16 datasets found
  1. Wildfire Risk to Communities Flame Length Exceedance Probability - 8 foot...

    • s.cnmilf.com
    • resilience.climate.gov
    • +7more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Wildfire Risk to Communities Flame Length Exceedance Probability - 8 foot (Image Service) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/wildfire-risk-to-communities-flame-length-exceedance-probability-8-foot-image-service-c2187
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the _location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given _location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific _location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given _location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  2. Incident-based fire statistics, by type of fire incident and type of...

    • www150.statcan.gc.ca
    • beta.data.urbandatacentre.ca
    • +2more
    Updated Jun 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2023). Incident-based fire statistics, by type of fire incident and type of structure [Dataset]. http://doi.org/10.25318/3510019201-eng
    Explore at:
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Incident-based fire statistics, by type of fire incident, Canada, Nova Scotia, New Brunswick, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, Yukon, Canadian Armed Forces, 2005 to 2021.

  3. Wildfire Risk to Communities: Spatial datasets of landscape-wide wildfire...

    • agdatacommons.nal.usda.gov
    bin
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joe H. Scott; Gregory K. Dillon; Melissa R. Jaffe; Kevin C. Vogler; Julia H. Olszewski; Michael N. Callahan; Eva C. Karau; Mitchell T. Lazarz; Karen C. Short; Karin L. Riley; Mark A. Finney; Isaac C. Grenfell (2025). Wildfire Risk to Communities: Spatial datasets of landscape-wide wildfire risk components for the United States: 2nd edition [Dataset]. http://doi.org/10.2737/RDS-2020-0016-2
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    Joe H. Scott; Gregory K. Dillon; Melissa R. Jaffe; Kevin C. Vogler; Julia H. Olszewski; Michael N. Callahan; Eva C. Karau; Mitchell T. Lazarz; Karen C. Short; Karin L. Riley; Mark A. Finney; Isaac C. Grenfell
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.

    National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.

    The specific raster datasets in this publication include:

    Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.

    Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.

    Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.

    Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.

    Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.

    Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.

    Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.

    Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.The geospatial data products described and distributed here are part of the Wildfire Risk to Communities project. This project was directed by Congress in the 2018 Consolidated Appropriations Act (i.e., 2018 Omnibus Act, H.R. 1625, Section 210: Wildfire Hazard Severity Mapping) to help U.S. communities understand components of their relative wildfire risk profile, the nature and effects of wildfire risk, and actions communities can take to mitigate risk. The first edition of these data represented the first time wildfire risk to communities had been mapped nationally with consistent methodology. They provided foundational information for comparing the relative wildfire risk among populated communities in the United States. In this version, the 2nd edition, we use improved modeling and mapping methodology and updated input data to generate the current suite of products.See the Wildfire Risk to Communities website at https://www.wildfirerisk.org for complete project information and an interactive web application for exploring some of the datasets published here. We deliver the data here as zip files by U.S. state (including AK and HI), and for the full extent of the continental U.S.

    This data publication is a second edition and represents an update to any previous versions of Wildfire Risk to Communities risk datasets published by the USDA Forest Service. There are two companion data publications that are part of the WRC 2.0 data update: one that includes datasets of wildfire hazard and risk for populated areas of the nation, where housing units are currently present (Jaffe et al. 2024, https://doi.org/10.2737/RDS-2020-0060-2), and one that delineates wildfire risk reduction zones and provides tabular summaries of wildfire hazard and risk raster datasets (Dillon et al. 2024, https://doi.org/10.2737/RDS-2024-0030).

  4. Wildfire Risk to Communities Wildfire Hazard Potential (Image Service)

    • colorado-river-portal.usgs.gov
    • anrgeodata.vermont.gov
    • +10more
    Updated Apr 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2021). Wildfire Risk to Communities Wildfire Hazard Potential (Image Service) [Dataset]. https://colorado-river-portal.usgs.gov/datasets/usfs::wildfire-risk-to-communities-wildfire-hazard-potential-image-service/about
    Explore at:
    Dataset updated
    Apr 14, 2021
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  5. Wildfire Risk to Communities Burn Probability (Image Service)

    • opendata.rcmrd.org
    • resilience.climate.gov
    • +5more
    Updated Apr 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wildfire Risk to Communities Burn Probability (Image Service) [Dataset]. https://opendata.rcmrd.org/datasets/d93720867d1a4aa69f4a15dbf3ddeaea
    Explore at:
    Dataset updated
    Apr 14, 2021
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  6. a

    Wildfire Risk to Communities Conditional Flame Length (Image Service)

    • hub.arcgis.com
    • resilience.climate.gov
    • +4more
    Updated Apr 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2021). Wildfire Risk to Communities Conditional Flame Length (Image Service) [Dataset]. https://hub.arcgis.com/datasets/8a57931fcb604166a5d4fe9d0e926eb5
    Explore at:
    Dataset updated
    Apr 14, 2021
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  7. Wildfire Risk to Communities Housing Unit Density (Image Service)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • agdatacommons.nal.usda.gov
    • +10more
    Updated Apr 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2021). Wildfire Risk to Communities Housing Unit Density (Image Service) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/6f49e46d5a2743c8bef156f1d7157121
    Explore at:
    Dataset updated
    Apr 14, 2021
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  8. s

    Smoke Control Areas - Scotland - Dataset - Spatial Hub Scotland

    • data.spatialhub.scot
    Updated Jun 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Smoke Control Areas - Scotland - Dataset - Spatial Hub Scotland [Dataset]. https://data.spatialhub.scot/dataset/smoke_control_areas-is
    Explore at:
    Dataset updated
    Jun 11, 2021
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Scotland
    Description

    Under Section 18 of the Clean Air Act 1993, many parts of Scotland are declared Smoke Control Areas by the relevant local authority. If you live in a smoke control area it is an offence to produce smoke from a chimney of a building, or a chimney of any fixed boiler or industrial plant, unless you're burning an authorised fuel or using exempt appliances (e.g. burners or stoves). In practice this means that in a smoke control area it is illegal to burn house coal or wood in an open fire, although it is legal to burn these in a stove or other appliance that has been approved to burn that fuel. It is also illegal to deliver any unauthorised solid fuels, e.g. wood and normal house coal, to any premises in a smoke control area unless the seller can demonstrate that they were aware that the unauthorised solid fuel is to be burnt in an exempt appliance.

  9. u

    2013 Jaroso Post Fire Imagery, 07

    • gstore.unm.edu
    • cloud.csiss.gmu.edu
    • +2more
    Updated Mar 18, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA USFS Southwestern Region (2013). 2013 Jaroso Post Fire Imagery, 07 [Dataset]. http://gstore.unm.edu/apps/rgis/datasets/9b508cd1-aaad-4f91-a7cb-4ef031182b8c/metadata/ISO-19115:2003.html
    Explore at:
    Dataset updated
    Mar 18, 2013
    Dataset provided by
    USDA USFS Southwestern Region
    Time period covered
    Sep 29, 2013
    Area covered
    Jaroso, West Bound -105.750497222 East Bound -105.728497222 North Bound 35.9317222222 South Bound 35.9135555556
    Description

    USDA USFS Southwestern Region Contract # AG-8371-C-10-0011 Delivery # AG-8371-D-13-0056 DIGITAL PHOTOGRAPHY ACQUISITION, JAROSO FIRE, NEW MEXICO Project Coordinate System: UTM Zone 13, NAD83, NAVD88, Meters Acquisition Date: 9/29/2013 Abstract: Wilson & Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Jaroso Fire that burned in the Santa Fe National Forest in the Sangre De Cristo Mountains of central New Mexico in the summer of 2013. The fire was started by lightning on Monday June 10th, 2013 at approximately 01:45 PM and burned 11,149 acres located 8 miles South of Truchas, New Mexico. Aerial imagery was collected with a frame - based Z/I Digital Mapping Camera at an average of elevation of 2800 meters above average ground; generating an average ground sample distance (gsd) of 0.3 meters. The imagery will support the Forest Service Burned Area Emergency Response (BAER) program that addresses landscape damage due to the fire, with the goal of protecting life, property, water quality, and deteriorated ecosystems from further damage. While many wildfires cause little damage to the land and pose few threats to fish, wildlife and people downstream, the fires of 2013 have in this case created situations that require special efforts to prevent further problems after the fire. Loss of vegetation exposes soil to erosion, runoff may increase and cause flooding, sediments may move downstream and damage houses or fill reservoirs and put endangered species and community water supplies at risk. The imagery will support the Forest Service Burned Area Emergency Response (BAER) program that addresses these situations with the goal of protecting life, property, water quality, and deteriorated ecosystems from further damage after the fire is out. In addition, other federal, tribal, state, and local governments will be participating in similar program along with Universities in the region.

  10. u

    2011 Las Conchas Post Fire, h535106_ne_ne, RGB

    • gstore.unm.edu
    • datasets.ai
    • +2more
    Updated Mar 17, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA USFS Southwestern Region (2013). 2011 Las Conchas Post Fire, h535106_ne_ne, RGB [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/8de1240e-b9f8-42fc-a3c2-1c3d6372dcfc/metadata/ISO-19115:2003.html
    Explore at:
    Dataset updated
    Mar 17, 2013
    Dataset provided by
    USDA USFS Southwestern Region
    Time period covered
    Sep 19, 2011
    Area covered
    West Bound -106.532327778 East Bound -106.498769444 North Bound 36.0012972222 South Bound 35.9674194444
    Description

    Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa Fe National Forest in the Jemez Mountains of central New Mexico in the summer of 2011. The Area of Interest (AOI) is 632,000 acres and is larger than the actual burn acreage of approximately 150,000 acres that lies within the AOI. Aerial imagery was collected with a frame - based Z/I Digital Mapping Camera at an average of elevation of 4,500 feet above ground; generating an average ground sample distance (gsd) of 0.45 feet. This aerial imagery will be used to create natural color and false color infrared digital orthophotos of the AOI at a re-sampled gsd of .3 meters. The imagery will support the Forest Service Burned Area Emergency Response (BAER) program that addresses landscape damage due to the fire, with the goal of protecting life, property, water quality, and deteriorated ecosystems from further damage now that the fire is out. While many wildfires cause little damage to the land and pose few threats to fish, wildlife and people downstream, the fires of 2011 has in this case created situations that require special efforts to prevent further problems after the fire. Loss of vegetation exposes soil to erosion; runoff may increase and cause flooding, sediments may move downstream and damage houses or fill reservoirs, and put endangered species and community water supplies at risk. The imagery will support the Forest Service Burned Area Emergency Response (BAER) program that addresses these situations with the goal of protecting life, property, water quality, and deteriorated ecosystems from further damage after the fire is out. In addition, other federal, tribal, state, and local governments will be participating in similar program along with Universities in the region.

  11. g

    Smoke Control Areas - Scotland

    • find.data.gov.scot
    • finddatagovscot.dtechtive.com
    • +3more
    html
    Updated May 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Improvement Service (2024). Smoke Control Areas - Scotland [Dataset]. https://find.data.gov.scot/datasets/40433
    Explore at:
    html(null MB)Available download formats
    Dataset updated
    May 1, 2024
    Dataset provided by
    The Improvement Service
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Scotland
    Description

    Under Section 18 of the Clean Air Act 1993, many parts of Scotland are declared Smoke Control Areas by the relevant local authority. If you live in a smoke control area it is an offence to produce smoke from a chimney of a building, or a chimney of any fixed boiler or industrial plant, unless you're burning an authorised fuel or using exempt appliances (e.g. burners or stoves). In practice this means that in a smoke control area it is illegal to burn house coal or wood in an open fire, although it is legal to burn these in a stove or other appliance that has been approved to burn that fuel. It is also illegal to deliver any unauthorised solid fuels, e.g. wood and normal house coal, to any premises in a smoke control area unless the seller can demonstrate that they were aware that the unauthorised solid fuel is to be burnt in an exempt appliance.

  12. s

    regulation and environmental health - smoke control areas (stirling)

    • data.stirling.gov.uk
    • data-stirling-council.hub.arcgis.com
    Updated Apr 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stirling Council - insights by location (2022). regulation and environmental health - smoke control areas (stirling) [Dataset]. https://data.stirling.gov.uk/datasets/stirling-council::regulation-and-environmental-health-smoke-control-areas-stirling/about
    Explore at:
    Dataset updated
    Apr 24, 2022
    Dataset authored and provided by
    Stirling Council - insights by location
    Area covered
    Description

    This dataset is published as Open DataUnder Section 18 of the Clean Air Act 1993, many parts of Scotland are Smoke Control Areas. If you live in a smoke control area it is an offence to produce smoke from a chimney of a building, or a chimney of any fixed boiler or industrial plant, unless you're burning an authorised fuel or using exempt appliances (e.g. burners or stoves). In practice, this means that in a smoke control area it is illegal to burn house coal or wood in an open fire, although it is legal to burn these in a stove or other appliance that has been approved to burn that fuel. It is also illegal to deliver any unauthorised solid fuels, e.g. wood and normal house coal, to any premises in a smoke control area unless the seller can demonstrate that they were aware that the unauthorised solid fuel is to be burnt in an exempt appliance.

  13. d

    Data from: Changes in wildfire occurrence and risk to homes from 1990...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Changes in wildfire occurrence and risk to homes from 1990 through 2019 in the Southern Rocky Mountains, USA [Dataset]. https://catalog.data.gov/dataset/changes-in-wildfire-occurrence-and-risk-to-homes-from-1990-through-2019-in-the-southern-ro
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Rocky Mountains, Southern Rocky Mountains, United States
    Description

    Wildfires and housing development have increased since the 1990s, presenting unique challenges for fire management. However, it is unclear how the relative influences of housing growth and changing wildfire occurrence have contributed to risk to homes. We fit a random forest using weather, land cover, topography, and past fire history to predict burn probabilities and uncertainty intervals. Then, we estimated risk at 1-km resolution and monthly intervals from 1990 through 2019 by combining predicted burn probabilities with housing density across the Southern Rocky Mountains. We used 3 scenarios to evaluate how housing growth and changes in burn probability influenced risk individually and combined (observed, 1990 housing, and 1990 weather). This data release includes python scripts used for all processing steps and a readme file describing where to acquire original datasets used by the random forest model, instructions for running the python scripts, and descriptions of outputs. Preprocessed model inputs were too large to share. However, raster layers are included for modeled burn probability and risk for the 3 scenarios.

  14. Wildfire Risk to Communities Wildfire Exposure Type (Image Service)

    • usfs.hub.arcgis.com
    • geodata.fnai.org
    • +7more
    Updated Apr 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2021). Wildfire Risk to Communities Wildfire Exposure Type (Image Service) [Dataset]. https://usfs.hub.arcgis.com/datasets/5fc79866a77443a2828e049298d828ba
    Explore at:
    Dataset updated
    Apr 14, 2021
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  15. Wildfire Risk to Communities Risk To Potential Structures (Image Service)

    • usfs.hub.arcgis.com
    • resilience.climate.gov
    • +7more
    Updated Apr 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wildfire Risk to Communities Risk To Potential Structures (Image Service) [Dataset]. https://usfs.hub.arcgis.com/datasets/b67f6b56887f4bd595bc48ca59b4dd68
    Explore at:
    Dataset updated
    Apr 14, 2021
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  16. Wildfire Risk to Communities Conditional Risk To Potential Structures (Image...

    • usfs.hub.arcgis.com
    • resilience.climate.gov
    • +5more
    Updated Apr 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2021). Wildfire Risk to Communities Conditional Risk To Potential Structures (Image Service) [Dataset]. https://usfs.hub.arcgis.com/datasets/d387593c16794f908b74dfaaa6e162c4
    Explore at:
    Dataset updated
    Apr 14, 2021
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

  17. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Forest Service (2025). Wildfire Risk to Communities Flame Length Exceedance Probability - 8 foot (Image Service) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/wildfire-risk-to-communities-flame-length-exceedance-probability-8-foot-image-service-c2187
Organization logo

Wildfire Risk to Communities Flame Length Exceedance Probability - 8 foot (Image Service)

Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
Description

The data included in this publication depict the 2024 version of components of wildfire risk for all lands in the United States that: 1) are landscape-wide (i.e., measurable at every pixel across the landscape); and 2) represent in situ risk - risk at the _location where the adverse effects take place on the landscape.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. Additional methodology documentation is provided in a methods document (\Supplements\WRC_V2_Methods_Landscape-wideRisk.pdf) packaged in the data download.The specific raster datasets in this publication include:Risk to Potential Structures (RPS): A measure that integrates wildfire likelihood and intensity with generalized consequences to a home on every pixel. For every place on the landscape, it poses the hypothetical question, "What would be the relative risk to a house if one existed here?" This allows comparison of wildfire risk in places where homes already exist to places where new construction may be proposed. This dataset is referred to as Risk to Homes in the Wildfire Risk to Communities web application.Conditional Risk to Potential Structures (cRPS): The potential consequences of fire to a home at a given _location, if a fire occurs there and if a home were located there. Referred to as Wildfire Consequence in the Wildfire Risk to Communities web application.Exposure Type: Exposure is the spatial coincidence of wildfire likelihood and intensity with communities. This layer delineates where homes are directly exposed to wildfire from adjacent wildland vegetation, indirectly exposed to wildfire from indirect sources such as embers and home-to-home ignition, or not exposed to wildfire due to distance from direct and indirect ignition sources.Burn Probability (BP): The annual probability of wildfire burning in a specific _location. Referred to as Wildfire Likelihood in the Wildfire Risk to Communities web application.Conditional Flame Length (CFL): The mean flame length for a fire burning in the direction of maximum spread (headfire) at a given _location if a fire were to occur; an average measure of wildfire intensity.Flame Length Exceedance Probability - 4 ft (FLEP4): The conditional probability that flame length at a pixel will exceed 4 feet if a fire occurs; indicates the potential for moderate to high wildfire intensity.Flame Length Exceedance Probability - 8 ft (FLEP8): the conditional probability that flame length at a pixel will exceed 8 feet if a fire occurs; indicates the potential for high wildfire intensity.Wildfire Hazard Potential (WHP): An index that quantifies the relative potential for wildfire that may be difficult to manage, used as a measure to help prioritize where fuel treatments may be needed.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

Search
Clear search
Close search
Google apps
Main menu