60 datasets found
  1. Total population worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  2. a

    Global Human Settlement - Urban Centres Database

    • hub.arcgis.com
    Updated Sep 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Deutschland (2020). Global Human Settlement - Urban Centres Database [Dataset]. https://hub.arcgis.com/datasets/2344906dc4a04c748b690b9a92c8446c
    Explore at:
    Dataset updated
    Sep 16, 2020
    Dataset authored and provided by
    Esri Deutschland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    “The Global Human Settlement Layer Urban Centres Database (GHS-UCDB) is the most complete database on cities to date, publicly released as an open and free dataset. The database represents the global status on Urban Centres in 2015 by offering cities location, their extent (surface, shape), and describing each city with a set of geographical, socio-economic and environmental attributes, many of them going back 25 or even 40 years in time.”Zusätzliche Informationen The Urban Centres are defined by specific cut-off values on resdient population and built-up surfac share in a 1x1km uniform global grid.See ghs_stat_ucdb2015mt_globe_r2019a_v1_0_web_1.pdf for more information.Views of this layer are used in web maps for the ArcGIS Living Atlas of the World.QuelleGlobal Human Settlement - Urban Centre database R2019A - European Commission | Zuletzt Aufgerufen am 25.04.2025Datenbestand2019

  3. M

    World Population Growth Rate

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Population Growth Rate [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/population-growth-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1961 - Dec 31, 2023
    Area covered
    World, World
    Description

    Historical chart and dataset showing World population growth rate by year from 1961 to 2023.

  4. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +1more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  5. a

    PerCapita CO2 Footprint InDioceses FULL

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Sep 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). PerCapita CO2 Footprint InDioceses FULL [Dataset]. https://hub.arcgis.com/content/95787df270264e6ea1c99ffa6ff844ff
    Explore at:
    Dataset updated
    Sep 23, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  6. a

    Global Human Footprint Index

    • hub.arcgis.com
    • climate.esri.ca
    • +2more
    Updated Jul 13, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia (2015). Global Human Footprint Index [Dataset]. https://hub.arcgis.com/maps/65518e782be04e7db31de65d53d591a9
    Explore at:
    Dataset updated
    Jul 13, 2015
    Dataset authored and provided by
    Columbia
    Area covered
    Description

    Global Human Footprint Index represents the relative human influence in each terrestrial biome expressed as a percentage. The purpose is to provide an updated map of anthropogenic impacts on the environment in geographic projection which can be used in wildlife conservation planning, natural resource management, and research on human-environment interactions. Dataset SummaryThe Global Human Footprint Index Dataset of the Last of the Wild Project, Version 2, 2005 (LWP-2) is the Human Influence Index (HII) normalized by biome and realm. The HII is a global dataset of 1-kilometer grid cells, created from nine global data layers of human population pressure (population density), human land use and infrastructure (built-up areas, nighttime lights, land use/land cover), and human access (coastlines, roads, railroads, navigable rivers). A value of zero represents the least influenced–the “most wild” part of the biome with value of 100 representing the most influenced (least wild) part of the biome. The dataset is produced by the Wildlife Conservation Society (WCS) and the Columbia University Center for International Earth Science Information Network (CIESIN).Recommended CitationWildlife Conservation Society - WCS, and Center for International Earth Science Information Network - CIESIN - Columbia University. 2005. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4M61H5F. Accessed DAY MONTH YEAR.

  7. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2
    Explore at:
    application/rssxml, xml, csv, json, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Jun 23, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

  8. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  9. World Bank: GHNP Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: GHNP Data [Dataset]. https://www.kaggle.com/theworldbank/world-bank-health-population
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries.

    Update Frequency: Biannual

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics

    https://cloud.google.com/bigquery/public-data/world-bank-hnp

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Citation: The World Bank: Health Nutrition and Population Statistics

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    What’s the average age of first marriages for females around the world?

  10. Forest proximate people - 5km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Forest proximate people - 5km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b5
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Maintainer: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest proximate people - 5km cutoff distance"

  11. Z

    Data from: The global distribution of plants used by humans datasets: list...

    • data.niaid.nih.gov
    Updated Jan 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Govaerts, Rafaël (2024). The global distribution of plants used by humans datasets: list of utilised species, occurrence data and model outputs at 10 arc-minutes spatial resolution [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8176317
    Explore at:
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    Ondo, Ian
    Dennehy-Carr, Zoe
    Lemmens, Roel
    Turner, Rob M.
    Govaerts, Rafaël
    Hudson, Alex J.
    Diazgranados, Mauricio
    Antonelli, Alexander
    Willis, Kathy J.
    Cámara-Leret, Rodrigo
    Schmelzer, Gaby
    van Andel, Tinde R.
    Patmore, Kristina
    Hargreaves, Serene
    Milliken, William
    Baquero, Andrea C.
    Pironon, Samuel
    Canteiro, Cátia
    Allkin, Robert
    Ulian, Tiziana
    Nesbitt, Mark
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Datasets and model outputs used to map the global distribution of utilised plants by humans. The folder is composed of two subfolders raw_data and processed_data containing respectively the list of utilised plant species modelled -utilised_plants_species_list.csv-, and their occurrence data -occurrence_data.zip- and predicted distribution -species_proba_per_cell.rds-.

    The file utilised_plants_species_list.csv in the raw_data folder contains a list of 35687 plant species (and hybrids) used by humans and 10 plant use categories with the following 14 fields:

    plant_ID: plant identifier number ranging from between 1-35687

    binomial_acc_name: binomial accepted name of the plant species

    author_acc_name: name of the author(s)

    is_hybrid: logical TRUE or FALSE indicating whether the species is an hybrid or not.

    AnimalFood: forage and fodder for vertebrate animals only.

    EnvironmentalUses: examples include intercrops and nurse crops, ornamentals, barrier hedges, shade plants, windbreaks, soil improvers, plants for revegetation and erosion control, wastewater purifiers, indicators of the presence of metals, pollution, or underground water.

    Fuels: charcoal, petroleum substitutes, fuel alcohols, etc. Given the importance of energy plants for people, those were distinguished from Materials.

    GeneSources: wild relatives of major crops which may possess traits associated with biotic or abiotic resistance and may be valuable for breeding programs.

    HumanFood: food for humans only, including beverages and food additives.

    InvertebrateFood: plants consumed by invertebrates used by humans, such as bees, silkworms, lac insects and edible grubs.

    Materials: woods, fibers, cork, cane, tannins, latex, resins, gums, waxes, oils, lipids, etc. and their derived products.

    Medicines: both human and veterinary.

    Poisons: plants which are poisonous to both vertebrates and invertebrates, both accidentally and intentionally, e.g., for hunting and fishing, molluscicides, herbicides, insecticides.

    SocialsUses: plants used for social purposes, which cannot be defined as food or medicine, for instance, masticatories, smoking materials, narcotics, hallucinogens and psychoactive drugs, and plants with ritual or religious significance.

    Totals: total number of uses recorded for a species

    The zipfile occurrence_data.zip in the processed_data folder contains 35687 Comma Separated Values (CSV) files, one for each species, containing curated geographic occurrence records used to build species distribution models with the following 14 fields:

    Species: the binomial accepted name of the species

    Fullname: same as species

    decimalLongitude: the geographic longitude of the occurrence records of the species in decimal degrees

    decimalLatitude: the geographic latitude of the occurrence records of the species in decimal degrees

    countryCode: a three-letter standard abbreviation for the country of the occurrence locality

    coordinateUncertaintyinMeters: indicator for the accuracy of the coordinate location, described as the radius of a circle around the stated point location

    year: year of the observation of the occurrence record of the species

    individualCount: the number of individuals present at the time of the observation

    gbifID: unique identifier number for the occurrence from the original database

    basisOfRecords: the type of the individual record, e.g. observation, physical specimen, fossil, living ex-situ, culture collection specimen

    institutionCode: the name of the institution or organization listed as the data publisher on GBIF

    establishmentMeans: statement about whether an organism has been introduced to a given place and time through the direct or indirect activity of modern humans

    is_cultivated_observation: whether or not an organism is cultivated

    sourceID: name of the source database

    The file species_proba_per_cell.rds in the processed_data folder is a R Data Serialization (RDS) file containing a data.table object with the following 3 fields:

    plant_ID: plant identifier number ranging from between 1-35687

    proba: species occurrence probability

    cell: raster grid cell number between 1-2251762

    This object can be used in combination with a raster layer to reconstruct the modelled distribution of each species or retrieve species richness and endemism.

  12. n

    Global contemporary effective population sizes across taxonomic groups

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser (2024). Global contemporary effective population sizes across taxonomic groups [Dataset]. http://doi.org/10.5061/dryad.p2ngf1vzm
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2024
    Dataset provided by
    Concordia University
    Dalhousie University
    Authors
    Shannon H. Clarke; Elizabeth R. Lawrence; Jean-Michel Matte; Sarah J. Salisbury; Sozos N. Michaelides; Ramela Koumrouyan; Daniel E. Ruzzante; James W. A. Grant; Dylan J. Fraser
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential, respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 unique populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal, and amphibian populations had a <54% probability of reaching = 50 and a <9% probability of reaching = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median than unlisted populations, and this was consistent across all taxonomic groups. was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds, and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritize assessment of populations from taxa most at risk of failing to meet conservation thresholds. Methods Literature search, screening, and data extraction A primary literature search was conducted using ISI Web of Science Core Collection and any articles that referenced two popular single-sample Ne estimation software packages: LDNe (Waples & Do, 2008), and NeEstimator v2 (Do et al., 2014). The initial search included 4513 articles published up to the search date of May 26, 2020. Articles were screened for relevance in two steps, first based on title and abstract, and then based on the full text. For each step, a consistency check was performed using 100 articles to ensure they were screened consistently between reviewers (n = 6). We required a kappa score (Collaboration for Environmental Evidence, 2020) of ³ 0.6 in order to proceed with screening of the remaining articles. Articles were screened based on three criteria: (1) Is an estimate of Ne or Nb reported; (2) for a wild animal or plant population; (3) using a single-sample genetic estimation method. Further details on the literature search and article screening are found in the Supplementary Material (Fig. S1). We extracted data from all studies retained after both screening steps (title and abstract; full text). Each line of data entered in the database represents a single estimate from a population. Some populations had multiple estimates over several years, or from different estimation methods (see Table S1), and each of these was entered on a unique row in the database. Data on N̂e, N̂b, or N̂c were extracted from tables and figures using WebPlotDigitizer software version 4.3 (Rohatgi, 2020). A full list of data extracted is found in Table S2. Data Filtering After the initial data collation, correction, and organization, there was a total of 8971 Ne estimates (Fig. S1). We used regression analyses to compare Ne estimates on the same populations, using different estimation methods (LD, Sibship, and Bayesian), and found that the R2 values were very low (R2 values of <0.1; Fig. S2 and Fig. S3). Given this inconsistency, and the fact that LD is the most frequently used method in the literature (74% of our database), we proceeded with only using the LD estimates for our analyses. We further filtered the data to remove estimates where no sample size was reported or no bias correction (Waples, 2006) was applied (see Fig. S6 for more details). Ne is sometimes estimated to be infinity or negative within a population, which may reflect that a population is very large (i.e., where the drift signal-to-noise ratio is very low), and/or that there is low precision with the data due to small sample size or limited genetic marker resolution (Gilbert & Whitlock, 2015; Waples & Do, 2008; Waples & Do, 2010) We retained infinite and negative estimates only if they reported a positive lower confidence interval (LCI), and we used the LCI in place of a point estimate of Ne or Nb. We chose to use the LCI as a conservative proxy for in cases where a point estimate could not be generated, given its relevance for conservation (Fraser et al., 2007; Hare et al., 2011; Waples & Do 2008; Waples 2023). We also compared results using the LCI to a dataset where infinite or negative values were all assumed to reflect very large populations and replaced the estimate with an arbitrary large value of 9,999 (for reference in the LCI dataset only 51 estimates, or 0.9%, had an or > 9999). Using this 9999 dataset, we found that the main conclusions from the analyses remained the same as when using the LCI dataset, with the exception of the HFI analysis (see discussion in supplementary material; Table S3, Table S4 Fig. S4, S5). We also note that point estimates with an upper confidence interval of infinity (n = 1358) were larger on average (mean = 1380.82, compared to 689.44 and 571.64, for estimates with no CIs or with an upper boundary, respectively). Nevertheless, we chose to retain point estimates with an upper confidence interval of infinity because accounting for them in the analyses did not alter the main conclusions of our study and would have significantly decreased our sample size (Fig. S7, Table S5). We also retained estimates from populations that were reintroduced or translocated from a wild source (n = 309), whereas those from captive sources were excluded during article screening (see above). In exploratory analyses, the removal of these data did not influence our results, and many of these populations are relevant to real-world conservation efforts, as reintroductions and translocations are used to re-establish or support small, at-risk populations. We removed estimates based on duplication of markers (keeping estimates generated from SNPs when studies used both SNPs and microsatellites), and duplication of software (keeping estimates from NeEstimator v2 when studies used it alongside LDNe). Spatial and temporal replication were addressed with two separate datasets (see Table S6 for more information): the full dataset included spatially and temporally replicated samples, while these two types of replication were removed from the non-replicated dataset. Finally, for all populations included in our final datasets, we manually extracted their protection status according to the IUCN Red List of Threatened Species. Taxa were categorized as “Threatened” (Vulnerable, Endangered, Critically Endangered), “Nonthreatened” (Least Concern, Near Threatened), or “N/A” (Data Deficient, Not Evaluated). Mapping and Human Footprint Index (HFI) All populations were mapped in QGIS using the coordinates extracted from articles. The maps were created using a World Behrmann equal area projection. For the summary maps, estimates were grouped into grid cells with an area of 250,000 km2 (roughly 500 km x 500 km, but the dimensions of each cell vary due to distortions from the projection). Within each cell, we generated the count and median of Ne. We used the Global Human Footprint dataset (WCS & CIESIN, 2005) to generate a value of human influence (HFI) for each population at its geographic coordinates. The footprint ranges from zero (no human influence) to 100 (maximum human influence). Values were available in 1 km x 1 km grid cell size and were projected over the point estimates to assign a value of human footprint to each population. The human footprint values were extracted from the map into a spreadsheet to be used for statistical analyses. Not all geographic coordinates had a human footprint value associated with them (i.e., in the oceans and other large bodies of water), therefore marine fishes were not included in our HFI analysis. Overall, 3610 Ne estimates in our final dataset had an associated footprint value.

  13. i

    BLE-WBAN: RF real-world dataset of BLE devices in human-centric healthcare...

    • ieee-dataport.org
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SeyedMohammad Kashani (2024). BLE-WBAN: RF real-world dataset of BLE devices in human-centric healthcare environments [Dataset]. https://ieee-dataport.org/documents/ble-wban-rf-real-world-dataset-ble-devices-human-centric-healthcare-environments
    Explore at:
    Dataset updated
    Aug 6, 2024
    Authors
    SeyedMohammad Kashani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    obtaining large

  14. i

    Online Learning Global Queries Dataset: A Comprehensive Dataset of What...

    • ieee-dataport.org
    Updated May 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isabella Hall (2022). Online Learning Global Queries Dataset: A Comprehensive Dataset of What People from Different Countries ask Google about Online Learning [Dataset]. https://ieee-dataport.org/documents/online-learning-global-queries-dataset-comprehensive-dataset-what-people-different
    Explore at:
    Dataset updated
    May 11, 2022
    Authors
    Isabella Hall
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Any work using this dataset should cite the following paper:

  15. f

    ORBIT: A real-world few-shot dataset for teachable object recognition...

    • city.figshare.com
    bin
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann (2023). ORBIT: A real-world few-shot dataset for teachable object recognition collected from people who are blind or low vision [Dataset]. http://doi.org/10.25383/city.14294597.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    City, University of London
    Authors
    Daniela Massiceti; Lida Theodorou; Luisa Zintgraf; Matthew Tobias Harris; Simone Stumpf; Cecily Morrison; Edward Cutrell; Katja Hofmann
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Object recognition predominately still relies on many high-quality training examples per object category. In contrast, learning new objects from only a few examples could enable many impactful applications from robotics to user personalization. Most few-shot learning research, however, has been driven by benchmark datasets that lack the high variation that these applications will face when deployed in the real-world. To close this gap, we present the ORBIT dataset, grounded in a real-world application of teachable object recognizers for people who are blind/low vision. We provide a full, unfiltered dataset of 4,733 videos of 588 objects recorded by 97 people who are blind/low-vision on their mobile phones, and a benchmark dataset of 3,822 videos of 486 objects collected by 77 collectors. The code for loading the dataset, computing all benchmark metrics, and running the baseline models is available at https://github.com/microsoft/ORBIT-DatasetThis version comprises several zip files:- train, validation, test: benchmark dataset, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS- other: data not in the benchmark set, organised by collector, with raw videos split into static individual frames in jpg format at 30FPS (please note that the train, validation, test, and other files make up the unfiltered dataset)- *_224: as for the benchmark, but static individual frames are scaled down to 224 pixels.- *_unfiltered_videos: full unfiltered dataset, organised by collector, in mp4 format.

  16. d

    Raw Stressor Data: A Global Map of Human Impact on Marine Ecosystems, 2008

    • search.dataone.org
    • knb.ecoinformatics.org
    • +1more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Halpern; Shaun Walbridge; Kimberly Selkoe; Carrie Kappel; Fiorenza Micheli; Caterina D'Agrosa; John Bruno; Kenneth Casey; Colin Ebert; Helen Fox; Rod Fujita; Dennis Heinemann; Hunter Lenihan; Elizabeth Madin; Matthew Perry; Elizabeth Selig; Mark Spalding; Robert Steneck; Reg Watson (2018). Raw Stressor Data: A Global Map of Human Impact on Marine Ecosystems, 2008 [Dataset]. http://doi.org/10.5063/F1JW8C4R
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Benjamin Halpern; Shaun Walbridge; Kimberly Selkoe; Carrie Kappel; Fiorenza Micheli; Caterina D'Agrosa; John Bruno; Kenneth Casey; Colin Ebert; Helen Fox; Rod Fujita; Dennis Heinemann; Hunter Lenihan; Elizabeth Madin; Matthew Perry; Elizabeth Selig; Mark Spalding; Robert Steneck; Reg Watson
    Time period covered
    Jan 1, 2008
    Area covered
    Earth
    Description

    What happens in the vast stretches of the world's oceans - both wondrous and worrisome - has too often been out of sight, out of mind. The sea represents the last major scientific frontier on planet earth - a place where expeditions continue to discover not only new species, but even new phyla. The role of these species in the ecosystem, where they sit in the tree of life, and how they respond to environmental changes really do constitute mysteries of the deep. Despite technological advances that now allow people to access, exploit or affect nearly all parts of the ocean, we still understand very little of the ocean's biodiversity and how it is changing under our influence. The goal of the research presented here is to estimate and visualize, for the first time, the global impact humans are having on the ocean's ecosystems. Our analysis, published in Science, February 15, 2008 (http://doi.org/10.1126/science.1149345), shows that over 40% of the world's oceans are heavily affected by human activities and few if any areas remain untouched. This dataset contains raw stressor data from 17 different human activities that directly or indirectly have an impact on the ecological communities in the ocean's ecosystems. For more information on specific dataset, see the methods section. All data are projected in WGS 1984 Mollweide.

  17. d

    Data from: Anthropogenic Biomes of the World, Version 1

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Anthropogenic Biomes of the World, Version 1 [Dataset]. https://catalog.data.gov/dataset/anthropogenic-biomes-of-the-world-version-1
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Area covered
    World, Earth
    Description

    The Anthropogenic Biomes of the World, Version 1 data set describes globally-significant ecological patterns within the terrestrial biosphere caused by sustained direct human interaction with ecosystems, including agriculture, urbanization, forestry and other land uses. Conventional biomes, such as tropical rainforests or grasslands, are based on global vegetation patterns related to climate. Now that humans have fundamentally altered global patterns of ecosystem form, process, and biodiversity, anthropogenic biomes provide a contemporary view of the terrestrial biosphere in its human-altered form. Anthropogenic biomes may also be termed "anthromes" to distinguish them from conventional biome systems, or "human biomes" (a simpler but less precise term). This data set is distributed by the Columbia University Center for International Earth Science Information Network (CIESIN).

  18. a

    Global Human Footprint-Kazakhstan

    • hub.arcgis.com
    Updated May 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2018). Global Human Footprint-Kazakhstan [Dataset]. https://hub.arcgis.com/maps/b535068eee5f44f8b500f9a14418e153
    Explore at:
    Dataset updated
    May 7, 2018
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    The Global Human Footprint Dataset of the Last of the Wild Project, Version 2, 2005 (LWP-2) is the Human Influence Index (HII) normalized by biome. The HII is a global dataset of 1-kilometer grid cells, created from nine global data layers covering human population pressure (population density), human land use and infrastructure (built-up areas, nighttime lights, land use/land cover), and human access (coastlines, roads, railroads, navigable rivers). The Human Footprint Index expresses as a percentage the relative human Influence in every biome on the land’s surface. HFP value ranges from 1 to 100. For instance similar areas. Human footprint is based on the premise that the impact of human influence varies by biogeography. A score of 1 in moist tropical forests in Africa indicates that that grid cell is part of the 1% least influenced or “wildest” area in its biome, the same as a score of 1 in North American broadleaf forest (although the absolute amount of influence in those two places may be quite different). The dataset is produced by the Wildlife Conservation Society (WCS) and the Columbia University Center for International Earth Science Information Network (CIESIN) and is available in the Interrupted Goode Homolosine Projection (IGHP) system.

  19. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 12, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  20. countries of the world

    • kaggle.com
    Updated Jan 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rob Cobb (2023). countries of the world [Dataset]. https://www.kaggle.com/datasets/robbcobb/countries
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 24, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rob Cobb
    Area covered
    World
    Description

    Copy of https://www.kaggle.com/datasets/kisoibo/countries-databasesqlite

    Updated the name of the table from 'countries of the world' to 'countries', for ease of writing queries.

    Info about the dataset:

    Content

    Table Total Rows Total Columns countries of the world **0 ** ** 20** Country, Region, Population, Area (sq. mi.), Pop. Density (per sq. mi.), Coastline (coast/area ratio), Net migration, Infant mortality (per 1000 births), GDP ($ per capita), Literacy (%), Phones (per 1000), Arable (%), Crops (%), Other (%), Climate, Birthrate, Deathrate, Agriculture, Industry, Service

    Acknowledgements

    Acknowledgements Source: All these data sets are made up of data from the US government. Generally they are free to use if you use the data in the US. If you are outside of the US, you may need to contact the US Govt to ask. Data from the World Factbook is public domain. The website says "The World Factbook is in the public domain and may be used freely by anyone at anytime without seeking permission." https://www.cia.gov/library/publications/the-world-factbook/docs/faqs.html

    Inspiration

    When making visualisations related to countries, sometimes it is interesting to group them by attributes such as region, or weigh their importance by population, GDP or other variables.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
Organization logo

Total population worldwide 1950-2100

Explore at:
26 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

Search
Clear search
Close search
Google apps
Main menu