Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Archaeologists and researchers in allied fields have long sought to understand human colonization of North America. When, how, and from where did people migrate, and what were the consequences of their arrival for the established fauna and landscape are enduring questions. Here, we present evidence from excavated surfaces of in situ human footprints from White Sands National Park (New Mexico, USA), where multiple human footprints are stratigraphically constrained and bracketed by seed layers that yield calibrated 14C ages between ~23 and 21 ka. These findings confirm the presence of humans in North America during the Last Glacial Maximum, adding evidence to the antiquity of human colonization of the Americas and providing a temporal range extension for the coexistence of early inhabitants and Pleistocene megafauna.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Cultural diversity in the U.S. has led to great variations in names and naming traditions and names have been used to express creativity, personality, cultural identity, and values. Source: https://en.wikipedia.org/wiki/Naming_in_the_United_States
This public dataset was created by the Social Security Administration and contains all names from Social Security card applications for births that occurred in the United States after 1879. Note that many people born before 1937 never applied for a Social Security card, so their names are not included in this data. For others who did apply, records may not show the place of birth, and again their names are not included in the data.
All data are from a 100% sample of records on Social Security card applications as of the end of February 2015. To safeguard privacy, the Social Security Administration restricts names to those with at least 5 occurrences.
Fork this kernel to get started with this dataset.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:usa_names
https://cloud.google.com/bigquery/public-data/usa-names
Dataset Source: Data.gov. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by @dcp from Unplash.
What are the most common names?
What are the most common female names?
Are there more female or male names?
Female names by a wide margin?
The primary data consist of allele or haplotype frequencies for N=1036 anonymized U.S. population samples. Additional files are supplements to the associated publications. Any changes to spreadsheets are listed in the "Change Log" tab within each spreadsheet. DOI numbers for associated publications are listed below, under "References".
https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement
Welcome to the Native American Multi-Year Facial Image Dataset, thoughtfully curated to support the development of advanced facial recognition systems, biometric identification models, KYC verification tools, and other computer vision applications. This dataset is ideal for training AI models to recognize individuals over time, track facial changes, and enhance age progression capabilities.
This dataset includes over 5,000+ high-quality facial images, organized into individual participant sets, each containing:
To ensure model generalization and practical usability, images in this dataset reflect real-world diversity:
Each participant’s dataset is accompanied by rich metadata to support advanced model training and analysis, including:
This dataset is highly valuable for a wide range of AI and computer vision applications:
To keep pace with evolving AI needs, this dataset is regularly updated and customizable. Custom data collection options include:
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. Update frequency: Historic (none)
United States Census Bureau
SELECT
zipcode,
population
FROM
bigquery-public-data.census_bureau_usa.population_by_zip_2010
WHERE
gender = ''
ORDER BY
population DESC
LIMIT
10
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/us-census-data
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
ahmadreza13/human-vs-Ai-generated-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census is a decennial census mandated by Article I, Section 2 of the United States Constitution, which states: "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers."
Source: https://en.wikipedia.org/wiki/United_States_Census
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole.
The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_usa
https://cloud.google.com/bigquery/public-data/us-census
Dataset Source: United States Census Bureau
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What are the ten most populous zip codes in the US in the 2010 census?
What are the top 10 zip codes that experienced the greatest change in population between the 2000 and 2010 censuses?
https://cloud.google.com/bigquery/images/census-population-map.png" alt="https://cloud.google.com/bigquery/images/census-population-map.png">
https://cloud.google.com/bigquery/images/census-population-map.png
https://choosealicense.com/licenses/llama3/https://choosealicense.com/licenses/llama3/
Enhancing Human-Like Responses in Large Language Models
🤗 Models | 📊 Dataset | 📄 Paper
Human-Like-DPO-Dataset
This dataset was created as part of research aimed at improving conversational fluency and engagement in large language models. It is suitable for formats like Direct Preference Optimization (DPO) to guide models toward generating more human-like responses. The dataset includes 10,884 samples across 256 topics, including: Technology Daily Life Science… See the full description on the dataset page: https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains administrative polygons grouped by country (admin-0) with the following subdivisions according to Who's On First placetypes:
- macroregion (admin-1 including region)
- region (admin-2 including state, province, department, governorate)
- macrocounty (admin-3 including arrondissement)
- county (admin-4 including prefecture, sub-prefecture, regency, canton, commune)
- localadmin (admin-5 including municipality, local government area, unitary authority, commune, suburb)
The dataset also contains human settlement points and polygons for:
- localities (city, town, and village)
- neighbourhoods (borough, macrohood, neighbourhood, microhood)
The dataset covers activities carried out by Who's On First (WOF) since 2015. Global administrative boundaries and human settlements are aggregated and standardized from hundreds of sources and available with an open CC-BY license. Who's On First data is updated on an as-need basis for individual places with annual sprints focused on improving specific countries or placetypes. Please refer to the README.md file for complete data source metadata. Refer to our blog post for explanation of field names.
Data corrections can be proposed using Write Field, an web app for making quick data edits. You’ll need a Github.com account to login and propose edits, which are then reviewed by the Who's On First community using the Github pull request process. Approved changes are available for download within 24-hours. Please contact WOF admin about bulk edits.
What We Eat in America (WWEIA) is the dietary intake interview component of the National Health and Nutrition Examination Survey (NHANES). WWEIA is conducted as a partnership between the U.S. Department of Agriculture (USDA) and the U.S. Department of Health and Human Services (DHHS). Two days of 24-hour dietary recall data are collected through an initial in-person interview, and a second interview conducted over the telephone within three to 10 days. Participants are given three-dimensional models (measuring cups and spoons, a ruler, and two household spoons) and/or USDA's Food Model Booklet (containing drawings of various sizes of glasses, mugs, bowls, mounds, circles, and other measures) to estimate food amounts. WWEIA data are collected using USDA's dietary data collection instrument, the Automated Multiple-Pass Method (AMPM). The AMPM is a fully computerized method for collecting 24-hour dietary recalls either in-person or by telephone. For each 2-year data release cycle, the following dietary intake data files are available: Individual Foods File - Contains one record per food for each survey participant. Foods are identified by USDA food codes. Each record contains information about when and where the food was consumed, whether the food was eaten in combination with other foods, amount eaten, and amounts of nutrients provided by the food. Total Nutrient Intakes File - Contains one record per day for each survey participant. Each record contains daily totals of food energy and nutrient intakes, daily intake of water, intake day of week, total number foods reported, and whether intake was usual, much more than usual or much less than usual. The Day 1 file also includes salt use in cooking and at the table; whether on a diet to lose weight or for other health-related reason and type of diet; and frequency of fish and shellfish consumption (examinees one year or older, Day 1 file only). DHHS is responsible for the sample design and data collection, and USDA is responsible for the survey’s dietary data collection methodology, maintenance of the databases used to code and process the data, and data review and processing. USDA also funds the collection and processing of Day 2 dietary intake data, which are used to develop variance estimates and calculate usual nutrient intakes. Resources in this dataset:Resource Title: What We Eat In America (WWEIA) main web page. File Name: Web Page, url: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweianhanes-overview/ Contains data tables, research articles, documentation data sets and more information about the WWEIA program. (Link updated 05/13/2020)
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Dataset Card for "meta-shepherd-human-data"
Original Dataset: https://github.com/facebookresearch/Shepherd
Example
Here are the options: Option 1: colorado Option 2: outside Option 3: protection Option 4: zoo exhibit Option 5: world
Please choose the correct option and justify your choice:
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
VITAL SIGNS INDICATOR Migration (EQ4)
FULL MEASURE NAME Migration flows
LAST UPDATED December 2018
DESCRIPTION Migration refers to the movement of people from one location to another, typically crossing a county or regional boundary. Migration captures both voluntary relocation – for example, moving to another region for a better job or lower home prices – and involuntary relocation as a result of displacement. The dataset includes metropolitan area, regional, and county tables.
DATA SOURCE American Community Survey County-to-County Migration Flows 2012-2015 5-year rolling average http://www.census.gov/topics/population/migration/data/tables.All.html
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Data for migration comes from the American Community Survey; county-to-county flow datasets experience a longer lag time than other standard datasets available in FactFinder. 5-year rolling average data was used for migration for all geographies, as the Census Bureau does not release 1-year annual data. Data is not available at any geography below the county level; note that flows that are relatively small on the county level are often within the margin of error. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area, in addition to the primary MSAs for the nine other major metropolitan areas, by aggregating county data based on current metropolitan area boundaries. Data prior to 2011 is not available on Vital Signs due to inconsistent Census formats and a lack of net migration statistics for prior years. Only counties with a non-negligible flow are shown in the data; all other pairs can be assumed to have zero migration.
Given that the vast majority of migration out of the region was to other counties in California, California counties were bundled into the following regions for simplicity: Bay Area: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, Sonoma Central Coast: Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz Central Valley: Fresno, Kern, Kings, Madera, Merced, Tulare Los Angeles + Inland Empire: Imperial, Los Angeles, Orange, Riverside, San Bernardino, Ventura Sacramento: El Dorado, Placer, Sacramento, Sutter, Yolo, Yuba San Diego: San Diego San Joaquin Valley: San Joaquin, Stanislaus Rural: all other counties (23)
One key limitation of the American Community Survey migration data is that it is not able to track emigration (movement of current U.S. residents to other countries). This is despite the fact that it is able to quantify immigration (movement of foreign residents to the U.S.), generally by continent of origin. Thus the Vital Signs analysis focuses primarily on net domestic migration, while still specifically citing in-migration flows from countries abroad based on data availability.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
analyze the american community survey (acs) with r and monetdb experimental. think of the american community survey (acs) as the united states' census for off-years - the ones that don't end in zero. every year, one percent of all americans respond, making it the largest complex sample administered by the u.s. government (the decennial census has a much broader reach, but since it attempts to contact 100% of the population, it's not a sur vey). the acs asks how people live and although the questionnaire only includes about three hundred questions on demography, income, insurance, it's often accurate at sub-state geographies and - depending how many years pooled - down to small counties. households are the sampling unit, and once a household gets selected for inclusion, all of its residents respond to the survey. this allows household-level data (like home ownership) to be collected more efficiently and lets researchers examine family structure. the census bureau runs and finances this behemoth, of course. the dow nloadable american community survey ships as two distinct household-level and person-level comma-separated value (.csv) files. merging the two just rectangulates the data, since each person in the person-file has exactly one matching record in the household-file. for analyses of small, smaller, and microscopic geographic areas, choose one-, three-, or fiv e-year pooled files. use as few pooled years as you can, unless you like sentences that start with, "over the period of 2006 - 2010, the average american ... [insert yer findings here]." rather than processing the acs public use microdata sample line-by-line, the r language brazenly reads everything into memory by default. to prevent overloading your computer, dr. thomas lumley wrote the sqlsurvey package principally to deal with t his ram-gobbling monster. if you're already familiar with syntax used for the survey package, be patient and read the sqlsurvey examples carefully when something doesn't behave as you expect it to - some sqlsurvey commands require a different structure (i.e. svyby gets called through svymean) and others might not exist anytime soon (like svyolr). gimme some good news: sqlsurvey uses ultra-fast monetdb (click here for speed tests), so follow the monetdb installation instructions before running this acs code. monetdb imports, writes, recodes data slowly, but reads it hyper-fast . a magnificent trade-off: data exploration typically requires you to think, send an analysis command, think some more, send another query, repeat. importation scripts (especially the ones i've already written for you) can be left running overnight sans hand-holding. the acs weights generalize to the whole united states population including individuals living in group quarters, but non-residential respondents get an abridged questionnaire, so most (not all) analysts exclude records with a relp variable of 16 or 17 right off the bat. this new github repository contains four scripts: 2005-2011 - download all microdata.R create the batch (.bat) file needed to initiate the monet database in the future download, unzip, and import each file for every year and size specified by the user create and save household- and merged/person-level replicate weight complex sample designs create a well-documented block of code to re-initiate the monet db server in the future fair warning: this full script takes a loooong time. run it friday afternoon, commune with nature for the weekend, and if you've got a fast processor and speedy internet connection, monday morning it should be ready for action. otherwise, either download only the years and sizes you need or - if you gotta have 'em all - run it, minimize it, and then don't disturb it for a week. 2011 single-year - analysis e xamples.R run the well-documented block of code to re-initiate the monetdb server load the r data file (.rda) containing the replicate weight designs for the single-year 2011 file perform the standard repertoire of analysis examples, only this time using sqlsurvey functions 2011 single-year - variable reco de example.R run the well-documented block of code to re-initiate the monetdb server copy the single-year 2011 table to maintain the pristine original add a new age category variable by hand add a new age category variable systematically re-create then save the sqlsurvey replicate weight complex sample design on this new table close everything, then load everything back up in a fresh instance of r replicate a few of the census statistics. no muss, no fuss replicate census estimates - 2011.R run the well-documented block of code to re-initiate the monetdb server load the r data file (.rda) containing the replicate weight designs for the single-year 2011 file match every nation wide statistic on the census bureau's estimates page, using sqlsurvey functions click here to view these four scripts for more detail about the american community survey (acs), visit: < ul> the us census...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset helps to investigate the Spatial Accessibility to HIV Testing, Treatment, and Prevention Services in Illinois and Chicago, USA. The main components are: population data, healthcare data, GTFS feeds, and road network data. The core components are: 1) GTFS
which contains GTFS (General Transit Feed Specification) data which is provided by Chicago Transit Authority (CTA) from Google's GTFS feeds. Documentation defines the format and structure of the files that comprise a GTFS dataset: https://developers.google.com/transit/gtfs/reference?csw=1. 2) HealthCare
contains shapefiles describing HIV healthcare providers in Chicago and Illinois respectively. The services come from Locator.HIV.gov. 3) PopData
contains population data for Chicago and Illinois respectively. Data come from The American Community Survey and AIDSVu. AIDSVu (https://map.aidsvu.org/map) provides data on PLWH in Chicago at the census tract level for the year 2017 and in the State of Illinois at the county level for the year 2016. The American Community Survey (ACS) provided the number of people aged 15 to 64 at the census tract level for the year 2017 and at the county level for the year 2016. The ACS provides annually updated information on demographic and socio economic characteristics of people and housing in the U.S. 4) RoadNetwork
contains the road networks for Chicago and Illinois respectively from OpenStreetMap using the Python osmnx package. The abstract for our paper is: Accomplishing the goals outlined in “Ending the HIV (Human Immunodeficiency Virus) Epidemic: A Plan for America Initiative” will require properly estimating and increasing access to HIV testing, treatment, and prevention services. In this research, a computational spatial method for estimating access was applied to measure distance to services from all points of a city or state while considering the size of the population in need for services as well as both driving and public transportation. Specifically, this study employed the enhanced two-step floating catchment area (E2SFCA) method to measure spatial accessibility to HIV testing, treatment (i.e., Ryan White HIV/AIDS program), and prevention (i.e., Pre-Exposure Prophylaxis [PrEP]) services. The method considered the spatial location of MSM (Men Who have Sex with Men), PLWH (People Living with HIV), and the general adult population 15-64 depending on what HIV services the U.S. Centers for Disease Control (CDC) recommends for each group. The study delineated service- and population-specific accessibility maps, demonstrating the method’s utility by analyzing data corresponding to the city of Chicago and the state of Illinois. Findings indicated health disparities in the south and the northwest of Chicago and particular areas in Illinois, as well as unique health disparities for public transportation compared to driving. The methodology details and computer code are shared for use in research and public policy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nurses in the United States increased to 12.71 per 1000 people in 2024 from 12.36 per 1000 people in 2023. This dataset includes a chart with historical data for the United States Nurses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.