76 datasets found
  1. Total population worldwide 1950-2100

    • statista.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  2. Wildfire Risk to Communities Housing Unit Risk (Image Service)

    • figshare.com
    • anrgeodata.vermont.gov
    • +5more
    bin
    Updated Nov 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Wildfire Risk to Communities Housing Unit Risk (Image Service) [Dataset]. https://figshare.com/articles/dataset/Wildfire_Risk_to_Communities_Housing_Unit_Risk_Image_Service_/25973983
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 23, 2024
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  3. Effect of suicide rates on life expectancy dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 16, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Filip Zoubek; Filip Zoubek
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Effect of suicide rates on life expectancy dataset

    Abstract
    In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
    The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

    Data

    The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

    LICENSE

    THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

    [1] https://www.kaggle.com/szamil/who-suicide-statistics

    [2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

  4. a

    PerCapita CO2 Footprint InDioceses FULL

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Sep 23, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). PerCapita CO2 Footprint InDioceses FULL [Dataset]. https://hub.arcgis.com/content/95787df270264e6ea1c99ffa6ff844ff
    Explore at:
    Dataset updated
    Sep 23, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  5. Live Birth Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    csv, zip
    Updated Jan 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Live Birth Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/live-birth-profiles-by-county
    Explore at:
    csv(1911), csv(320734), zip, csv(9986780), csv(8256822)Available download formats
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.

    The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.

  6. Z

    Wrist-mounted IMU data towards the investigation of free-living human eating...

    • data.niaid.nih.gov
    • explore.openaire.eu
    Updated Jun 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Delopoulos, Anastasios (2022). Wrist-mounted IMU data towards the investigation of free-living human eating behavior - the Free-living Food Intake Cycle (FreeFIC) dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4420038
    Explore at:
    Dataset updated
    Jun 20, 2022
    Dataset provided by
    Diou, Christos
    Kyritsis, Konstantinos
    Delopoulos, Anastasios
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Introduction

    The Free-living Food Intake Cycle (FreeFIC) dataset was created by the Multimedia Understanding Group towards the investigation of in-the-wild eating behavior. This is achieved by recording the subjects’ meals as a small part part of their everyday life, unscripted, activities. The FreeFIC dataset contains the (3D) acceleration and orientation velocity signals ((6) DoF) from (22) in-the-wild sessions provided by (12) unique subjects. All sessions were recorded using a commercial smartwatch ((6) using the Huawei Watch 2™ and the MobVoi TicWatch™ for the rest) while the participants performed their everyday activities. In addition, FreeFIC also contains the start and end moments of each meal session as reported by the participants.

    Description

    FreeFIC includes (22) in-the-wild sessions that belong to (12) unique subjects. Participants were instructed to wear the smartwatch to the hand of their preference well ahead before any meal and continue to wear it throughout the day until the battery is depleted. In addition, we followed a self-report labeling model, meaning that the ground truth is provided from the participant by documenting the start and end moments of their meals to the best of their abilities as well as the hand they wear the smartwatch on. The total duration of the (22) recordings sums up to (112.71) hours, with a mean duration of (5.12) hours. Additional data statistics can be obtained by executing the provided python script stats_dataset.py. Furthermore, the accompanying python script viz_dataset.py will visualize the IMU signals and ground truth intervals for each of the recordings. Information on how to execute the Python scripts can be found below.

    The script(s) and the pickle file must be located in the same directory.

    Tested with Python 3.6.4

    Requirements: Numpy, Pickle and Matplotlib

    Calculate and echo dataset statistics

    $ python stats_dataset.py

    Visualize signals and ground truth

    $ python viz_dataset.py

    FreeFIC is also tightly related to Food Intake Cycle (FIC), a dataset we created in order to investigate the in-meal eating behavior. More information about FIC can be found here and here.

    Publications

    If you plan to use the FreeFIC dataset or any of the resources found in this page, please cite our work:

    @article{kyritsis2020data,
    title={A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating Behavior Using Smartwatches},
    author={Kyritsis, Konstantinos and Diou, Christos and Delopoulos, Anastasios},
    journal={IEEE Journal of Biomedical and Health Informatics}, year={2020},
    publisher={IEEE}}

    @inproceedings{kyritsis2017automated, title={Detecting Meals In the Wild Using the Inertial Data of a Typical Smartwatch}, author={Kyritsis, Konstantinos and Diou, Christos and Delopoulos, Anastasios}, booktitle={2019 41th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)},
    year={2019}, organization={IEEE}}

    Technical details

    We provide the FreeFIC dataset as a pickle. The file can be loaded using Python in the following way:

    import pickle as pkl import numpy as np

    with open('./FreeFIC_FreeFIC-heldout.pkl','rb') as fh: dataset = pkl.load(fh)

    The dataset variable in the snipet above is a dictionary with (5) keys. Namely:

    'subject_id'

    'session_id'

    'signals_raw'

    'signals_proc'

    'meal_gt'

    The contents under a specific key can be obtained by:

    sub = dataset['subject_id'] # for the subject id ses = dataset['session_id'] # for the session id raw = dataset['signals_raw'] # for the raw IMU signals proc = dataset['signals_proc'] # for the processed IMU signals gt = dataset['meal_gt'] # for the meal ground truth

    The sub, ses, raw, proc and gt variables in the snipet above are lists with a length equal to (22). Elements across all lists are aligned; e.g., the (3)rd element of the list under the 'session_id' key corresponds to the (3)rd element of the list under the 'signals_proc' key.

    sub: list Each element of the sub list is a scalar (integer) that corresponds to the unique identifier of the subject that can take the following values: ([1, 2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 20]). It should be emphasized that the subjects with ids (15, 16, 17, 18, 19) and (20) belong to the held-out part of the FreeFIC dataset (more information can be found in ( )the publication titled "A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating Behavior Using Smartwatches" by Kyritsis et al). Moreover, the subject identifier in FreeFIC is in-line with the subject identifier in the FIC dataset (more info here and here); i.e., FIC’s subject with id equal to (2) is the same person as FreeFIC’s subject with id equal to (2).

    ses: list Each element of this list is a scalar (integer) that corresponds to the unique identifier of the session that can range between (1) and (5). It should be noted that not all subjects have the same number of sessions.

    raw: list Each element of this list is dictionary with the 'acc' and 'gyr' keys. The data under the 'acc' key is a (N_{acc} \times 4) numpy.ndarray that contains the timestamps in seconds (first column) and the (3D) raw accelerometer measurements in (g) (second, third and forth columns - representing the (x, y ) and (z) axis, respectively). The data under the 'gyr' key is a (N_{gyr} \times 4) numpy.ndarray that contains the timestamps in seconds (first column) and the (3D) raw gyroscope measurements in ({degrees}/{second})(second, third and forth columns - representing the (x, y ) and (z) axis, respectively). All sensor streams are transformed in such a way that reflects all participants wearing the smartwatch at the same hand with the same orientation, thusly achieving data uniformity. This transformation is in par with the signals in the FIC dataset (more info here and here). Finally, the length of the raw accelerometer and gyroscope numpy.ndarrays is different ((N_{acc} eq N_{gyr})). This behavior is predictable and is caused by the Android platform.

    proc: list Each element of this list is an (M\times7) numpy.ndarray that contains the timestamps, (3D) accelerometer and gyroscope measurements for each meal. Specifically, the first column contains the timestamps in seconds, the second, third and forth columns contain the (x,y) and (z) accelerometer values in (g) and the fifth, sixth and seventh columns contain the (x,y) and (z) gyroscope values in ({degrees}/{second}). Unlike elements in the raw list, processed measurements (in the proc list) have a constant sampling rate of (100) Hz and the accelerometer/gyroscope measurements are aligned with each other. In addition, all sensor streams are transformed in such a way that reflects all participants wearing the smartwatch at the same hand with the same orientation, thusly achieving data uniformity. This transformation is in par with the signals in the FIC dataset (more info here and here). No other preprocessing is performed on the data; e.g., the acceleration component due to the Earth's gravitational field is present at the processed acceleration measurements. The potential researcher can consult the article "A Data Driven End-to-end Approach for In-the-wild Monitoring of Eating Behavior Using Smartwatches" by Kyritsis et al. on how to further preprocess the IMU signals (i.e., smooth and remove the gravitational component).

    meal_gt: list Each element of this list is a (K\times2) matrix. Each row represents the meal intervals for the specific in-the-wild session. The first column contains the timestamps of the meal start moments whereas the second one the timestamps of the meal end moments. All timestamps are in seconds. The number of meals (K) varies across recordings (e.g., a recording exist where a participant consumed two meals).

    Ethics and funding

    Informed consent, including permission for third-party access to anonymised data, was obtained from all subjects prior to their engagement in the study. The work has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No 727688 - BigO: Big data against childhood obesity.

    Contact

    Any inquiries regarding the FreeFIC dataset should be addressed to:

    Dr. Konstantinos KYRITSIS

    Multimedia Understanding Group (MUG) Department of Electrical & Computer Engineering Aristotle University of Thessaloniki University Campus, Building C, 3rd floor Thessaloniki, Greece, GR54124

    Tel: +30 2310 996359, 996365 Fax: +30 2310 996398 E-mail: kokirits [at] mug [dot] ee [dot] auth [dot] gr

  7. d

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • datasets.ai
    • data.ct.gov
    • +1more
    23, 40, 55, 8
    Updated Sep 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2024). COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE [Dataset]. https://datasets.ai/datasets/covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-7-days-by
    Explore at:
    23, 55, 40, 8Available download formats
    Dataset updated
    Sep 8, 2024
    Dataset authored and provided by
    State of Connecticut
    Description

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.

    Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  8. T

    United States Population

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +17more
    csv, excel, json, xml
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Population [Dataset]. https://tradingeconomics.com/united-states/population
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1900 - Dec 31, 2024
    Area covered
    United States
    Description

    The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  9. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +3more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  10. d

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-14-days-b
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    As of 10/22/2020, this dataset is no longer being updated and has been replaced with a new dataset, which can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2 This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 PCR diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity). A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case. These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities. These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

  11. Forest proximate people - 5km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Forest proximate people - 5km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b5
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Maintainer: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest proximate people - 5km cutoff distance"

  12. Z

    High resolution global dataset of human-provided food wastes in 2021

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chen, Xin (2024). High resolution global dataset of human-provided food wastes in 2021 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10616780
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset authored and provided by
    Chen, Xin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description:

    There is growing recognition that human-provided food resources are becoming increasingly available to animals across the globe (Oro et al., 2013). The food resources that are wasted by humans have influenced predators’ ecology and behavior and can indirectly affect their co-occurring species, leading to mostly negative ecological effects (Newsome et al., 2014). However, large increases have been found in the abundances of terrestrial mammalian predators such as coyotes (Canis latrans), cats (Felis catus) and red foxes (Vulpes vulpes), which are associated with their access to waste foods provided by humans (Denny et al., 2002; Fedriani et al., 2001; Shapira et al., 2008). Therefore, under anthropogenic global changes where human activities are continually expanding, a spatially explicit data for waste foods is essential to assessing the ecological effects of anthropogenic food subsidies to species occurrences and abundances.

    The repository contains a global dataset consisting of four different variables to depict anthropogenic food waste index: household food waste (tons/year), food service food waste (tons/year), retail food waste (tons/year), and total human-provided food waste (tons/year). To produce the dataset, I first allocated the food waste estimates (kg/capita/year) to 30 arc-second grid cells for each county. The food waste estimates for 2021 were generated by normalizing different food waste measurements to a single metric (i.e., kg/capita/year), accounting for known biases or different scopes of measurement, and aggregating a series of studies or observations if multiple observations existed in a geographic entity of interest (United Nations Environment Programme 2021). The food waste estimates were then multiplied by the estimated population count for 2021 produced by Sims et al. 2022. The data files were produced as global rasters at 30 arc-second (~1km at the equator) resolution in geotiff format under WGS 84 geographical coordinate system.

    Keywords: Anthropogenic food subsidies, human-provided food wastes, household food waste, food service food waste, retail food waste, food availability, anthropogenic global changes, human activities

    Reference:

    United Nations Environment Programme (2021). Food Waste Index Report 2021. Nairobi.

    Denny, E., Yaklovlevich, P., Eldridge, M.D.B. & Dickman, C.R. (2002) Social and genetic analysis of a population of free-living cats (Felis catus L.) exploiting a resource-rich habitat. Wildlife Research, 29, 405–413.

    Fedriani, J.M., Fuller, T.K. & Sauvajot, R.M. (2001) Does availability of anthropogenic food enhance densities of omnivorous mammals? An example with coyotes in southern California. Ecography, 24, 325–331.

    Newsome, T. M., Dellinger, J. A., Pavey, C. R., Ripple, W. J., Shores, C. R., Wirsing, A. J., & Dickman, C. R. (2015). The ecological effects of providing resource subsidies to predators. Global Ecology and Biogeography, 24, 1-11.

    Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S., & Martínez‐Abraín, A. (2013). Ecological and evolutionary implications of food subsidies from humans. Ecology letters, 16(12), 1501-1514.

    Shapira, I., Sultan, H. & Shanas, U. (2008) Agricultural farming alters predator–prey interactions in nearby natural habitats. Animal Conservation, 11, 1–8.

    Sims, K., Reith, A., Bright, E., McKee, J., & Rose, A. (2022). LandScan Global 2021 [Data set]. Oak Ridge National Laboratory. https://doi.org/10.48690/1527702.

  13. V

    Number of People living below poverty level in Virginia localities,...

    • data.virginia.gov
    csv
    Updated Feb 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Other (2024). Number of People living below poverty level in Virginia localities, including children below age 18 [Dataset]. https://data.virginia.gov/dataset/number-of-people-living-below-poverty-level-in-virginia-localities-including-children-below-age-18
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 3, 2024
    Dataset authored and provided by
    Other
    Area covered
    Virginia
    Description

    This dataset uses U.S. Census table B17020 - Poverty Status by Age The data shows the number of people per locality, the overall number of people living below the poverty level per locality, and then the number of people under age 18 living below the poverty level per locality. This last data element is broken down into three segments - aged <6 years, 6-11 years, and 12-17 years, which when added together equal the total number of children under age 18 living below the poverty level per locality.

  14. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  15. o

    har

    • openml.org
    Updated May 22, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). har [Dataset]. https://www.openml.org/d/1478
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 22, 2015
    Description

    Author: Jorge L. Reyes-Ortiz, Davide Anguita, Alessandro Ghio, Luca Oneto and Xavier Parra
    Source: UCI
    Please cite: Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

    Human Activity Recognition
    Human Activity Recognition (HAR) database built from the recordings of 30 subjects performing activities of daily living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors. This dataset version contains all the training and testing examples provided in the original data repository.

    The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers were selected for generating the training data and 30% the test data.

    The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low-frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain.

    Attribute Information

    For each record in the dataset it is provided: * Triaxial acceleration from the accelerometer (total acceleration) and the estimated body acceleration.
    * Triaxial Angular velocity from the gyroscope.
    * A 561-feature vector with time and frequency domain variables.
    * It's activity label.

    Relevant Papers

    Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012

    Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge L. Reyes-Ortiz. Energy Efficient Smartphone-Based Activity Recognition using Fixed-Point Arithmetic. Journal of Universal Computer Science. Special Issue in Ambient Assisted Living: Home Care. Volume 19, Issue 9. May 2013

    Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. 4th International Workshop of Ambient Assisted Living, IWAAL 2012, Vitoria-Gasteiz, Spain, December 3-5, 2012. Proceedings. Lecture Notes in Computer Science 2012, pp 216-223.

    Jorge Luis Reyes-Ortiz, Alessandro Ghio, Xavier Parra-Llanas, Davide Anguita, Joan Cabestany, Andreu Català. Human Activity and Motion Disorder Recognition: Towards Smarter Interactive Cognitive Environments. 21th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.

  16. a

    Top 10 Dioceses CCF

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Top 10 Dioceses CCF [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/items/6f42562cfc57427abe9b132dc05cfeb4
    Explore at:
    Dataset updated
    Oct 26, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  17. a

    Catholic Carbon Footprint Dashboard

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Dashboard [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/app/dba43eb6dd5e4879973b57095c386c5b
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  18. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    csv, zip
    Updated Mar 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(463460), csv(164006), csv(4689434), zip, csv(16301), csv(200270), csv(5034), csv(2026589), csv(5401561), csv(419332), csv(300479)Available download formats
    Dataset updated
    Mar 25, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  19. Data from: Crowd Counting Dataset

    • kaggle.com
    Updated Feb 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Training Data (2024). Crowd Counting Dataset [Dataset]. https://www.kaggle.com/datasets/trainingdatapro/crowd-counting-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 16, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Training Data
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Crowd Counting Dataset

    The dataset includes images featuring crowds of people ranging from 0 to 5000 individuals. The dataset includes a diverse range of scenes and scenarios, capturing crowds in various settings. Each image in the dataset is accompanied by a corresponding JSON file containing detailed labeling information for each person in the crowd for crowd count and classification.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F4b51a212e59f575bd6978f215a32aca0%2FFrame%2064.png?generation=1701336719197861&alt=media" alt="">

    Types of crowds in the dataset: 0-1000, 1000-2000, 2000-3000, 3000-4000 and 4000-5000

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F72e0fed3ad13826d6545ff75a79ed9db%2FFrame%2065.png?generation=1701337622225724&alt=media" alt="">

    This dataset provides a valuable resource for researchers and developers working on crowd counting technology, enabling them to train and evaluate their algorithms with a wide range of crowd sizes and scenarios. It can also be used for benchmarking and comparison of different crowd counting algorithms, as well as for real-world applications such as public safety and security, urban planning, and retail analytics.

    Full version of the dataset includes 647 labeled images of crowds, leave a request on TrainingData to buy the dataset

    Statistics for the dataset (number of images by the crowd's size and image width):

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12421376%2F2e9f36820e62a2ef62586fc8e84387e2%2FFrame%2063.png?generation=1701336725293625&alt=media" alt="">

    OTHER BIOMETRIC DATASETS:

    Get the Dataset

    This is just an example of the data

    Leave a request on https://trainingdata.pro/datasets to learn about the price and buy the dataset

    Content

    • images - includes original images of crowds placed in subfolders according to its size,
    • labels - includes json-files with labeling and visualised labeling for the images in the previous folder,
    • csv file - includes information for each image in the dataset

    File with the extension .csv

    • id: id of the image,
    • image: link to access the original image,
    • label: link to access the json-file with labeling,
    • type: type of the crowd on the photo

    TrainingData provides high-quality data annotation tailored to your needs

    keywords: crowd counting, crowd density estimation, people counting, crowd analysis, image annotation, computer vision, deep learning, object detection, object counting, image classification, dense regression, crowd behavior analysis, crowd tracking, head detection, crowd segmentation, crowd motion analysis, image processing, machine learning, artificial intelligence, ai, human detection, crowd sensing, image dataset, public safety, crowd management, urban planning, event planning, traffic management

  20. d

    DOHMH COVID-19 Antibody-by-Neighborhood Poverty

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). DOHMH COVID-19 Antibody-by-Neighborhood Poverty [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-antibody-by-neighborhood-poverty
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by ZIP Code Tabulation Area (ZCTA) neighborhood poverty group. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-poverty.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Neighborhood-level poverty groups were classified in a manner consistent with Health Department practices to describe and monitor disparities in health in NYC. Neighborhood poverty measures are defined as the percentage of people earning below the Federal Poverty Threshold (FPT) within a ZCTA. The standard cut-points for defining categories of neighborhood-level poverty in NYC are: • Low: <10% of residents in ZCTA living below the FPT • Medium: 10% to <20% • High: 20% to <30% • Very high: ≥30% residents living below the FPT The ZCTAs used for classification reflect the first non-missing address within NYC for each person reported with an antibody test result. Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Rates for poverty were calculated using direct standardization for age at diagnosis and weighting by the US 2000 standard population. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certain

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
Organization logo

Total population worldwide 1950-2100

Explore at:
22 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

Search
Clear search
Close search
Google apps
Main menu