Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Effect of suicide rates on life expectancy dataset
Abstract
In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.
Data
The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.
LICENSE
THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).
[1] https://www.kaggle.com/szamil/who-suicide-statistics
[2] https://www.kaggle.com/kumarajarshi/life-expectancy-who
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a dataset of the most highly populated city (if applicable) in a form easy to join with the COVID19 Global Forecasting (Week 1) dataset. You can see how to use it in this kernel
There are four columns. The first two correspond to the columns from the original COVID19 Global Forecasting (Week 1) dataset. The other two is the highest population density, at city level, for the given country/state. Note that some countries are very small and in those cases the population density reflects the entire country. Since the original dataset has a few cruise ships as well, I've added them there.
Thanks a lot to Kaggle for this competition that gave me the opportunity to look closely at some data and understand this problem better.
Summary: I believe that the square root of the population density should relate to the logistic growth factor of the SIR model. I think the SEIR model isn't applicable due to any intervention being too late for a fast-spreading virus like this, especially in places with dense populations.
After playing with the data provided in COVID19 Global Forecasting (Week 1) (and everything else online or media) a bit, one thing becomes clear. They have nothing to do with epidemiology. They reflect sociopolitical characteristics of a country/state and, more specifically, the reactivity and attitude towards testing.
The testing method used (PCR tests) means that what we measure could potentially be a proxy for the number of people infected during the last 3 weeks, i.e the growth (with lag). It's not how many people have been infected and recovered. Antibody or serology tests would measure that, and by using them, we could go back to normality faster... but those will arrive too late. Way earlier, China will have experimentally shown that it's safe to go back to normal as soon as your number of newly infected per day is close to zero.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F197482%2F429e0fdd7f1ce86eba882857ac7a735e%2Fcovid-summary.png?generation=1585072438685236&alt=media" alt="">
My view, as a person living in NYC, about this virus, is that by the time governments react to media pressure, to lockdown or even test, it's too late. In dense areas, everyone susceptible has already amble opportunities to be infected. Especially for a virus with 5-14 days lag between infections and symptoms, a period during which hosts spread it all over on subway, the conditions are hopeless. Active populations have already been exposed, mostly asymptomatic and recovered. Sensitive/older populations are more self-isolated/careful in affluent societies (maybe this isn't the case in North Italy). As the virus finishes exploring the active population, it starts penetrating the more isolated ones. At this point in time, the first fatalities happen. Then testing starts. Then the media and the lockdown. Lockdown seems overly effective because it coincides with the tail of the disease spread. It helps slow down the virus exploring the long-tail of sensitive population, and we should all contribute by doing it, but it doesn't cause the end of the disease. If it did, then as soon as people were back in the streets (see China), there would be repeated outbreaks.
Smart politicians will test a lot because it will make their condition look worse. It helps them demand more resources. At the same time, they will have a low rate of fatalities due to large denominator. They can take credit for managing well a disproportionally major crisis - in contrast to people who didn't test.
We were lucky this time. We, Westerners, have woken up to the potential of a pandemic. I'm sure we will give further resources for prevention. Additionally, we will be more open-minded, helping politicians to have more direct responses. We will also require them to be more responsible in their messages and reactions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads: (https://www.fs.usda.gov/rds/archive/catalog/RDS-2020-0060-2).Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 2 rows and is filtered where the books is Amarillo Slim in a world full of fat people : the memoirs of the greatest gambler who ever lived. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is an update of a prior dataset publication containing baseline and 5-year follow-up data from the PERU MIGRANT Study (PEru's Rural to Urban MIGRANTs Study).The PERU MIGRANT Study was designed to investigate the magnitude of differences between rural-to-urban migrant and non-migrant groups in specific cardiovascular risk factors. Three groups were selected: i) Rural, people who have always have lived in a rural environment; ii) Rural-urban, people who migrated from rural to urban areas; and, iii) Urban, people who have always lived in a urban environment.PERU MIGRANT Study protocol, instruments and variables are described in full in:Miranda JJ, Gilman RH, GarcĂa HH, Smeeth L. The effect on cardiovascular risk factors of migration from rural to urban areas in Peru: PERU MIGRANT Study. BMC Cardiovasc Disord 2009;9:23. PERU MIGRANT Study baseline dataset is available at:https://figshare.com/articles/PERU_MIGRANT_Study_Baseline_dataset/3125005Main findings of the baseline study:Miranda JJ, Gilman RH, Smeeth L. Differences in cardiovascular risk factors in rural, urban and rural-to-urban migrants in Peru. Heart 2011;97(10):787-96. Main findings of the 5-yr follow-up study: Carrillo-Larco RM, BernabĂŠ-Ortiz A, Pillay TD, Gilman RH, Sanchez JF, Poterico JA, Quispe R, Smeeth L, Miranda JJ. Obesity risk in rural, urban and rural-to-urban migrants: prospective results of the PERU MIGRANT study. Int J Obes (Lond) 2016;40(1):181-5. Bernabe-Ortiz A, Sanchez JF, Carrillo-Larco RM, Gilman RH, Poterico JA, Quispe R, Smeeth L, Miranda JJ. Rural-to-urban migration and risk of hypertension: longitudinal results of the PERU MIGRANT study. J Hum Hypertens 2017;31(1):22-28. Lazo-Porras M, Bernabe-Ortiz A, MĂĄlaga G, Gilman RH, AcuĂąa-VillaorduĂąa A, Cardenas-Montero D, Smeeth L, Miranda JJ. Low HDL cholesterol as a cardiovascular risk factor in rural, urban, and rural-urban migrants: PERU MIGRANT cohort study. Atherosclerosis 2016;246:36-43.Burroughs Pena MS, BernabĂŠ-Ortiz A, Carrillo-Larco RM, SĂĄnchez JF, Quispe R, Pillay TD, MĂĄlaga G, Gilman RH, Smeeth L, Miranda JJ. Migration, urbanisation and mortality: 5-year longitudinal analysis of the PERU MIGRANT study. J Epidemiol Community Health 2015;69(7):715-8.
Facebook
TwitterThis dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.
The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
There is growing recognition that human-provided food resources are becoming increasingly available to animals across the globe (Oro etâal., 2013). The food resources that are wasted by humans have influenced predatorsâ ecology and behavior and can indirectly affect their co-occurring species, leading to mostly negative ecological effects (Newsome et al., 2014). However, large increases have been found in the abundances of terrestrial mammalian predators such as coyotes (Canis latrans), cats (Felis catus) and red foxes (Vulpes vulpes), which are associated with their access to waste foods provided by humans (Denny et al., 2002; Fedriani et al., 2001; Shapira etâal., 2008). Therefore, under anthropogenic global changes where human activities are continually expanding, a spatially explicit data for waste foods is essential to assessing the ecological effects of anthropogenic food subsidies to species occurrences and abundances.
The repository contains a global dataset consisting of four different variables to depict anthropogenic food waste index: household food waste (tons/year), food service food waste (tons/year), retail food waste (tons/year), and total human-provided food waste (tons/year). To produce the dataset, I first allocated the food waste estimates (kg/capita/year) to 30 arc-second grid cells for each county. The food waste estimates for 2021 were generated by normalizing different food waste measurements to a single metric (i.e., kg/capita/year), accounting for known biases or different scopes of measurement, and aggregating a series of studies or observations if multiple observations existed in a geographic entity of interest (United Nations Environment Programme 2021). The food waste estimates were then multiplied by the estimated population count for 2021 produced by Sims et al. 2022. The data files were produced as global rasters at 30 arc-second (~1km at the equator) resolution in geotiff format under WGS 84 geographical coordinate system.
Keywords: Anthropogenic food subsidies, human-provided food wastes, household food waste, food service food waste, retail food waste, food availability, anthropogenic global changes, human activities
Reference:
United Nations Environment Programme (2021). Food Waste Index Report 2021. Nairobi.
Denny, E., Yaklovlevich, P., Eldridge, M.D.B. & Dickman, C.R. (2002) Social and genetic analysis of a population of free-living cats (Felis catus L.) exploiting a resource-rich habitat. Wildlife Research, 29, 405â413.
Fedriani, J.M., Fuller, T.K. & Sauvajot, R.M. (2001) Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in southern California. Ecography, 24, 325â331.
Newsome, T. M., Dellinger, J. A., Pavey, C. R., Ripple, W. J., Shores, C. R., Wirsing, A. J., & Dickman, C. R. (2015). The ecological effects of providing resource subsidies to predators. Global Ecology and Biogeography, 24, 1-11.
Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S., & MartĂnezâAbraĂn, A. (2013). Ecological and evolutionary implications of food subsidies from humans. Ecology letters, 16(12), 1501-1514.
Shapira, I., Sultan, H. & Shanas, U. (2008) Agricultural farming alters predatorâprey interactions in nearby natural habitats. Animal Conservation, 11, 1â8.
Sims, K., Reith, A., Bright, E., McKee, J., & Rose, A. (2022). LandScan Global 2021 [Data set]. Oak Ridge National Laboratory. https://doi.org/10.48690/1527702.
Facebook
TwitterThe COVID19 dataset, published by John Hopkins University, consists of the data related to the cumulative number of confirmed cases, per day, in each Country. Also, have another dataset consist of various life factors, scored by the people living in each country around the globe.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).
A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.
Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.
These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.
These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).
DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd
As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.
With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).
Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm
Facebook
TwitterThis technical assistance document provides guidance around the human centered design (HCD) methodology, user experience (UX) methods and outcomes, integrating HCD and UX into Comprehensive Child Welfare Information Systems (CCWIS), incorporating Lived Experience into UX, user research methods, and how to request technical assistance around these concepts. Metadata-only record linking to the original dataset. Open original dataset below.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
ahmadreza13/human-vs-Ai-generated-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chimpanzees are our closest living relatives and have been extensively used in research into the evolution of humans. Although chimpanzees and humans share many of the same cognitive abilities, how they compare in solving spatial tasks is unclear to date. Therefore this study conducted a human physical simulation method that resembles foraging patterns of chimpanzees to enable comparing these spatiotemporal cognitive abilities. Furthermore, this study aimed to interpret animal movement and spatiotemporal cognitive abilities by relating revisit intervals to cognitive processes such as learning and memory. For this, two variables, constancy and contingency, have been used to reflect search efficiency, and their values were used to make inferences about the cognitive abilities of humans and chimpanzees. Ultimately, this study investigated how the average patterns in revisit constancy and contingency relate to the spatiotemporal cognitive abilities of chimpanzees, and how this compares to those of humans. These results are highly valuable in addressing the aforementioned existing knowledge gaps, but the novel stimulation method additionally provides a great perspective for future research into animal movement. This dataset contains the data obtained from the human foraging experiment that was conducted for the Bachelor's thesis: "Using Recursive Movement Data to Study Animal Cognition: Assessing a New Method to Compare Spatiotemporal Intelligence of Humans and Chimpanzees ".
Facebook
TwitterThis dataset displays data from the 2005 Census of Japan. It displays data on Private Households throughout prefectures in Japan. This dataset specifically deals with number of Private Households living in dwelling, Number of Private Household living in dwelling Members, Average number of Members per Private Household living in dwelling, Area of Floor Space per Household of Private households living in dwelling, and Area of Floor Space per Person of Private households living in dwelling. This data comes from Japan's Ministry of Internal Affairs and Communication's Statistics Bureau.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
The Free-living Food Intake Cycle (FreeFIC) dataset was created by the Multimedia Understanding Group towards the investigation of in-the-wild eating behavior. This is achieved by recording the subjectsâ meals as a small part part of their everyday life, unscripted, activities. The FreeFIC dataset contains the (3D) acceleration and orientation velocity signals ((6) DoF) from (22) in-the-wild sessions provided by (12) unique subjects. All sessions were recorded using a commercial smartwatch ((6) using the Huawei Watch 2⢠and the MobVoi TicWatch⢠for the rest) while the participants performed their everyday activities. In addition, FreeFIC also contains the start and end moments of each meal session as reported by the participants.
Description
FreeFIC includes (22) in-the-wild sessions that belong to (12) unique subjects. Participants were instructed to wear the smartwatch to the hand of their preference well ahead before any meal and continue to wear it throughout the day until the battery is depleted. In addition, we followed a self-report labeling model, meaning that the ground truth is provided from the participant by documenting the start and end moments of their meals to the best of their abilities as well as the hand they wear the smartwatch on. The total duration of the (22) recordings sums up to (112.71) hours, with a mean duration of (5.12) hours. Additional data statistics can be obtained by executing the provided python script stats_dataset.py. Furthermore, the accompanying python script viz_dataset.py will visualize the IMU signals and ground truth intervals for each of the recordings. Information on how to execute the Python scripts can be found below.
$ python stats_dataset.py
$ python viz_dataset.py
FreeFIC is also tightly related to Food Intake Cycle (FIC), a dataset we created in order to investigate the in-meal eating behavior. More information about FIC can be found here and here.
Publications
If you plan to use the FreeFIC dataset or any of the resources found in this page, please cite our work:
@article{kyritsis2020data,
title={A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating Behavior Using Smartwatches},
author={Kyritsis, Konstantinos and Diou, Christos and Delopoulos, Anastasios},
journal={IEEE Journal of Biomedical and Health Informatics},
year={2020},
publisher={IEEE}}
@inproceedings{kyritsis2017automated,
title={Detecting Meals In the Wild Using the Inertial Data of a Typical Smartwatch},
author={Kyritsis, Konstantinos and Diou, Christos and Delopoulos, Anastasios},
booktitle={2019 41th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)},
year={2019},
organization={IEEE}}
Technical details
We provide the FreeFIC dataset as a pickle. The file can be loaded using Python in the following way:
import pickle as pkl import numpy as np
with open('./FreeFIC_FreeFIC-heldout.pkl','rb') as fh: dataset = pkl.load(fh)
The dataset variable in the snipet above is a dictionary with (5) keys. Namely:
'subject_id'
'session_id'
'signals_raw'
'signals_proc'
'meal_gt'
The contents under a specific key can be obtained by:
sub = dataset['subject_id'] # for the subject id ses = dataset['session_id'] # for the session id raw = dataset['signals_raw'] # for the raw IMU signals proc = dataset['signals_proc'] # for the processed IMU signals gt = dataset['meal_gt'] # for the meal ground truth
The sub, ses, raw, proc and gt variables in the snipet above are lists with a length equal to (22). Elements across all lists are aligned; e.g., the (3)rd element of the list under the 'session_id' key corresponds to the (3)rd element of the list under the 'signals_proc' key.
sub: list Each element of the sub list is a scalar (integer) that corresponds to the unique identifier of the subject that can take the following values: ([1, 2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 20]). It should be emphasized that the subjects with ids (15, 16, 17, 18, 19) and (20) belong to the held-out part of the FreeFIC dataset (more information can be found in ( )the publication titled "A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating Behavior Using Smartwatches" by Kyritsis et al). Moreover, the subject identifier in FreeFIC is in-line with the subject identifier in the FIC dataset (more info here and here); i.e., FICâs subject with id equal to (2) is the same person as FreeFICâs subject with id equal to (2).
ses: list Each element of this list is a scalar (integer) that corresponds to the unique identifier of the session that can range between (1) and (5). It should be noted that not all subjects have the same number of sessions.
raw: list Each element of this list is dictionary with the 'acc' and 'gyr' keys. The data under the 'acc' key is a (N_{acc} \times 4) numpy.ndarray that contains the timestamps in seconds (first column) and the (3D) raw accelerometer measurements in (g) (second, third and forth columns - representing the (x, y ) and (z) axis, respectively). The data under the 'gyr' key is a (N_{gyr} \times 4) numpy.ndarray that contains the timestamps in seconds (first column) and the (3D) raw gyroscope measurements in ({degrees}/{second})(second, third and forth columns - representing the (x, y ) and (z) axis, respectively). All sensor streams are transformed in such a way that reflects all participants wearing the smartwatch at the same hand with the same orientation, thusly achieving data uniformity. This transformation is in par with the signals in the FIC dataset (more info here and here). Finally, the length of the raw accelerometer and gyroscope numpy.ndarrays is different ((N_{acc} eq N_{gyr})). This behavior is predictable and is caused by the Android platform.
proc: list Each element of this list is an (M\times7) numpy.ndarray that contains the timestamps, (3D) accelerometer and gyroscope measurements for each meal. Specifically, the first column contains the timestamps in seconds, the second, third and forth columns contain the (x,y) and (z) accelerometer values in (g) and the fifth, sixth and seventh columns contain the (x,y) and (z) gyroscope values in ({degrees}/{second}). Unlike elements in the raw list, processed measurements (in the proc list) have a constant sampling rate of (100) Hz and the accelerometer/gyroscope measurements are aligned with each other. In addition, all sensor streams are transformed in such a way that reflects all participants wearing the smartwatch at the same hand with the same orientation, thusly achieving data uniformity. This transformation is in par with the signals in the FIC dataset (more info here and here). No other preprocessing is performed on the data; e.g., the acceleration component due to the Earth's gravitational field is present at the processed acceleration measurements. The potential researcher can consult the article "A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating Behavior Using Smartwatches" by Kyritsis et al. on how to further preprocess the IMU signals (i.e., smooth and remove the gravitational component).
meal_gt: list Each element of this list is a (K\times2) matrix. Each row represents the meal intervals for the specific in-the-wild session. The first column contains the timestamps of the meal start moments whereas the second one the timestamps of the meal end moments. All timestamps are in seconds. The number of meals (K) varies across recordings (e.g., a recording exist where a participant consumed two meals).
Ethics and funding
Informed consent, including permission for third-party access to anonymised data, was obtained from all subjects prior to their engagement in the study. The work has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 727688 - BigO: Big data against childhood obesity.
Contact
Any inquiries regarding the FreeFIC dataset should be addressed to:
Dr. Konstantinos KYRITSIS
Multimedia Understanding Group (MUG) Department of Electrical & Computer Engineering Aristotle University of Thessaloniki University Campus, Building C, 3rd floor Thessaloniki, Greece, GR54124
Tel: +30 2310 996359, 996365 Fax: +30 2310 996398 E-mail: kokirits [at] mug [dot] ee [dot] auth [dot] gr
Facebook
TwitterDPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2 As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county). This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity). A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case. These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities. These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020. Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: This dataset is no longer being maintained and will not be updated going forward.
The weekly and cumulative number of residents with confirmed COVID-19 and with COVID-19 associated deaths is obtained from data self-reported by individual assisted living facilities to the Long Term Care Mutual Aid Plan web-based reporting system (www.mutualaidplan.org/ct). Both confirmed and suspect deaths are included.
Confirmed deaths include those among persons who tested positive for COVID-19. Suspected deaths include those among persons with signs and symptoms suggestive of COVID-19 but who did not have a laboratory positive COVID-19 test. Due to differing data collection and processing methods between LTC-MAP and the death data sources used previously, cumulative death data for residents was re-baselined on July 14, 2020. The resident death data before and after July 14, 2020 should not be added due to the differing definitions of COVID-19 associated deaths used and the possibility of duplication of deaths among prior and current data.
The cumulative number of deaths among assisted living residents is based upon data reported by the Office of the Chief Medical Examiner. For public health surveillance, COVID-19-associated deaths include persons who tested positive for COVID-19 around the time of death (laboratory-confirmed) and persons whose death certificate lists COVID-19 disease as a cause of death or a significant condition contributing to death (probable). As of 7/15/20 deaths reported by the Office of the Chief Medical Examiner are no longer being updated on a weekly basis.
Facebook
TwitterAttribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . âPerCapita_CO2_Footprint_InDioceses_FULLâ. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. AsefiâNajafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHighâresolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global highâresolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Longâterm trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different longâterm trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorterâterm variations reveals the impact of the 2008â2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. âDiocesean Boundaries of the Catholic Churchâ [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. âCatholic Hierarchy of the Worldâ [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per lâAnno .. CittĂ del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLandsâ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/
Facebook
TwitterHow many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social mediaâs global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.