Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
Count of COVID-19-associated deaths by date of death. Deaths reported to either the OCME or DPH are included in the COVID-19 data. COVID-19-associated deaths include persons who tested positive for COVID-19 around the time of death and persons who were not tested for COVID-19 whose death certificate lists COVID-19 disease as a cause of death or a significant condition contributing to death.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Note the counts in this dataset may vary from the death counts in the other COVID-19-related datasets published on data.ct.gov, where deaths are counted on the date reported rather than the date of death
The Human Know-How Dataset describes 211,696 human activities from many different domains. These activities are decomposed into 2,609,236 entities (each with an English textual label). These entities represent over two million actions and half a million pre-requisites. Actions are interconnected both according to their dependencies (temporal/logical orders between actions) and decompositions (decomposition of complex actions into simpler ones). This dataset has been integrated with DBpedia (259,568 links). For more information see: - The project website: http://homepages.inf.ed.ac.uk/s1054760/prohow/index.htm - The data is also available on datahub: https://datahub.io/dataset/human-activities-and-instructions ---------------------------------------------------------------- * Quickstart: if you want to experiment with the most high-quality data before downloading all the datasets, download the file '9of11_knowhow_wikihow', and optionally files 'Process - Inputs', 'Process - Outputs', 'Process - Step Links' and 'wikiHow categories hierarchy'. * Data representation based on the PROHOW vocabulary: http://w3id.org/prohow# Data extracted from existing web resources is linked to the original resources using the Open Annotation specification * Data Model: an example of how the data is represented within the datasets is available in the attached Data Model PDF file. The attached example represents a simple set of instructions, but instructions in the dataset can have more complex structures. For example, instructions could have multiple methods, steps could have further sub-steps, and complex requirements could be decomposed into sub-requirements. ---------------------------------------------------------------- Statistics: * 211,696: number of instructions. From wikiHow: 167,232 (datasets 1of11_knowhow_wikihow to 9of11_knowhow_wikihow). From Snapguide: 44,464 (datasets 10of11_knowhow_snapguide to 11of11_knowhow_snapguide). * 2,609,236: number of RDF nodes within the instructions From wikiHow: 1,871,468 (datasets 1of11_knowhow_wikihow to 9of11_knowhow_wikihow). From Snapguide: 737,768 (datasets 10of11_knowhow_snapguide to 11of11_knowhow_snapguide). * 255,101: number of process inputs linked to 8,453 distinct DBpedia concepts (dataset Process - Inputs) * 4,467: number of process outputs linked to 3,439 distinct DBpedia concepts (dataset Process - Outputs) * 376,795: number of step links between 114,166 different sets of instructions (dataset Process - Step Links)
Data for deaths by leading cause of death categories are now available in the death profiles dataset for each geographic granularity.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Cause of death categories for years 1999 and later are based on tenth revision of International Classification of Diseases (ICD-10) codes. Comparable categories are provided for years 1979 through 1998 based on ninth revision (ICD-9) codes. For more information on the comparability of cause of death classification between ICD revisions see Comparability of Cause-of-death Between ICD Revisions.
Note: This COVID-19 data set is no longer being updated as of December 1, 2023. Access current COVID-19 data on the CDPH respiratory virus dashboard (https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx) or in open data format (https://data.chhs.ca.gov/dataset/respiratory-virus-dashboard-metrics).
As of August 17, 2023, data is being updated each Friday.
For death data after December 31, 2022, California uses Provisional Deaths from the Center for Disease Control and Prevention’s National Center for Health Statistics (NCHS) National Vital Statistics System (NVSS). Prior to January 1, 2023, death data was sourced from the COVID-19 registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023.
As of May 11, 2023, data on cases, deaths, and testing is being updated each Thursday. Metrics by report date have been removed, but previous versions of files with report date metrics are archived below.
All metrics include people in state and federal prisons, US Immigration and Customs Enforcement facilities, US Marshal detention facilities, and Department of State Hospitals facilities. Members of California's tribal communities are also included.
The "Total Tests" and "Positive Tests" columns show totals based on the collection date. There is a lag between when a specimen is collected and when it is reported in this dataset. As a result, the most recent dates on the table will temporarily show NONE in the "Total Tests" and "Positive Tests" columns. This should not be interpreted as no tests being conducted on these dates. Instead, these values will be updated with the number of tests conducted as data is received.
This file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).
Effective September 27, 2023, this dataset will be updated weekly on Thursdays.
Deaths involving COVID-19, pneumonia, and influenza reported to NCHS by week ending date and by state
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
The Mortality - Multiple Cause of Death data on CDC WONDER are county-level national mortality and population data spanning the years 1999-2009. Data are based on death certificates for U.S. residents. Each death certificate contains a single underlying cause of death, up to twenty additional multiple causes (Boolean set analysis), and demographic data. The number of deaths, crude death rates, age-adjusted death rates, standard errors and 95% confidence intervals for death rates can be obtained by place of residence (total U.S., region, state, and county), age group (including infants and single-year-of-age cohorts), race (4 groups), Hispanic ethnicity, gender, year of death, and cause-of-death (4-digit ICD-10 code or group of codes, injury intent and mechanism categories, or drug and alcohol related causes), year, month and week day of death, place of death and whether an autopsy was performed. The data are produced by the National Center for Health Statistics.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundCanine rabies is a neglected disease causing 55,000 human deaths worldwide per year, and 99% of all cases are transmitted by dog bites. In N'Djaména, the capital of Chad, rabies is endemic with an incidence of 1.71/1,000 dogs (95% C.I. 1.45–1.98). The gold standard of rabies diagnosis is the direct immunofluorescent antibody (DFA) test, requiring a fluorescent microscope. The Centers for Disease Control and Prevention (CDC, Atlanta, United States of America) developed a histochemical test using low-cost light microscopy, the direct rapid immunohistochemical test (dRIT).Methodology/Principal FindingsWe evaluated the dRIT in the Chadian National Veterinary Laboratory in N'Djaména by testing 35 fresh samples parallel with both the DFA and dRIT. Additional retests (n = 68 in Chad, n = 74 at CDC) by DFA and dRIT of stored samples enhanced the power of the evaluation. All samples were from dogs, cats, and in one case from a bat. The dRIT performed very well compared to DFA. We found a 100% agreement of the dRIT and DFA in fresh samples (n = 35). Results of retesting at CDC and in Chad depended on the condition of samples. When the sample was in good condition (fresh brain tissue), we found simple Cohen's kappa coefficient related to the DFA diagnostic results in fresh tissue of 0.87 (95% C.I. 0.63–1) up to 1. For poor quality samples, the kappa values were between 0.13 (95% C.I. −0.15–0.40) and 0.48 (95% C.I. 0.14–0.82). For samples stored in glycerol, dRIT results were more likely to agree with DFA testing in fresh samples than the DFA retesting.Conclusion/SignificanceThe dRIT is as reliable a diagnostic method as the gold standard (DFA) for fresh samples. It has an advantage of requiring only light microscopy, which is 10 times less expensive than a fluorescence microscope. Reduced cost suggests high potential for making rabies diagnosis available in other cities and rural areas of Africa for large populations for which a capacity for diagnosis will contribute to rabies control.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Authors:
*Corresponding author: mathias.sable-meyer@ucl.ac.uk
The perception and production of regular geometric shapes is a characteristic trait of human cultures since prehistory, whose neural mechanisms are unknown. Behavioral studies suggest that humans are attuned to discrete regularities such as symmetries and parallelism, and rely on their combinations to encode regular geometric shapes in a compressed form. To identify the relevant brain systems and their dynamics, we collected functional MRI and magnetoencephalography data in both adults and six-year-olds during the perception of simple shapes such as hexagons, triangles and quadrilaterals. The results revealed that geometric shapes, relative to other visual categories, induce a hypoactivation of ventral visual areas and an overactivation of the intraparietal and inferior temporal regions also involved in mathematical processing, whose activation is modulated by geometric regularity. While convolutional neural networks captured the early visual activity evoked by geometric shapes, they failed to account for subsequent dorsal parietal and prefrontal signals, which could only be captured by discrete geometric features or by more advanced transformer models of vision. We propose that the perception of abstract geometric regularities engages an additional symbolic mode of visual perception.
We separately share the MEG dataset at https://openneuro.org/datasets/ds006012. Below are some notes about the
fMRI dataset of N=20 adult participants (sub-2xx
, numbers between 204 and
223), and N=22 children (sub-3xx
, numbers between 301 and 325).
20.0.5
/usr/local/miniconda/bin/fmriprep /data /out participant --participant-label <label> --output-spaces MNI152NLin6Asym:res-2 MNI152NLin2009cAsym:res-2
bidsonym
running the pydeface
masking,
and nobrainer
brain registraction pipeline.sub-325
was acquired by a different experimenter and defaced before being
shared with the rest of the research team, hence why the slightly different
defacing mask. That participant was also preprocessed separately, and using a
more recent fMRIPrep version: 20.2.6
.sub-313
and sub-316
are missing one run of the localizer eachsub-316
has no data at all for the geometrysub-308
has eno useable data for the intruder task
Since all of these still have some data to contribute to either task, all
available files were kept on this dataset. The analysis code reflects these
inconsistencies where required with specific exceptions.Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
This archive contains the files submitted to the 4th International Workshop on Data: Acquisition To Analysis (DATA) at SenSys. Files provided in this package are associated with the paper titled "Dataset: Analysis of IFTTT Recipes to Study How Humans Use Internet-of-Things (IoT) Devices"
With the rapid development and usage of Internet-of-Things (IoT) and smart-home devices, researchers continue efforts to improve the ''smartness'' of those devices to address daily needs in people's lives. Such efforts usually begin with understanding evolving user behaviors on how humans utilize the devices and what they expect in terms of their behavior. However, while research efforts abound, there is a very limited number of datasets that researchers can use to both understand how people use IoT devices and to evaluate algorithms or systems for smart spaces. In this paper, we collect and characterize more than 50,000 recipes from the online If-This-Then-That (IFTTT) service to understand a seemingly straightforward but complicated question: ''What kinds of behaviors do humans expect from their IoT devices?'' The dataset we collected contains the basic information of the IFTTT rules, trigger and action event, and how many people are using each rule.
For more detail about this dataset, please refer to the paper listed above.
This dataset describes drug poisoning deaths at the U.S. and state level by selected demographic characteristics, and includes age-adjusted death rates for drug poisoning.
Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent).
Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2016 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.
Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Drug poisoning death rates may be underestimated in those instances.
REFERENCES 1. National Center for Health Statistics. National Vital Statistics System: Mortality data. Available from: http://www.cdc.gov/nchs/deaths.htm.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
Unprovoked vs. Provoked - GSAF defines a provoked incident as one in which the shark was speared, hooked, captured or in which a human drew "first blood". Although such incidents are of little interest to shark behaviorists, when the species of shark involved is known and pre-op photos of the wounds are available, the bite patterns are of value in determining species of shark involved in other cases when the species could not identified by the patient or witnesses. We know that a live human is rarely perceived as prey by a shark. Many incidents are motivated by curiosity, others may result when a shark perceives a human as a threat or competitor for a food source, and could be classed as "provoked" when examined from the shark's perspective.Incidents involving Boats – Incidents in which a boat was bitten or rammed by a shark are in green. However, in cases in which the shark was hooked, netted or gaffed, the entry is orange because they are classed as provoked incidents.Casualties of War & Air/Sea Disasters - Sharks maintain the health of the marine ecosystem by removing the dead or injured animals. Many incidents result because, like other animals that don't rely on instinct alone, sharks explore their environment. Lacking hands, they may investigate an unfamiliar object with their mouths. Unlike humans, there is no malice in sharks; they simply do what nature designed them to do. Air/Sea Disasters are accidents that place people into the day-to-day business of sharks. The wartime losses due to sharks result from mans' cruelty to man. Air/Sea Disasters are in yellow.Questionable incidents - Incidents in which there are insufficient data to determine if the injury was caused by a shark or the person drowned and the body was later scavenged by sharks. In a few cases, despite media reports to the contrary, evidence indicated there was no shark involvement whatsoever. Such incidents are in blue.All of the data on this site comes from the Global Shark Attack File (GSAF), a spreadsheet of human/shark interactions, compiled by the Shark Research Institute. It is hoped that this site makes it apparent that shark attacks are extremely rare occurrences, while providing an easily accessible resource for those wishing to know more about the subject.
Kinetics-700 is a video dataset of 650,000 clips that covers 700 human action classes. The videos include human-object interactions such as playing instruments, as well as human-human interactions such as shaking hands and hugging. Each action class has at least 700 video clips. Each clip is annotated with an action class and lasts approximately 10 seconds.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides a global gridded (5 arc-min resolution) detailed annual net-migration dataset for 2000-2019. We also provide global annual birth and death rate datasets – that were used to estimate the net-migration – for same years. The dataset is presented in details, with some further analyses, in the following publication. Please cite this paper when using data.
Niva et al. 2023. World's human migration patterns in 2000-2019 unveiled by high-resolution data. Nature Human Behaviour 7: 2023–2037. Doi: https://doi.org/10.1038/s41562-023-01689-4
You can explore the data in our online net-migration explorer: https://wdrg.aalto.fi/global-net-migration-explorer/
Short introduction to the data
For the dataset, we collected, gap-filled, and harmonised:
a comprehensive national level birth and death rate datasets for altogether 216 countries or sovereign states; and
sub-national data for births (data covering 163 countries, divided altogether into 2555 admin units) and deaths (123 countries, 2067 admin units).
These birth and death rates were downscaled with selected socio-economic indicators to 5 arc-min grid for each year 2000-2019. These allowed us to calculate the 'natural' population change and when this was compared with the reported changes in population, we were able to estimate the annual net-migration. See more about the methods and calculations at Niva et al (2023).
We recommend using the data either over multiple years (we provide 3, 5 and 20 year net-migration sums at gridded level) or then aggregated over larger area (we provide adm0, adm1 and adm2 level geospatial polygon files). This is due to some noise in the gridded annual data.
Due to copy-right issues we are not able to release all the original data collected, but those can be requested from the authors.
List of datasets
Birth and death rates:
raster_birth_rate_2000_2019.tif: Gridded birth rate for 2000-2019 (5 arc-min; multiband tif)
raster_death_rate_2000_2019.tif: Gridded death rate for 2000-2019 (5 arc-min; multiband tif)
tabulated_adm1adm0_birth_rate.csv: Tabulated sub-national birth rate for 2000-2019 at the division to which data was collected (subnational data when available, otherwise national)
tabulated_ adm1adm0_death_rate.csv: Tabulated sub-national death rate for 2000-2019 at the division to which data was collected (subnational data when available, otherwise national)
Net-migration:
raster_netMgr_2000_2019_annual.tif: Gridded annual net-migration 2000-2019 (5 arc-min; multiband tif)
raster_netMgr_2000_2019_3yrSum.tif: Gridded 3-yr sum net-migration 2000-2019 (5 arc-min; multiband tif)
raster_netMgr_2000_2019_5yrSum.tif: Gridded 5-yr sum net-migration 2000-2019 (5 arc-min; multiband tif)
raster_netMgr_2000_2019_20yrSum.tif: Gridded 20-yr sum net-migration 2000-2019 (5 arc-min)
polyg_adm0_dataNetMgr.gpkg: National (adm 0 level) net-migration geospatial file (gpkg)
polyg_adm1_dataNetMgr.gpkg: Provincial (adm 1 level) net-migration geospatial file (gpkg) (if not adm 1 level division, adm 0 used)
polyg_adm2_dataNetMgr.gpkg: Communal (adm 2 level) net-migration geospatial file (gpkg) (if not adm 2 level division, adm 1 used; and if not adm 1 level division either, adm 0 used)
Files to run online net migration explorer
masterData.rds and admGeoms.rds are related to our online ‘Net-migration explorer’ tool (https://wdrg.aalto.fi/global-net-migration-explorer/). The source code of this application is available in https://github.com/vvirkki/net-migration-explorer. Running the application locally requires these two .rds files from this repository.
Metadata
Grids:
Resolution: 5 arc-min (0.083333333 degrees)
Spatial extent: Lon: -180, 180; -90, 90 (xmin, xmax, ymin, ymax)
Coordinate ref system: EPSG:4326 - WGS 84
Format: Multiband geotiff; each band for each year over 2000-2019
Units:
Birth and death rates: births/deaths per 1000 people per year
Net-migration: persons per 1000 people per time period (year, 3yr, 5yr, 20yr, depending on the dataset)
Geospatial polygon (gpkg) files:
Spatial extent: -180, 180; -90, 83.67 (xmin, xmax, ymin, ymax)
Temporal extent: annual over 2000-2019
Coordinate ref system: EPSG:4326 - WGS 84
Format: gkpk
Units:
Net-migration: persons per 1000 people per year
A collection of population life tables covering a multitude of countries and many years. Most of the HLD life tables are life tables for national populations, which have been officially published by national statistical offices. Some of the HLD life tables refer to certain regional or ethnic sub-populations within countries. Parts of the HLD life tables are non-official life tables produced by researchers. Life tables describe the extent to which a generation of people (i.e. life table cohort) dies off with age. Life tables are the most ancient and important tool in demography. They are widely used for descriptive and analytical purposes in demography, public health, epidemiology, population geography, biology and many other branches of science. HLD includes the following types of data: * complete life tables in text format; * abridged life tables in text format; * references to statistical publications and other data sources; * scanned copies of the original life tables as they were published. Three scientific institutions are jointly developing the HLD: the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, the Department of Demography at the University of California at Berkeley, USA and the Institut national d''��tudes d��mographiques (INED) in Paris, France. The MPIDR is responsible for maintaining the database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CAMELS-DE provides a comprehensive collection of hydro-meteorological and catchment attributes data for 1582 streamflow gauges across Germany. The time series data is in daily resolution and spans up to 70 years, from January 1951 to December 2020. The static catchment attributes include information about topography, soils, land cover, hydrogeology and human influences in the catchments. Additionally, the dataset includes discharge simulations from a regional Long-Short Term Memory (LSTM) network and a conceptual hydrological model, providing benchmark data for future hydrological modelling studies in Germany.
The accompanying data description gives information on data sources, the structure of the data set and contains extensive information on time series and catchment attribute variables.
Information about the code and methods for generating CAMELS-DE can be found here: https://doi.org/10.5281/zenodo.12760336" target="_blank" rel="noopener">CAMELS-DE Processing Pipeline.
The CAMELS-DE data description paper can be found here: https://doi.org/10.5194/essd-16-5625-2024.
CAMELS-DE is also part of the Caravan project, a global hydrological dataset. Due to the use of data products that are available beyond the Germany national boundaries, Caravan-DE includes 305 additional streamflow gauges, resulting in a total of 1887 streamflow gauges: https://doi.org/10.5281/zenodo.13320514.
english:
The state agencies do not guarantee the accuracy or completeness of the discharge or water level data provided. In addition, all hydrological data may be subject to future revisions, including adjustments to the rating curves or corrections of errors. Therefore, it is necessary to obtain the most recent discharge time series directly from the federal state authorities for projects that require water law permits. Additionally, the regulations of the respective federal state apply and specific enquiries should be made as needed. It is also important to note that the state agencies explicitly disclaim any warranty as to the accuracy or completeness of the data and therefore any liability claims against any of the federal states are also excluded.
german:
Die Ländesämter gewährleisten nicht die Genauigkeit oder Vollständigkeit der bereitgestellten Abfluss oder Wasserstandsdaten. Zudem können alle hydrologischen Daten zukünftigen Überarbeitungen unterliegen, einschließlich Anpassungen der Wasserstands-Abflussbeziehung oder der Korrektur von Fehlern. Daher ist es notwendig, die aktuellsten Abflusszeitreihen direkt bei den Landesbehörden zu beziehen, falls Wasserrechtsgenehmigungen erforderlich sind. Zusätzlich gelten die Vorschriften des jeweiligen Bundeslandes, und spezifische Anfragen sollten bei Bedarf gestellt werden. Es ist ebenfalls wichtig zu beachten, dass die staatlichen Behörden ausdrücklich jegliche Gewährleistung hinsichtlich der Genauigkeit oder Vollständigkeit der Daten ausschließen und somit auch jegliche Haftungsansprüche gegenüber einem der Bundesländer ausgeschlossen sind.
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.