    Prediction Models

    Data Input https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13828311%2F51672c4d16a801532a3ac8017cf72958%2FScreen%20Shot%202023-12-14%20at%2012.16.16%20PM.png?generation=1702577897888133&alt=media" alt=""> Above in Image A, we can see a sneak peek of the dataset with the new variable 'MHScore,' indicating mental health state cluster groups.

    The outcome variable (MHScore) is categorical and multi-class (3 Levels: 1,2,3). Therefore, the implemented models include Naïve Bayes (NB), Support Vector Machines (SVM), SVM with parameter changes, Decision Trees, and Pruned Decision Trees.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13828311%2F06827fe209b78ffbddee69b272a8cdfc%2FScreen%20Shot%202023-12-14%20at%2012.20.41%20PM.png?generation=1702578062241650&alt=media" alt="">

    Table 11 summarizes the results of the best model from each predictive machine learning technique for accuracy, balanced accuracy, sensitivity, specificity, and precision for each class. Each model was developed using the same predictors from the dataset, including age, gender, relationship status, occupation, organization of employment, social media usage, the number of social media platforms used, the hours spent on social media, and the frequency of social media use. The higher accuracy observed in both the under-sampled and oversampled datasets indicates the importance of class equality.

  14. Social Media Usage According to Different Locations

    • zenodo.org
    csv
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasann khamkar; Prasann khamkar (2024). Social Media Usage According to Different Locations [Dataset]. http://doi.org/10.5281/zenodo.13968708
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Prasann khamkar; Prasann khamkar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This ai-generated dataset provides detailed information on how individuals allocate their time across various social media platforms, including Facebook, Twitter, Instagram, YouTube, Snapchat, TikTok, LinkedIn, WhatsApp, and Pinterest. Each entry represents the number of hours spent on each platform and includes location data to explore geographic trends in social media consumption.

    The dataset is ideal for analyzing:

    • Time distribution across social platforms.
    • Location-based patterns in social media usage.
    • Comparative studies on platform preferences.

    Perfect for social behavior analysis and data-driven marketing insights!

  15. m

    Data from two schools within Insights trial exploring changes in IU

    • figshare.mq.edu.au
    • researchdata.edu.au
    txt
    Updated Oct 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle Einstein; Anne McMaugh; Peter McEvoy; Ron Rapee; Madeleine Fraser; Maree J. Abbott; Warren Mansell; Eyal Karin (2024). Data from two schools within Insights trial exploring changes in IU [Dataset]. http://doi.org/10.25949/23582805.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Oct 30, 2024
    Dataset provided by
    Macquarie University
    Authors
    Danielle Einstein; Anne McMaugh; Peter McEvoy; Ron Rapee; Madeleine Fraser; Maree J. Abbott; Warren Mansell; Eyal Karin
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    This database is comprised of 603 participants who provided self-report data online in their school classrooms. The data was collected in 2016 and 2017. The dataset is comprised of 208 males (34%) and 395 females (66%). Their ages ranged from 12 to 15 years. Their age in years at baseline is provided. The majority were born in Australia. Data were drawn from students at two Australian independent secondary schools. The data contains total responses for the following scales: The Intolerance of Uncertainty Scale (IUS-12; Short form; Carleton et al, 2007) is a 12-item scale measuring two dimensions of Prospective and Inhibitory intolerance of uncertainty. Two subscales of the Children’s Automatic Thoughts Scale (CATS; Schniering & Rapee, 2002) were administered. The Peronalising and Social Threat were each composed of 10 items. UPPS Impulsive Behaviour Scale (Whiteside & Lynam, 2001) which is comprised of 12 items. Dispositional Envy Scale (DES; Smith et al, 1999) which is comprised of 8 items. Spence Children’s Anxiety Scale (SCAS; Spence, 1998) which is comprised of 44 items. Three subscales totals included were the GAD subscale (labelled SCAS_GAD), the OCD subscale (labelled SCAS_OCD) and the Social Anxiety subscale (labelled SCAS_SA). Each subscale was comprised of 6 items. Avoidance and Fusion Questionnaire for Youth (AFQ-Y; Greco et al., 2008) which is comprised of 17 items. Distress Disclosure Index (DDI; Kahn & Hessling, 2001) which is comprised of 12 items. Repetitive Thinking Questionnaire-10 (RTQ-10; McEvoy et al., 2014) which is comprised of 10 items. The Brief Fear of Negative Evaluation Scale, Straightforward Items (BFNE-S; Rodebaugh et al., 2004) which is comprised of 8 items. Short Mood and Feelings Questionnaire (SMFQ; Angold et al., 1995) which is comprised by 13 items. The Self-Compassion Scale Short Form (SCS-SF; Raes et al., 2011) which is comprised by 12 items. The subscales include Self Kindness, Self Judgment, Social Media subscales - These subscale scores were based on social media questions composed for this project and also drawn from three separate scales as indicated in the table below. The original scales assessed whether participants experience discomfort and a fear of missing out when disconnected from social media (taken from the Australian Psychological Society Stress and Wellbeing Survey; Australian Psychological Society, 2015a), style of social media use (Tandoc et al., 2015b) and Fear of Missing Out (Przybylski et al., 2013c). The items in each subscale are listed below. Pub_Share Public Sharing When I have a good time it is important for me to share the details onlinec On social media how often do you write a status updateb On social media how often do you post photosb Surveillance_SM On social media how often do you read the newsfeed On social media how often do you read a friend’s status updateb On social media how often do you view a friend’s photob On social media how often do you browse a friend’s timelineb Upset Share On social media how often do you go online to share things that have upset you? Text private On social media how often do you Text friends privately to share things that have upset you? Insight_SM Social Media Reduction I use social media less now because it often made me feel inadequate FOMO I am afraid that I will miss out on something if I don’t stay connected to my online social networksa. I feel worried and uncomfortable when I can’t access my social media accountsa. Neg Eff of SM I find it difficult to relax or sleep after spending time on social networking sitesa. I feel my brain ‘burnout’ with the constant connectivity of social mediaa. I notice I feel envy when I use social media.
    I can easily detach from the envy that appears following the use of social media (reverse scored) DES_SM Envy Mean acts online Feeling envious about another person has led me to post a comment online about another person to make them laugh Feeling envious has led me to post a photo online without someone’s permission to make them angry or to make fun of them Feeling envious has prompted me to keep another student out of things on purpose, excluding her from my group of friends or ignoring them. Substance Use: Two items measuring peer influence on alcohol consumption were adapted from the SHAHRP “Patterns of Alcohol Use” measure (McBride, Farringdon & Midford, 2000). These items were “When I am with friends I am quite likely to drink too much alcohol” and “Substances (alcohol, drugs, medication) are the immediate way I respond to my thoughts about a situation when I feel distressed or upset. Angold, A., Costello, E. J., Messer, S. C., & Pickles, A. (1995). Development of a short questionnaire for use in epidemiological studies of depression in children and adolescents. International Journal of Methods in Psychiatric Research, 5(4), 237–249. Australian Psychological Society. (2015). Stress and wellbeing in Australia survey. https://www.headsup.org.au/docs/default-source/default-document-library/stress-and-wellbeing-in-australia-report.pdf?sfvrsn=7f08274d_4 Greco, L.A., Lambert, W. & Baer., R.A. (2008) Psychological inflexibility in childhood and adolescence: Development and evaluation of the Avoidance and Fusion Questionnaire for Youth. Psychological Assessment, 20, 93-102. https://doi.org/10.1037/1040-3590.20.2.9 Kahn, J. H., & Hessling, R. M. (2001). Measuring the tendency to conceal versus disclose psychological distress. Journal of Social and Clinical Psychology, 20(1), 41–65. https://doi.org/10.1521/jscp.20.1.41.22254 McBride, N., Farringdon, F. & Midford, R. (2000) What harms do young Australians experience in alcohol use situations. Australian and New Zealand Journal of Public Health, 24, 54–60 https://doi.org/10.1111/j.1467-842x.2000.tb00723.x McEvoy, P.M., Thibodeau, M.A., Asmundson, G.J.G. (2014) Trait Repetitive Negative Thinking: A brief transdiagnostic assessment. Journal of Experimental Psychopathology, 5, 1-17. Doi. 10.5127/jep.037813 Przybylski, A. K., Murayama, K., DeHaan, C. R., & Gladwell, V. (2013). Motivational, emotional, and behavioral correlates of fear of missing out. Computers in human behavior, 29(4), 1841-1848. https://doi.org/10.1016/j.chb.2013.02.014 Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the self-compassion scale. Clinical Psychology and Psychotherapy, 18(3), 250-255. https://doi.org/10.1002/cpp.702 Rodebaugh, T. L., Woods, C. M., Thissen, D. M., Heimberg, R. G., Chambless, D. L., & Rapee, R. M. (2004). More information from fewer questions: the factor structure and item properties of the original and brief fear of negative evaluation scale. Psychological assessment, 16(2), 169. https://doi.org/10.1037/10403590.16.2.169 Schniering, C. A., & Rapee, R. M. (2002). Development and validation of a measure of children’s automatic thoughts: the children’s automatic thoughts scale. Behaviour Research and Therapy, 40(9), 1091-1109. . https://doi.org/10.1016/S0005-7967(02)00022-0 Smith, R. H., Parrott, W. G., Diener, E. F., Hoyle, R. H., & Kim, S. H. (1999). Dispositional envy. Personality and Social Psychology Bulletin, 25(8), 1007-1020. https://doi.org/10.1177/01461672992511008 Spence, S. H. (1998). A measure of anxiety symptoms among children. Behaviour Research and Therapy, 36(5), 545-566. https://doi.org/10.1016/S0005-7967(98)00034-5 Tandoc, E. C., Ferrucci, P., & Duffy, M. (2015). Facebook use, envy, and depression among college students: Is facebooking depressing? Computers in Human Behavior, 43, 139–146. https://doi.org/10.1016/j.chb.2014.10.053 Whiteside, S.P. & Lynam, D.R. (2001) The five factor model and impulsivity: using a structural model of personality to understand impulsivity. Personality and Individual Differences 30,669-689. https://doi.org/10.1016/S0191-8869(00)00064-7 The data was collected by Dr Danielle A Einstein, Dr Madeleine Fraser, Dr Anne McMaugh, Prof Peter McEvoy, Prof Ron Rapee, Assoc/Prof Maree Abbott, Prof Warren Mansell and Dr Eyal Karin as part of the Insights Project. The data set has the option of downloading an excel file (composed of two worksheet tabs) or CSV files 1) Data and 2) Variable labels.

  16. Daily time spent online by users worldwide Q3 2024, by region

    • statista.com
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Daily time spent online by users worldwide Q3 2024, by region [Dataset]. https://www.statista.com/statistics/1258232/daily-time-spent-online-worldwide/
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of the third quarter of 2024, internet users in South Africa spent more than **** hours and ** minutes online per day, ranking first among the regions worldwide. Brazil followed, with roughly **** hours of daily online usage. As of the examined period, Japan registered the lowest number of daily hours spent online, with users in the country spending an average of over **** hours per day using the internet. The data includes the daily time spent online on any device. Social media usage In recent years, social media has become integral to internet users' daily lives, with users spending an average of *** minutes daily on social media activities. In April 2024, global social network penetration reached **** percent, highlighting its widespread adoption. Among the various platforms, YouTube stands out, with over *** billion monthly active users, making it one of the most popular social media platforms. YouTube’s global popularity In 2023, the keyword "YouTube" ranked among the most popular search queries on Google, highlighting the platform's immense popularity. YouTube generated most of its traffic through mobile devices, with about 98 billion visits. This popularity was particularly evident in the United Arab Emirates, where YouTube penetration reached approximately **** percent, the highest in the world.

  17. S

    Social Media Attention Span Statistics 2025: By Platform, Age, and Content...

    • sqmagazine.co.uk
    Updated Oct 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SQ Magazine (2025). Social Media Attention Span Statistics 2025: By Platform, Age, and Content Type [Dataset]. https://sqmagazine.co.uk/social-media-attention-span-statistics/
    Explore at:
    Dataset updated
    Oct 2, 2025
    Dataset authored and provided by
    SQ Magazine
    License

    https://sqmagazine.co.uk/privacy-policy/https://sqmagazine.co.uk/privacy-policy/

    Time period covered
    Jan 1, 2024 - Dec 31, 2025
    Area covered
    Global
    Description

    In 2008, the average human attention span was 12 seconds. Fast forward to 2025, and many studies suggest it's now hovering around 8 seconds, shorter than that of a goldfish. It’s no coincidence that during this same period, social media platforms surged to dominate how we consume content. Whether you're...

  18. Social Media vs Productivity

    • kaggle.com
    zip
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahdi Mashayekhi (2025). Social Media vs Productivity [Dataset]. https://www.kaggle.com/datasets/mahdimashayekhi/social-media-vs-productivity/versions/1
    Explore at:
    zip(2374382 bytes)Available download formats
    Dataset updated
    May 15, 2025
    Authors
    Mahdi Mashayekhi
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    📊 Social Media vs Productivity — Realistic Behavioral Dataset (30,000 Users)

    This dataset explores how daily digital habits — including social media usage, screen time, and notification exposure — relate to individual productivity, stress, and well-being.

    🔍 What’s Inside?

    The dataset contains 30,000 real-world-style records simulating behavioral patterns of people with various jobs, social habits, and lifestyle choices. The goal is to understand how different digital behaviors correlate with perceived and actual productivity.

    🧠 Why This Dataset is Valuable

    • Designed for real-world ML workflows
      Includes missing values, noise, and outliers — ideal for practicing data cleaning and preprocessing.

    • 🔗 High correlation between target features
      The perceived_productivity_score and actual_productivity_score are strongly correlated, making this dataset suitable for experiments in feature selection and multicollinearity.

    • 🛠️ Feature Engineering playground
      Use this dataset to practice feature scaling, encoding, binning, interaction terms, and more.

    • 🧪 Perfect for EDA, regression & classification
      You can model productivity, stress, or satisfaction based on behavior patterns and digital exposure.

    🧾 Columns & Feature Info

    Column NameDescription
    ageAge of the individual (18–65 years)
    genderGender identity: Male, Female, or Other
    job_typeEmployment sector or status (IT, Education, Student, etc.)
    daily_social_media_timeAverage daily time spent on social media (hours)
    social_platform_preferenceMost-used social platform (Instagram, TikTok, Telegram, etc.)
    number_of_notificationsNumber of mobile/social notifications per day
    work_hours_per_dayAverage hours worked each day
    perceived_productivity_scoreSelf-rated productivity score (scale: 0–10)
    actual_productivity_scoreSimulated ground-truth productivity score (scale: 0–10)
    stress_levelCurrent stress level (scale: 1–10)
    sleep_hoursAverage hours of sleep per night
    screen_time_before_sleepTime spent on screens before sleeping (hours)
    breaks_during_workNumber of breaks taken during work hours
    uses_focus_appsWhether the user uses digital focus apps (True/False)
    has_digital_wellbeing_enabledWhether Digital Wellbeing is activated (True/False)
    coffee_consumption_per_dayNumber of coffee cups consumed per day
    days_feeling_burnout_per_monthNumber of burnout days reported per month
    weekly_offline_hoursTotal hours spent offline each week (excluding sleep)
    job_satisfaction_scoreSatisfaction with job/life responsibilities (scale: 0–10)

    📌 Notes

    • Contains NaN values in critical columns (productivity, sleep, stress) for data imputation tasks
    • Includes outliers in media usage, coffee intake, and notification count
    • Target columns are strongly correlated for multicollinearity testing
    • Multi-purpose: regression, classification, clustering, visualization

    💡 Use Cases

    • Exploratory Data Analysis (EDA)
    • Feature engineering pipelines
    • Machine learning model benchmarking
    • Statistical hypothesis testing
    • Burnout and mental health prediction projects

    📥 Bonus

    👉 Sample notebook coming soon with data cleaning, visualization, and productivity prediction!

  19. m

    Online Education System - Review

    • data.mendeley.com
    • kaggle.com
    Updated Dec 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sujatha Radhakrishnan (2021). Online Education System - Review [Dataset]. http://doi.org/10.17632/bzk9zbyvv7.1
    Explore at:
    Dataset updated
    Dec 26, 2021
    Authors
    Sujatha Radhakrishnan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Pandemic has influenced all spheres of the humanity. COVID-19 impacted the education vertical in larger manner. Traditional classroom environment plays a very vital role in molding the life of an individual. Bond nurtured in the early ages of the life acts as the great moral support in the latter stages of the journey. As the pandemic has forced us into online education, this data collection aims to analyze the impact of online education. To check out the satisfactory level of the learners, review was conducted.

    Gender – Male, Female Home Location – Rural, Urban Level of Education – Post Graduate, School, Under Graduate Age – Years Number of Subjects – 1- 20 Device type used to attend classes – Desktop, Laptop, Mobile Economic status – Middle Class, Poor, Rich Family size – 1 -10 Internet facility in your locality – Number scale (Very Bad to Very Good) Are you involved in any sports? – Yes, No Do elderly people monitor you? – Yes, No Study time – Hours Sleep time – Hours Time spent on social media – Hours Interested in Gaming? – Yes, No Have separate room for studying? – Yes, No Engaged in group studies? – Yes, No Average marks scored before pandemic in traditional classroom – range Your interaction in online mode - Number scale (Very Bad to Very Good) Clearing doubts with faculties in online mode - Number scale (Very Bad to Very Good) Interested in? – Practical, Theory, Both Performance in online - Number scale (Very Bad to Very Good) Your level of satisfaction in Online Education – Average, Bad, Good

  20. Daily time spent on media activities

    • data.gov.sg
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Info-communications Media Development Authority (2024). Daily time spent on media activities [Dataset]. https://data.gov.sg/datasets/d_5ead501e7ac28f12c1655499bfd4b223/view
    Explore at:
    Dataset updated
    Jun 6, 2024
    Dataset provided by
    Infocomm Media Development Authorityhttp://www.imda.gov.sg/
    Authors
    Info-communications Media Development Authority
    License

    https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence

    Time period covered
    Jan 2014 - Dec 2015
    Description

    Dataset from Info-communications Media Development Authority. For more information, visit https://data.gov.sg/datasets/d_5ead501e7ac28f12c1655499bfd4b223/view

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Average daily time spent on social media worldwide 2012-2025 [Dataset]. https://www.statista.com/statistics/433871/daily-social-media-usage-worldwide/
Organization logo

Average daily time spent on social media worldwide 2012-2025

Explore at:
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Worldwide
Description

As of February 2025, the average daily social media usage of internet users worldwide amounted to 141 minutes per day, down from 143 minutes in the previous year. Currently, the country with the most time spent on social media per day is Brazil, with online users spending an average of 3 hours and 49 minutes on social media each day. In comparison, the daily time spent with social media in the U.S. was just 2 hours and 16 minutes. Global social media usage Currently, the global social network penetration rate is 62.3 percent. Northern Europe had an 81.7 percent social media penetration rate, topping the ranking of global social media usage by region. Eastern and Middle Africa closed the ranking with 10.1 and 9.6 percent usage reach, respectively. People access social media for a variety of reasons. Users like to find funny or entertaining content and enjoy sharing photos and videos with friends, but mainly use social media to stay in touch with current events and friends. Global impact of social media Social media has a wide-reaching and significant impact on not only online activities but also offline behavior and life in general. During a global online user survey in February 2019, a significant share of respondents stated that social media had increased their access to information, ease of communication, and freedom of expression. On the flip side, respondents also felt that social media had worsened their personal privacy, increased polarization in politics, and heightened everyday distractions.

Search
Clear search
Close search
Google apps
Main menu