46 datasets found
  1. M

    World Population Growth Rate

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Population Growth Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - Dec 31, 2023
    Area covered
    World, World
    Description

    Historical chart and dataset showing World population growth rate by year from 1961 to 2023.

  2. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  3. Total population worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  4. d

    Data from: Anthropogenic Biomes of the World, Version 1

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Anthropogenic Biomes of the World, Version 1 [Dataset]. https://catalog.data.gov/dataset/anthropogenic-biomes-of-the-world-version-1
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Area covered
    Earth, World
    Description

    The Anthropogenic Biomes of the World, Version 1 data set describes globally-significant ecological patterns within the terrestrial biosphere caused by sustained direct human interaction with ecosystems, including agriculture, urbanization, forestry and other land uses. Conventional biomes, such as tropical rainforests or grasslands, are based on global vegetation patterns related to climate. Now that humans have fundamentally altered global patterns of ecosystem form, process, and biodiversity, anthropogenic biomes provide a contemporary view of the terrestrial biosphere in its human-altered form. Anthropogenic biomes may also be termed "anthromes" to distinguish them from conventional biome systems, or "human biomes" (a simpler but less precise term). This data set is distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  5. a

    Global Human Footprint Index

    • hub.arcgis.com
    • climate.esri.ca
    • +2more
    Updated Jul 13, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia (2015). Global Human Footprint Index [Dataset]. https://hub.arcgis.com/maps/65518e782be04e7db31de65d53d591a9
    Explore at:
    Dataset updated
    Jul 13, 2015
    Dataset authored and provided by
    Columbia
    Area covered
    Description

    Global Human Footprint Index represents the relative human influence in each terrestrial biome expressed as a percentage. The purpose is to provide an updated map of anthropogenic impacts on the environment in geographic projection which can be used in wildlife conservation planning, natural resource management, and research on human-environment interactions. Dataset SummaryThe Global Human Footprint Index Dataset of the Last of the Wild Project, Version 2, 2005 (LWP-2) is the Human Influence Index (HII) normalized by biome and realm. The HII is a global dataset of 1-kilometer grid cells, created from nine global data layers of human population pressure (population density), human land use and infrastructure (built-up areas, nighttime lights, land use/land cover), and human access (coastlines, roads, railroads, navigable rivers). A value of zero represents the least influenced–the “most wild” part of the biome with value of 100 representing the most influenced (least wild) part of the biome. The dataset is produced by the Wildlife Conservation Society (WCS) and the Columbia University Center for International Earth Science Information Network (CIESIN).Recommended CitationWildlife Conservation Society - WCS, and Center for International Earth Science Information Network - CIESIN - Columbia University. 2005. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4M61H5F. Accessed DAY MONTH YEAR.

  6. w

    Dataset of publication dates of book subjects that contain Origins : how the...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of publication dates of book subjects that contain Origins : how the Earth shaped human history [Dataset]. https://www.workwithdata.com/datasets/book-subjects?col=book_subject%2Cj0-publication_date&f=1&fcol0=j0-book&fop0=%3D&fval0=Origins+%3A+how+the+Earth+shaped+human+history&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    This dataset is about book subjects. It has 2 rows and is filtered where the books is Origins : how the Earth shaped human history. It features 2 columns including publication dates.

  7. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  8. G

    GPWv411: Data Context (Gridded Population of the World Version 4.11)

    • developers.google.com
    • caribmex.com
    Updated Aug 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA SEDAC at the Center for International Earth Science Information Network (2019). GPWv411: Data Context (Gridded Population of the World Version 4.11) [Dataset]. http://doi.org/10.7927/H42Z13KG
    Explore at:
    Dataset updated
    Aug 11, 2019
    Dataset provided by
    NASA SEDAC at the Center for International Earth Science Information Network
    Time period covered
    Jan 1, 2000 - Jan 1, 2020
    Area covered
    Earth
    Description

    This dataset categorizes pixels with estimated zero population based on information provided in the census documents. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) …

  9. s

    Bottom-up gridded population estimates for Nigeria, version 1.1

    • eprints.soton.ac.uk
    Updated Feb 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bondarenko, Maksym; WorldPop, (2020). Bottom-up gridded population estimates for Nigeria, version 1.1 [Dataset]. http://doi.org/10.5258/SOTON/WP00657
    Explore at:
    Dataset updated
    Feb 4, 2020
    Dataset provided by
    University of Southampton
    Authors
    Bondarenko, Maksym; WorldPop,
    Area covered
    Nigeria
    Description

    These data were produced by the WorldPop Research Group at the University of Southampton. This work was part of the GRID3 project with funding from the Bill and Melinda Gates Foundation and the United Kingdom’s Department for International Development (OPP1182408). Project partners included the United Nations Population Fund, Center for International Earth Science Information Network in the Earth Institute at Columbia University, and the Flowminder Foundation. These data may be distributed using a Creative Commons Attribution Share-Alike 4.0 License. Contact release@worldpop.org for more information.

  10. World Bank: GHNP Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: GHNP Data [Dataset]. https://www.kaggle.com/theworldbank/world-bank-health-population
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries.

    Update Frequency: Biannual

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics

    https://cloud.google.com/bigquery/public-data/world-bank-hnp

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Citation: The World Bank: Health Nutrition and Population Statistics

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    What’s the average age of first marriages for females around the world?

  11. Gridded Population of the World, v.4

    • pacific-data.sprep.org
    • solomonislands-data.sprep.org
    • +13more
    tiff
    Updated Nov 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for International Earth Science Information Network - CIESIN - Columbia University (2022). Gridded Population of the World, v.4 [Dataset]. https://pacific-data.sprep.org/dataset/gridded-population-world-v4
    Explore at:
    tiff(369581807), tiff(369421940), tiff(369652849), tiff(369722113), tiff(369514106)Available download formats
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Center for International Earth Science Information Network - CIESIN - Columbia University
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    World, 552.10693359375 84.640776810146, 552.10693359375 -86.244179470475)), POLYGON ((-172.11181640625 -86.244179470475, -172.11181640625 84.640776810146, Global
    Description

    The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution.

    Purpose: To provide estimates of population density for the years 2000, 2005, 2010, 2015, and 2020, based on counts consistent with national censuses and population registers, as raster data to facilitate data integration.

    Recommended Citation(s)*: Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H49C6VHW. Accessed DAY MONTH YEAR.

  12. Forest proximate people - 5km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Forest proximate people - 5km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b5
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Maintainer: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest proximate people - 5km cutoff distance"

  13. Data from: A global dataset of crowdsourced land cover and land use...

    • zenodo.org
    • doi.pangaea.de
    • +1more
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steffen Fritz; Linda See; Christoph Perger; Ian McCallum; Christian Schill; Dmitry Schepaschenko; Martina Duerauer; Mathias Karner; Christopher Dresel; Juan Carlos Laso-Bayas; Myroslava Lesiv; Inian Moorthy; Carl Salk; Olha Danylo; Tobias Sturn; Franziska Albrecht; Liangzhi You; Florian Kraxner; Michael Obsersteiner; Steffen Fritz; Linda See; Christoph Perger; Ian McCallum; Christian Schill; Dmitry Schepaschenko; Martina Duerauer; Mathias Karner; Christopher Dresel; Juan Carlos Laso-Bayas; Myroslava Lesiv; Inian Moorthy; Carl Salk; Olha Danylo; Tobias Sturn; Franziska Albrecht; Liangzhi You; Florian Kraxner; Michael Obsersteiner (2024). A global dataset of crowdsourced land cover and land use reference data (2011-2012) [Dataset]. http://doi.org/10.1594/pangaea.869682
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Steffen Fritz; Linda See; Christoph Perger; Ian McCallum; Christian Schill; Dmitry Schepaschenko; Martina Duerauer; Mathias Karner; Christopher Dresel; Juan Carlos Laso-Bayas; Myroslava Lesiv; Inian Moorthy; Carl Salk; Olha Danylo; Tobias Sturn; Franziska Albrecht; Liangzhi You; Florian Kraxner; Michael Obsersteiner; Steffen Fritz; Linda See; Christoph Perger; Ian McCallum; Christian Schill; Dmitry Schepaschenko; Martina Duerauer; Mathias Karner; Christopher Dresel; Juan Carlos Laso-Bayas; Myroslava Lesiv; Inian Moorthy; Carl Salk; Olha Danylo; Tobias Sturn; Franziska Albrecht; Liangzhi You; Florian Kraxner; Michael Obsersteiner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general.

    Full data description can be found in the corresponding article Fritz et al (2017):
    https://doi.org/10.1038/sdata.2017.75

    Data Coverage:
    Median Latitude:
    23.136733 * Median Longitude: 21.642639 * South-bound Latitude: -60.537500 * West-bound Longitude: -179.837500 * North-bound Latitude: 83.437500 * East-bound Longitude: 179.962500

  14. The SESAME Human-Earth Atlas

    • springernature.figshare.com
    zip
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah Al Faisal; Maxwell Kaye; Maimoonah Ahmed; Eric Galbraith (2025). The SESAME Human-Earth Atlas [Dataset]. http://doi.org/10.6084/m9.figshare.28432499.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Abdullah Al Faisal; Maxwell Kaye; Maimoonah Ahmed; Eric Galbraith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    The Surface Earth System Analysis and Modeling Environment (SESAME) Human-Earth Atlas includes hundreds of variables capturing both human and non-human aspects of the Earth system on two common spatial grids of 1- and 0.25-degree resolution. The Atlas is structured by common spheres, and many variables resolve changes over time. Many of the national-level tabular human system variables are downscaled to spatial grids using dasymetric mapping, accounting for country boundary changes over time. An associated software toolbox allows users to add raster, point, line, polygon, and tabular datasets, transforming them onto a standardized spatial grid at the desired resolution as well as to work conveniently with jurisdictional (e.g. country) data.

    File Description: atlas: Contains netCDF files at 1-degree resolution in netCDF format. atlas_p25: Contains selected netCDF files at 0.25-degree resolution. genscripts: Original Jupyter notebook scripts used to generate the atlas. SESAME_Atlas_Documentation_v1.pdf: Documentation file for the SESAME Human-Earth Atlas. SESAME_Human-Earth_Atlas_v1.xlsx: Comprehensive summary and documentation for the SESAME Human-Earth Atlas, including details on pre- and post-processing steps.

  15. countries of the world

    • kaggle.com
    Updated Jan 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rob Cobb (2023). countries of the world [Dataset]. https://www.kaggle.com/datasets/robbcobb/countries
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 24, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rob Cobb
    Area covered
    World
    Description

    Copy of https://www.kaggle.com/datasets/kisoibo/countries-databasesqlite

    Updated the name of the table from 'countries of the world' to 'countries', for ease of writing queries.

    Info about the dataset:

    Content

    Table Total Rows Total Columns countries of the world **0 ** ** 20** Country, Region, Population, Area (sq. mi.), Pop. Density (per sq. mi.), Coastline (coast/area ratio), Net migration, Infant mortality (per 1000 births), GDP ($ per capita), Literacy (%), Phones (per 1000), Arable (%), Crops (%), Other (%), Climate, Birthrate, Deathrate, Agriculture, Industry, Service

    Acknowledgements

    Acknowledgements Source: All these data sets are made up of data from the US government. Generally they are free to use if you use the data in the US. If you are outside of the US, you may need to contact the US Govt to ask. Data from the World Factbook is public domain. The website says "The World Factbook is in the public domain and may be used freely by anyone at anytime without seeking permission." https://www.cia.gov/library/publications/the-world-factbook/docs/faqs.html

    Inspiration

    When making visualisations related to countries, sometimes it is interesting to group them by attributes such as region, or weigh their importance by population, GDP or other variables.

  16. a

    PerCapita CO2 Footprint InDioceses FULL

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Sep 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). PerCapita CO2 Footprint InDioceses FULL [Dataset]. https://hub.arcgis.com/content/95787df270264e6ea1c99ffa6ff844ff
    Explore at:
    Dataset updated
    Sep 23, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  17. f

    ORBIT: A real-world few-shot dataset for teachable object recognition...

    • city.figshare.com
    bin
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann (2023). ORBIT: A real-world few-shot dataset for teachable object recognition collected from people who are blind or low vision [Dataset]. http://doi.org/10.25383/city.14294597.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    City, University of London
    Authors
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.

  18. i

    BLE-WBAN: RF real-world dataset of BLE devices in human-centric healthcare...

    • ieee-dataport.org
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SeyedMohammad Kashani (2024). BLE-WBAN: RF real-world dataset of BLE devices in human-centric healthcare environments [Dataset]. https://ieee-dataport.org/documents/ble-wban-rf-real-world-dataset-ble-devices-human-centric-healthcare-environments
    Explore at:
    Dataset updated
    Aug 6, 2024
    Authors
    SeyedMohammad Kashani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    obtaining large

  19. w

    Dataset of books called Between heaven and earth : the religious worlds...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Between heaven and earth : the religious worlds people make and the scholars who study them [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Between+heaven+and+earth+%3A+the+religious+worlds+people+make+and+the+scholars+who+study+them
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    This dataset is about books. It has 2 rows and is filtered where the book is Between heaven and earth : the religious worlds people make and the scholars who study them. It features 7 columns including author, publication date, language, and book publisher.

  20. countries of the world

    • kaggle.com
    Updated Oct 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KRANTHI KUMAR (2018). countries of the world [Dataset]. https://www.kaggle.com/kranthikumar11/countries-of-the-world/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 7, 2018
    Dataset provided by
    Kaggle
    Authors
    KRANTHI KUMAR
    Area covered
    Earth, World
    Description

    Dataset

    This dataset was created by KRANTHI KUMAR

    Released under Other (specified in description)

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MACROTRENDS (2025). World Population Growth Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/population-growth-rate

World Population Growth Rate

World Population Growth Rate

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
csvAvailable download formats
Dataset updated
Jun 30, 2025
Dataset authored and provided by
MACROTRENDS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 1, 1961 - Dec 31, 2023
Area covered
World, World
Description

Historical chart and dataset showing World population growth rate by year from 1961 to 2023.

Search
Clear search
Close search
Google apps
Main menu