40 datasets found
  1. World Population Live Dataset 2022

    • kaggle.com
    zip
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). World Population Live Dataset 2022 [Dataset]. https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset/code
    Explore at:
    zip(10169 bytes)Available download formats
    Dataset updated
    Sep 10, 2022
    Authors
    Aman Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.

    Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.

    Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.

    Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.

    ColumnsDescription
    CCA33 Digit Country/Territories Code
    NameName of the Country/Territories
    2022Population of the Country/Territories in the year 2022.
    2020Population of the Country/Territories in the year 2020.
    2015Population of the Country/Territories in the year 2015.
    2010Population of the Country/Territories in the year 2010.
    2000Population of the Country/Territories in the year 2000.
    1990Population of the Country/Territories in the year 1990.
    1980Population of the Country/Territories in the year 1980.
    1970Population of the Country/Territories in the year 1970.
    Area (km²)Area size of the Country/Territories in square kilometer.
    Density (per km²)Population Density per square kilometer.
    Grow...
  2. d

    Poverty Mapping Project: Global Subnational Infant Mortality Rates

    • search.dataone.org
    • dataverse.harvard.edu
    • +4more
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for International Earth Science Information Network - CIESIN - Columbia University (2025). Poverty Mapping Project: Global Subnational Infant Mortality Rates [Dataset]. http://doi.org/10.7910/DVN/WTNAHQ
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Center for International Earth Science Information Network - CIESIN - Columbia University
    Time period covered
    Jan 1, 2000 - Dec 31, 2000
    Description

    The Poverty Mapping Project: Global Subnational Infant Mortality Rates data set consists of estimates of infant mortality rates for the year 2000. The infant mortality rate for a region or country is defined as the number of children who die before their first birthday for every 1,000 live births. The data products include a shapefile (vector data) of rates, grids (raster data) of rates (per 10,000 live births in order to preserve precision in integer format), births (the rate denominator) and deaths (the rate numerator), and a tabular data set of the same and associated data. Over 10,000 national and subnational units are represented in the tabular and grid data sets, while the shapefile uses approximately 1,000 units in order to protect the intellectual property of source data sets for Brazil, China, and Mexico. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN). To provide a global subnational map of infant mortality rate estimates that can be used by a wide user community in interdisciplinary studies of health, poverty and the environment.

  3. n

    ISLSCP II Global Population of the World

    • access.earthdata.nasa.gov
    • search.dataone.org
    • +6more
    zip
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ISLSCP II Global Population of the World [Dataset]. http://doi.org/10.3334/ORNLDAAC/975
    Explore at:
    zipAvailable download formats
    Time period covered
    Jan 1, 1990 - Dec 31, 1995
    Area covered
    Earth
    Description

    Global Population of the World (GPW) translates census population data to a latitude-longitude grid so that population data may be used in cross-disciplinary studies. There are three data files with this data set for the reference years 1990 and 1995. Over 127,000 administrative units and population counts were collected and integrated from various sources to create the gridded data. In brief, GPW was created using the following steps:

    * Population data were estimated for the product reference years, 1990 and 1995, either by the data source or by interpolating or extrapolating the given estimates for other years.
    * Additional population estimates were created by adjusting the source population data to match UN national population estimates for the reference years.
    * Borders and coastlines of the spatial data were matched to the Digital Chart of the World where appropriate and lakes from the Digital Chart of the World were added.
    * The resulting data were then transformed into grids of UN-adjusted and unadjusted population counts for the reference years.
    * Grids containing the area of administrative boundary data in each cell (net of lakes) were created and used with the count grids to produce population densities.
    

    As with any global data set based on multiple data sources, the spatial and attribute precision of GPW is variable. The level of detail and accuracy, both in time and space, vary among the countries for which data were obtained.

  4. Total population worldwide 1950-2100

    • statista.com
    • feherkonyveloiroda.hu
    • +2more
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  5. Land Cover 2050 - Regional

    • wb-sdgs.hub.arcgis.com
    • morocco.africageoportal.com
    • +8more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Regional [Dataset]. https://wb-sdgs.hub.arcgis.com/datasets/ec4d1d1fe03a4e62997a7a9397cf644d
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this regional model layer when performing analysis within a single continent. This layer displays a single global land cover map that is modeled by region for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  6. d

    Data from: West Africa Coastal Vulnerability Mapping: Population...

    • search.dataone.org
    • dataverse.harvard.edu
    • +3more
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jones, B (2025). West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 [Dataset]. http://doi.org/10.7910/DVN/FEAVGB
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Jones, B
    Time period covered
    Dec 6, 2018
    Area covered
    West Africa
    Description

    The West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 data set is based on an unreleased working version of the Gridded Population of the World (GPW), Version 4, year 2010 population count raster but at a coarser 5 arc-minute resolution. Bryan Jones of Baruch College produced country-level projections based on the Shared Socioeconomic Pathway 4 (SSP4). SSP4 reflects a divided world where cities that have relatively high standards of living, are attractive to internal and international migrants. In low income countries, rapidly growing rural populations live on shrinking areas of arable land due to both high population pressure and expansion of large-scale mechanized farming by international agricultural firms. This pressure induces large migration flow to the cities, contributing to fast urbanization, although urban areas do not provide many opportunities for the poor and there is a massive expansion of slums and squatter settlements. This scenario may not be the most likely for the West Africa region, but it has internal coherence and is at least plausible. To provide areas in West Africa that may be particularly exposed to climate stressors owing to future high population growth.

  7. d

    National Aggregates of Geospatial Data Collection: Population, Landscape,...

    • search.dataone.org
    • dataverse.harvard.edu
    • +6more
    Updated Oct 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Center for International Earth Science Information Network - CIESIN - Columbia University (2025). National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 3 (PLACE III) [Dataset]. http://doi.org/10.7910/DVN/E1PWNN
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Center for International Earth Science Information Network - CIESIN - Columbia University
    Time period covered
    Jul 9, 2012
    Description

    The National Aggregates of Geospatial Data Collection: Population, Landscape, And Climate Estimates, Version 3 (PLACE III) data set contains estimates of national-level aggregations in urban, rural, and total designations of territorial extent and population size by biome, climate zone, coastal proximity zone, elevation zone, and population density zone, for 232 statistical areas (countries and other UN recognized territories). This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN). To provide tabular data to researchers without GIS capabilities who need data on population and land area by country across a range of physical characteristics. These include measures such as the number of persons living within coastal zones, the percent of a region within specific elevation strata, or the number of persons living within different climate zones.

  8. Data from: Smart Location Database

    • catalog.data.gov
    • gimi9.com
    • +2more
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Policy, Office of Sustainable Communities (Publisher) (2025). Smart Location Database [Dataset]. https://catalog.data.gov/dataset/smart-location-database8
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    A large body of research has demonstrated that land use and urban form can have a significant effect on transportation outcomes. People who live and/or work in compact neighborhoods with a walkable street grid and easy access to public transit, jobs, stores, and services are more likely to have several transportation options to meet their everyday needs. As a result, they can choose to drive less, which reduces their emissions of greenhouse gases and other pollutants compared to people who live and work in places that are not location efficient. Walking, biking, and taking public transit can also save people money and improve their health by encouraging physical activity. The Smart Location Database summarizes several demographic, employment, and built environment variables for every census block group (CBG) in the United States. The database includes indicators of the commonly cited “D” variables shown in the transportation research literature to be related to travel behavior. The Ds include residential and employment density, land use diversity, design of the built environment, access to destinations, and distance to transit. SLD variables can be used as inputs to travel demand models, baseline data for scenario planning studies, and combined into composite indicators characterizing the relative location efficiency of CBG within U.S. metropolitan regions. This update features the most recent geographic boundaries (2019 Census Block Groups) and new and expanded sources of data used to calculate variables. Entirely new variables have been added and the methods used to calculate some of the SLD variables have changed. More information on the National Walkability index: https://www.epa.gov/smartgrowth/smart-location-mapping More information on the Smart Location Calculator: https://www.slc.gsa.gov/slc/

  9. D

    Data from: A historical land use data set for the Holocene; HYDE 3.2...

    • archaeology.datastations.nl
    • datasearch.gesis.org
    text/x-fixed-field +2
    Updated May 11, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Klein Klein Goldewijk; Klein Klein Goldewijk (2016). A historical land use data set for the Holocene; HYDE 3.2 (replaced) [Dataset]. http://doi.org/10.17026/DANS-ZNK-CFY3
    Explore at:
    text/x-fixed-field(59642334), text/x-fixed-field(58828486), text/x-fixed-field(52709254), text/x-fixed-field(78698999), text/x-fixed-field(52455025), text/x-fixed-field(65785087), text/x-fixed-field(57178200), text/x-fixed-field(51557797), text/x-fixed-field(51724953), text/x-fixed-field(52156945), text/x-fixed-field(58311159), text/x-fixed-field(51925173), text/x-fixed-field(59534671), text/x-fixed-field(52460031), text/x-fixed-field(52035586), text/x-fixed-field(51744730), text/x-fixed-field(51639703), text/x-fixed-field(51659125), text/x-fixed-field(51638326), text/x-fixed-field(58758875), text/x-fixed-field(79466420), text/x-fixed-field(66059130), text/x-fixed-field(79459524), text/x-fixed-field(65915521), text/x-fixed-field(51867343), text/x-fixed-field(51769328), text/x-fixed-field(51719363), text/x-fixed-field(60179862), text/x-fixed-field(65915109), text/x-fixed-field(51690856), text/x-fixed-field(51739790), text/x-fixed-field(51718151), text/x-fixed-field(78890321), text/x-fixed-field(60826063), text/x-fixed-field(55537895), text/x-fixed-field(79940768), text/x-fixed-field(65827887), text/x-fixed-field(79783022), text/x-fixed-field(66126661), text/x-fixed-field(57042528), text/x-fixed-field(79716186), text/x-fixed-field(66078737), text/x-fixed-field(60089863), text/x-fixed-field(60751439), text/x-fixed-field(55586117), text/x-fixed-field(59800013), text/x-fixed-field(61401852), text/x-fixed-field(62308674), text/x-fixed-field(58415350), txt(24411), text/x-fixed-field(51957990), text/x-fixed-field(59527512), text/x-fixed-field(58913121), text/x-fixed-field(66049370), text/x-fixed-field(77726694), text/x-fixed-field(58102033), text/x-fixed-field(60688543), text/x-fixed-field(52402395), text/x-fixed-field(52243862), text/x-fixed-field(56050234), text/x-fixed-field(52672256), text/x-fixed-field(66399903), text/x-fixed-field(51695844), text/x-fixed-field(61307486), text/x-fixed-field(51565533), text/x-fixed-field(79693527), text/x-fixed-field(51571661), text/x-fixed-field(66358412), text/x-fixed-field(61400609), text/x-fixed-field(60914752), text/x-fixed-field(51731117), text/x-fixed-field(51679382), text/x-fixed-field(59886708), text/x-fixed-field(78729342), text/x-fixed-field(61091994), text/x-fixed-field(59819941), text/x-fixed-field(51623475), text/x-fixed-field(66082902), text/x-fixed-field(51869103), text/x-fixed-field(52010666), text/x-fixed-field(60262900), text/x-fixed-field(59664499), text/x-fixed-field(53425782), text/x-fixed-field(80511674), text/x-fixed-field(66110950), text/x-fixed-field(66137362), text/x-fixed-field(59353774), text/x-fixed-field(53182091), text/x-fixed-field(66410484), text/x-fixed-field(66574787), text/x-fixed-field(51570450), text/x-fixed-field(60894081), text/x-fixed-field(60999770), text/x-fixed-field(64031540), text/x-fixed-field(65853056), text/x-fixed-field(79575837), text/x-fixed-field(66943568), text/x-fixed-field(51719630), text/x-fixed-field(58143635), text/x-fixed-field(52442028), text/x-fixed-field(66484603), text/x-fixed-field(78318357), text/x-fixed-field(59924182), text/x-fixed-field(54821965), text/x-fixed-field(79468298), text/x-fixed-field(77711984), text/x-fixed-field(51714473), text/x-fixed-field(51916995), text/x-fixed-field(78464716), text/x-fixed-field(80308912), text/x-fixed-field(61418559), text/x-fixed-field(51580910), text/x-fixed-field(51741789), text/x-fixed-field(51669616), text/x-fixed-field(58533731), text/x-fixed-field(52077977), text/x-fixed-field(51764968), text/x-fixed-field(66021030), text/x-fixed-field(51638821), text/x-fixed-field(78904470), text/x-fixed-field(51656399), text/x-fixed-field(52031874), text/x-fixed-field(67013847), text/x-fixed-field(60523513), text/x-fixed-field(51967925), txt(882220), text/x-fixed-field(78918938), text/x-fixed-field(57166775), text/x-fixed-field(78675177), text/x-fixed-field(60988441), text/x-fixed-field(64555320), text/x-fixed-field(63568439), text/x-fixed-field(51638468), text/x-fixed-field(79003913), text/x-fixed-field(78688617), text/x-fixed-field(51699352), text/x-fixed-field(64117529), text/x-fixed-field(51676979), text/x-fixed-field(58854483), text/x-fixed-field(51705740), text/x-fixed-field(61409384), text/x-fixed-field(52346447), text/x-fixed-field(51585156), text/x-fixed-field(58758148), text/x-fixed-field(78762456), text/x-fixed-field(66982793), text/x-fixed-field(51622345), txt(20864), text/x-fixed-field(52566182), text/x-fixed-field(51933954), text/x-fixed-field(51637681), text/x-fixed-field(51580197), text/x-fixed-field(63029395), text/x-fixed-field(78701373), text/x-fixed-field(51893973), text/x-fixed-field(51745798), text/x-fixed-field(62064071), text/x-fixed-field(60922668), text/x-fixed-field(64089023), text/x-fixed-field(52814374), text/x-fixed-field(53228008), text/x-fixed-field(78912412), text/x-fixed-field(78691756), text/x-fixed-field(55503789), text/x-fixed-field(78389651), text/x-fixed-field(52455001), text/x-fixed-field(78923167), text/x-fixed-field(59504669), text/x-fixed-field(51743350), text/x-fixed-field(51872868), text/x-fixed-field(78741583), text/x-fixed-field(58940238), text/x-fixed-field(63999522), text/x-fixed-field(52397490), text/x-fixed-field(51954273), text/x-fixed-field(52647133), txt(882541), text/x-fixed-field(52347979), text/x-fixed-field(54194724), text/x-fixed-field(51669285), text/x-fixed-field(79852952), text/x-fixed-field(60768233), text/x-fixed-field(78699899), text/x-fixed-field(51647108), text/x-fixed-field(51639285), text/x-fixed-field(78320462), text/x-fixed-field(66044033), text/x-fixed-field(80560578), text/x-fixed-field(60676641), text/x-fixed-field(62356794), text/x-fixed-field(78776587), text/x-fixed-field(79593393), text/x-fixed-field(52183389), text/x-fixed-field(60467277), text/x-fixed-field(51675043), text/x-fixed-field(65876404), text/x-fixed-field(59193420), text/x-fixed-field(59968737), text/x-fixed-field(51600688), text/x-fixed-field(78936762), text/x-fixed-field(52416252), text/x-fixed-field(65917452), text/x-fixed-field(78690849), text/x-fixed-field(58921370), text/x-fixed-field(59541555), text/x-fixed-field(52593094), text/x-fixed-field(79550904), text/x-fixed-field(51625946), text/x-fixed-field(51642004), text/x-fixed-field(66080196), text/x-fixed-field(66022630), text/x-fixed-field(51674859), text/x-fixed-field(78922975), text/x-fixed-field(61624976), text/x-fixed-field(51956719), text/x-fixed-field(78837253), text/x-fixed-field(66519139), text/x-fixed-field(51775720), txt(23802), text/x-fixed-field(78911012), text/x-fixed-field(61489797), text/x-fixed-field(53596807), text/x-fixed-field(61160135), text/x-fixed-field(51864718), text/x-fixed-field(78209022), text/x-fixed-field(56005049), text/x-fixed-field(60037204), text/x-fixed-field(51600198), text/x-fixed-field(52084093), text/x-fixed-field(51587813), text/x-fixed-field(79838882), text/x-fixed-field(61605928), text/x-fixed-field(66080536), text/x-fixed-field(51654316), text/x-fixed-field(60769224), text/x-fixed-field(58916264), text/x-fixed-field(80137187), text/x-fixed-field(51653703), text/x-fixed-field(60572692), text/x-fixed-field(64023554), text/x-fixed-field(51558930), text/x-fixed-field(79911092), text/x-fixed-field(66054887), text/x-fixed-field(58324555), text/x-fixed-field(58698665), text/x-fixed-field(51693583), text/x-fixed-field(60008618), text/x-fixed-field(66731801), text/x-fixed-field(78523364), text/x-fixed-field(78657655), text/x-fixed-field(51586742), text/x-fixed-field(59522508), text/x-fixed-field(78855704), text/x-fixed-field(60737417), text/x-fixed-field(79499633), text/x-fixed-field(52044216), text/x-fixed-field(51721109), text/x-fixed-field(80077138), text/x-fixed-field(56012634), text/x-fixed-field(58367650), text/x-fixed-field(66274702), text/x-fixed-field(51583975), text/x-fixed-field(65828214), text/x-fixed-field(59578188), text/x-fixed-field(61096244), text/x-fixed-field(78260313), txt(22117), text/x-fixed-field(51605382), text/x-fixed-field(51600557), text/x-fixed-field(60828192), text/x-fixed-field(51741403), text/x-fixed-field(51748268), text/x-fixed-field(78782112), text/x-fixed-field(58615205), text/x-fixed-field(60901381), text/x-fixed-field(77776165), text/x-fixed-field(62140514), text/x-fixed-field(59664874), text/x-fixed-field(60713412), text/x-fixed-field(77724570), text/x-fixed-field(51770994), text/x-fixed-field(66672003), text/x-fixed-field(60392995), text/x-fixed-field(51931814), text/x-fixed-field(51753572), text/x-fixed-field(51646540), text/x-fixed-field(60829741), text/x-fixed-field(51770172), text/x-fixed-field(78934641), text/x-fixed-field(58431682), text/x-fixed-field(66046796), text/x-fixed-field(51571043), text/x-fixed-field(58561148), text/x-fixed-field(60656342), text/x-fixed-field(78918184), text/x-fixed-field(52032184), text/x-fixed-field(51685488), text/x-fixed-field(51681942), text/x-fixed-field(66047655), text/x-fixed-field(51600191), text/x-fixed-field(51766934), text/x-fixed-field(79843677), text/x-fixed-field(51716970), text/x-fixed-field(59616666), text/x-fixed-field(60681000), text/x-fixed-field(67212660), txt(24821), text/x-fixed-field(51677238), text/x-fixed-field(78871118), text/x-fixed-field(51639508), text/x-fixed-field(60964697), text/x-fixed-field(78923975), text/x-fixed-field(60467528), text/x-fixed-field(78442067), text/x-fixed-field(67053909), text/x-fixed-field(51589180), text/x-fixed-field(65905251), text/x-fixed-field(78911446), text/x-fixed-field(51887128), text/x-fixed-field(66909699), text/x-fixed-field(51737616), text/x-fixed-field(61418291), text/x-fixed-field(60116062), text/x-fixed-field(64516361), text/x-fixed-field(52657269), text/x-fixed-field(60668207), text/x-fixed-field(78928304), text/x-fixed-field(58898995), text/x-fixed-field(52073423), text/x-fixed-field(78059328), text/x-fixed-field(61055347), text/x-fixed-field(79461957), text/x-fixed-field(58478923), text/x-fixed-field(51951205), text/x-fixed-field(51568166), text/x-fixed-field(51693029), text/x-fixed-field(66164613), text/x-fixed-field(57480193), text/x-fixed-field(51718830), text/x-fixed-field(58988878), text/x-fixed-field(51671323), text/x-fixed-field(51640881), text/x-fixed-field(77788707), text/x-fixed-field(66850371), text/x-fixed-field(61357731), text/x-fixed-field(60659042), text/x-fixed-field(58681310), text/x-fixed-field(60813893), text/x-fixed-field(56009917), text/x-fixed-field(78650431), text/x-fixed-field(60852126), text/x-fixed-field(78646446), text/x-fixed-field(63108852), txt(865904), text/x-fixed-field(67085423), text/x-fixed-field(67005421), text/x-fixed-field(60186653), text/x-fixed-field(51739203), text/x-fixed-field(78931176), text/x-fixed-field(51703368), text/x-fixed-field(67180620), text/x-fixed-field(53256510), text/x-fixed-field(51720135), text/x-fixed-field(52206107), text/x-fixed-field(61220533), text/x-fixed-field(78724434), text/x-fixed-field(80248056), text/x-fixed-field(51593292), text/x-fixed-field(61274990), text/x-fixed-field(51694720), text/x-fixed-field(51666480), text/x-fixed-field(60731764), text/x-fixed-field(56035627), text/x-fixed-field(61498459), text/x-fixed-field(66007202), text/x-fixed-field(51724590), text/x-fixed-field(58901769), text/x-fixed-field(65772411), text/x-fixed-field(61446909), text/x-fixed-field(51675710), text/x-fixed-field(67028452), text/x-fixed-field(51888914), txt(890471), text/x-fixed-field(51688621), text/x-fixed-field(65908998), text/x-fixed-field(61490943), text/x-fixed-field(65897118), text/x-fixed-field(51642791), text/x-fixed-field(51705407), text/x-fixed-field(61179746), text/x-fixed-field(51849790), text/x-fixed-field(66154270), text/x-fixed-field(78703108), text/x-fixed-field(78244885), text/x-fixed-field(51570523), text/x-fixed-field(60589214), text/x-fixed-field(78709863), text/x-fixed-field(51882678), text/x-fixed-field(52939040), text/x-fixed-field(60859515), text/x-fixed-field(78824312), text/x-fixed-field(59334766), text/x-fixed-field(66333535), text/x-fixed-field(67039794), text/x-fixed-field(77799569), text/x-fixed-field(60853727), text/x-fixed-field(51884955), text/x-fixed-field(59772061), text/x-fixed-field(78813289), text/x-fixed-field(79728252), text/x-fixed-field(59866026), text/x-fixed-field(65828757), text/x-fixed-field(58704036), text/x-fixed-field(51599205), text/x-fixed-field(55040576), text/x-fixed-field(59621275), text/x-fixed-field(77750635), text/x-fixed-field(51671010), text/x-fixed-field(55935498), text/x-fixed-field(52053257), text/x-fixed-field(80219185), text/x-fixed-field(64519824), text/x-fixed-field(65879170), text/x-fixed-field(52155421), text/x-fixed-field(51615875), text/x-fixed-field(51671938), text/x-fixed-field(51885028), text/x-fixed-field(64099012), text/x-fixed-field(51638560), text/x-fixed-field(66039614), text/x-fixed-field(78600109), text/x-fixed-field(66043874), text/x-fixed-field(66113486), text/x-fixed-field(65843332), text/x-fixed-field(59634679), text/x-fixed-field(80421919), text/x-fixed-field(59242727), text/x-fixed-field(51834698), text/x-fixed-field(60544734), text/x-fixed-field(51601045), text/x-fixed-field(56036454), text/x-fixed-field(61442591), text/x-fixed-field(78825215), text/x-fixed-field(59622701), text/x-fixed-field(78880173), text/x-fixed-field(61459554), text/x-fixed-field(57130104), text/x-fixed-field(52243613), text/x-fixed-field(66065704), text/x-fixed-field(51733438), text/x-fixed-field(66331013), text/x-fixed-field(58241238), text/x-fixed-field(61239346), text/x-fixed-field(52047111), text/x-fixed-field(52731458), text/x-fixed-field(51667290), text/x-fixed-field(51886580), text/x-fixed-field(58704903), text/x-fixed-field(51720410), text/x-fixed-field(53177268), text/x-fixed-field(78888783), text/x-fixed-field(51886678), text/x-fixed-field(59410710), text/x-fixed-field(59881888), text/x-fixed-field(64425139), text/x-fixed-field(78828666), text/x-fixed-field(65870730), text/x-fixed-field(51885555), text/x-fixed-field(56023765), text/x-fixed-field(78671970), text/x-fixed-field(54879502), text/x-fixed-field(59557750), text/x-fixed-field(52341069), text/x-fixed-field(52716729), text/x-fixed-field(60819991), text/x-fixed-field(66920381), text/x-fixed-field(78823711), text/x-fixed-field(67102080), text/x-fixed-field(60577043), text/x-fixed-field(53799621), txt(871901), text/x-fixed-field(51882217), text/x-fixed-field(51749681), text/x-fixed-field(52050451), text/x-fixed-field(59942884), text/x-fixed-field(54345587), text/x-fixed-field(67069107), text/x-fixed-field(51654127), text/x-fixed-field(58463028), text/x-fixed-field(65831857), txt(897257), text/x-fixed-field(61141311), text/x-fixed-field(66101451), text/x-fixed-field(51676096), text/x-fixed-field(62574635), text/x-fixed-field(77840906), text/x-fixed-field(52009013), text/x-fixed-field(59686827), text/x-fixed-field(51869430), text/x-fixed-field(61387871), text/x-fixed-field(51714574), text/x-fixed-field(59654988), text/x-fixed-field(53139773), text/x-fixed-field(80471945), text/x-fixed-field(65920340), text/x-fixed-field(66051238), text/x-fixed-field(79835330), text/x-fixed-field(60890477), text/x-fixed-field(65858618), text/x-fixed-field(79855057), text/x-fixed-field(51645729), text/x-fixed-field(79977144), text/x-fixed-field(80385422), text/x-fixed-field(65863519), text/x-fixed-field(51991185), text/x-fixed-field(65831625), text/x-fixed-field(51721928), text/x-fixed-field(64608807), text/x-fixed-field(59907215), text/x-fixed-field(65830828), text/x-fixed-field(66377484), txt(882142), text/x-fixed-field(78931364), text/x-fixed-field(61468939), text/x-fixed-field(59754967), text/x-fixed-field(60669385), text/x-fixed-field(78918679), text/x-fixed-field(66230005), text/x-fixed-field(51584480), text/x-fixed-field(79824400), text/x-fixed-field(78920741), text/x-fixed-field(60334213), text/x-fixed-field(59866321), text/x-fixed-field(51654579), text/x-fixed-field(60637778), text/x-fixed-field(51653429), text/x-fixed-field(67072948), text/x-fixed-field(51721608), text/x-fixed-field(79452397), text/x-fixed-field(51664353), text/x-fixed-field(60566818), text/x-fixed-field(80098765), text/x-fixed-field(51955549), text/x-fixed-field(60689152), text/x-fixed-field(52233269), text/x-fixed-field(60797615), text/x-fixed-field(52605519), text/x-fixed-field(60138660), text/x-fixed-field(53267948), text/x-fixed-field(51582608), text/x-fixed-field(62537132), text/x-fixed-field(51733424), text/x-fixed-field(55529046), text/x-fixed-field(59665145), text/x-fixed-field(78680664), text/x-fixed-field(65929344), text/x-fixed-field(61042024), text/x-fixed-field(51621335), text/x-fixed-field(51890063), text/x-fixed-field(65937035), text/x-fixed-field(57566679), text/x-fixed-field(77741805), text/x-fixed-field(51774888), text/x-fixed-field(51888800), text/x-fixed-field(51621420), text/x-fixed-field(51933217), text/x-fixed-field(60782486), text/x-fixed-field(78905029), text/x-fixed-field(61281370), text/x-fixed-field(58771186), text/x-fixed-field(61150778), text/x-fixed-field(66081178), text/x-fixed-field(63616833), text/x-fixed-field(52270302), text/x-fixed-field(51674747), text/x-fixed-field(78984584), text/x-fixed-field(60813246), text/x-fixed-field(53130753), text/x-fixed-field(66232050), text/x-fixed-field(59548721), text/x-fixed-field(60203083), text/x-fixed-field(78864685), text/x-fixed-field(51775619), text/x-fixed-field(58243778), text/x-fixed-field(77810710), text/x-fixed-field(51744388), text/x-fixed-field(51583326), txt(863603), text/x-fixed-field(65891477), text/x-fixed-field(78840778), text/x-fixed-field(52455195), text/x-fixed-field(53981911), text/x-fixed-field(51558923), text/x-fixed-field(51603947), text/x-fixed-field(51626236), text/x-fixed-field(51695555), text/x-fixed-field(51926116), text/x-fixed-field(51753584), text/x-fixed-field(67012238), text/x-fixed-field(61311641), text/x-fixed-field(59738139), text/x-fixed-field(78744140), text/x-fixed-field(52271959), txt(891145), text/x-fixed-field(51875152), text/x-fixed-field(78712898), text/x-fixed-field(51641056), text/x-fixed-field(56011459), text/x-fixed-field(66089117), text/x-fixed-field(51649265), text/x-fixed-field(60730159), text/x-fixed-field(58746451), text/x-fixed-field(60520098), text/x-fixed-field(52702157), text/x-fixed-field(78919385), text/x-fixed-field(79830874), text/x-fixed-field(66340988), text/x-fixed-field(51590077), text/x-fixed-field(65882477), text/x-fixed-field(66899388), text/x-fixed-field(59882390), text/x-fixed-field(51977909), text/x-fixed-field(60405608), text/x-fixed-field(51694525), text/x-fixed-field(52208624), text/x-fixed-field(62975185), text/x-fixed-field(51732207), text/x-fixed-field(51952381), text/x-fixed-field(65950976), text/x-fixed-field(51751472), text/x-fixed-field(58976034), text/x-fixed-field(66996832), text/x-fixed-field(51677562), text/x-fixed-field(80481296), text/x-fixed-field(79831010), text/x-fixed-field(65257862), text/x-fixed-field(51867310), text/x-fixed-field(61321012), text/x-fixed-field(59640374), text/x-fixed-field(58597133), text/x-fixed-field(51717893), text/x-fixed-field(62188077), text/x-fixed-field(65067513), text/x-fixed-field(59717375), text/x-fixed-field(52157176), text/x-fixed-field(60080570), text/x-fixed-field(51716539), text/x-fixed-field(51950034), text/x-fixed-field(52421875), text/x-fixed-field(55586685), text/x-fixed-field(51560681), text/x-fixed-field(61049589), text/x-fixed-field(51875598), text/x-fixed-field(51818244), text/x-fixed-field(59691210), text/x-fixed-field(51822759), text/x-fixed-field(60922858), text/x-fixed-field(58635174), text/x-fixed-field(78900071), text/x-fixed-field(60092375), text/x-fixed-field(65854860), text/x-fixed-field(51663236), text/x-fixed-field(77695268), text/x-fixed-field(78911547), text/x-fixed-field(78912809), text/x-fixed-field(51629155), text/x-fixed-field(65992931), text/x-fixed-field(66796124), text/x-fixed-field(55824413), text/x-fixed-field(58648448), text/x-fixed-field(63989584), text/x-fixed-field(51731921), text/x-fixed-field(51622873), text/x-fixed-field(66384798), text/x-fixed-field(78891715), text/x-fixed-field(51888656), text/x-fixed-field(51596333), text/x-fixed-field(52238013), text/x-fixed-field(78897566), text/x-fixed-field(61945474), text/x-fixed-field(51885168), text/x-fixed-field(60830030), text/x-fixed-field(52209910), text/x-fixed-field(51560680), text/x-fixed-field(64117540), text/x-fixed-field(52249100), text/x-fixed-field(78465473), text/x-fixed-field(66085422), text/x-fixed-field(51676170), text/x-fixed-field(58495238), text/x-fixed-field(61418807), text/x-fixed-field(61389349), text/x-fixed-field(62398234), text/x-fixed-field(59655556), text/x-fixed-field(64306731), text/x-fixed-field(59651760), text/x-fixed-field(51783652), text/x-fixed-field(51935851), text/x-fixed-field(78670501), text/x-fixed-field(51699969), text/x-fixed-field(51586960), text/x-fixed-field(51875787), text/x-fixed-field(60876017), txt(21321), text/x-fixed-field(60840718), text/x-fixed-field(51754802), text/x-fixed-field(60894492), text/x-fixed-field(54282347), text/x-fixed-field(65890499), text/x-fixed-field(51669547), text/x-fixed-field(65845600), txt(21148), text/x-fixed-field(57064436), text/x-fixed-field(51654776), text/x-fixed-field(78914205), text/x-fixed-field(66193204), text/x-fixed-field(61666717), text/x-fixed-field(78927390), text/x-fixed-field(51702775), text/x-fixed-field(64133313), text/x-fixed-field(65850841), text/x-fixed-field(79465762), text/x-fixed-field(78893544), text/x-fixed-field(79555349), text/x-fixed-field(58442656), text/x-fixed-field(51558244), text/x-fixed-field(58676340), text/x-fixed-field(64114785), text/x-fixed-field(51666809), text/x-fixed-field(60913680), text/x-fixed-field(65895979), text/x-fixed-field(60196561), text/x-fixed-field(60923828), text/x-fixed-field(51775738), text/x-fixed-field(51643879), text/x-fixed-field(60926000), text/x-fixed-field(60770241), text/x-fixed-field(51662515), text/x-fixed-field(64592281), text/x-fixed-field(51943490), text/x-fixed-field(66482111), text/x-fixed-field(52206864), text/x-fixed-field(66188999), text/x-fixed-field(51654058), text/x-fixed-field(51638123), text/x-fixed-field(51767795), text/x-fixed-field(78934157), text/x-fixed-field(54044448), text/x-fixed-field(61150422), text/x-fixed-field(78928585), text/x-fixed-field(52460678), text/x-fixed-field(79744612), text/x-fixed-field(52246523), text/x-fixed-field(65855921), text/x-fixed-field(66300768), text/x-fixed-field(54704401), text/x-fixed-field(60759976), text/x-fixed-field(56033576), text/x-fixed-field(60873983), text/x-fixed-field(61385574), text/x-fixed-field(58826509), text/x-fixed-field(60761153), text/x-fixed-field(51701431), text/x-fixed-field(79464383), text/x-fixed-field(64436116), text/x-fixed-field(51730238), text/x-fixed-field(52243126), text/x-fixed-field(51701992), text/x-fixed-field(51695998), text/x-fixed-field(51647183), text/x-fixed-field(51581850), text/x-fixed-field(59665680), text/x-fixed-field(66969144), text/x-fixed-field(51585983), text/x-fixed-field(52449772), text/x-fixed-field(58281580), text/x-fixed-field(66192172), text/x-fixed-field(58846079), text/x-fixed-field(58683962), text/x-fixed-field(65879746), text/x-fixed-field(61061586), text/x-fixed-field(51727590), text/x-fixed-field(61432656), text/x-fixed-field(51692082), text/x-fixed-field(60742019), text/x-fixed-field(51965080), text/x-fixed-field(51645098), text/x-fixed-field(51669529), text/x-fixed-field(59605952), text/x-fixed-field(55053920), text/x-fixed-field(51888894), text/x-fixed-field(51674597), text/x-fixed-field(61470951), text/x-fixed-field(51876058), text/x-fixed-field(51918025), text/x-fixed-field(51596389), text/x-fixed-field(51748712), text/x-fixed-field(51716161), text/x-fixed-field(60470413), text/x-fixed-field(54068604), text/x-fixed-field(53780058), text/x-fixed-field(60658874), text/x-fixed-field(58227212), text/x-fixed-field(59663967), text/x-fixed-field(65947143), text/x-fixed-field(51696266), text/x-fixed-field(51560614), text/x-fixed-field(64089226), text/x-fixed-field(51582111), text/x-fixed-field(60007190), text/x-fixed-field(65416351), text/x-fixed-field(65126776), text/x-fixed-field(78912583), text/x-fixed-field(60599053), text/x-fixed-field(77752055), text/x-fixed-field(60858809), text/x-fixed-field(78911691), text/x-fixed-field(60753537), text/x-fixed-field(66428777), text/x-fixed-field(66544336), text/x-fixed-field(51714770), text/x-fixed-field(60860174), text/x-fixed-field(60825772), text/x-fixed-field(51726932), text/x-fixed-field(51640966), txt(857372), text/x-fixed-field(61313205), text/x-fixed-field(60120698), text/x-fixed-field(58112682), text/x-fixed-field(67102226), text/x-fixed-field(52206665), text/x-fixed-field(64558941), text/x-fixed-field(51650613), text/x-fixed-field(60839364), text/x-fixed-field(51670460), text/x-fixed-field(51739973), text/x-fixed-field(60639435), text/x-fixed-field(66081909), text/x-fixed-field(66044142), text/x-fixed-field(59637635), text/x-fixed-field(78880728), text/x-fixed-field(57214457), text/x-fixed-field(51721246), text/x-fixed-field(59753646), text/x-fixed-field(51822638), text/x-fixed-field(51714754), text/x-fixed-field(78929723), text/x-fixed-field(65863172), text/x-fixed-field(51675182), text/x-fixed-field(64095126), text/x-fixed-field(63191893), text/x-fixed-field(66990128), text/x-fixed-field(59674391), text/x-fixed-field(61914332), text/x-fixed-field(78933022), text/x-fixed-field(51667933), txt(22491), text/x-fixed-field(51675542), text/x-fixed-field(51679078), text/x-fixed-field(51572267), text/x-fixed-field(64828352), text/x-fixed-field(65899199), text/x-fixed-field(61467506), text/x-fixed-field(65829481), text/x-fixed-field(62806428), text/x-fixed-field(51579332), text/x-fixed-field(78909453), text/x-fixed-field(58624740), text/x-fixed-field(56003490), text/x-fixed-field(59643982), text/x-fixed-field(51761764), text/x-fixed-field(56026485), text/x-fixed-field(78621964), text/x-fixed-field(54260389), text/x-fixed-field(51768884), text/x-fixed-field(51650022), text/x-fixed-field(60266435), text/x-fixed-field(57059595), text/x-fixed-field(52340874), text/x-fixed-field(51706356), text/x-fixed-field(51680783), text/x-fixed-field(60666157), text/x-fixed-field(52002011), text/x-fixed-field(59997614), text/x-fixed-field(51694633), text/x-fixed-field(55610469), text/x-fixed-field(51677015), text/x-fixed-field(64339074), text/x-fixed-field(53752870), text/x-fixed-field(51745047), text/x-fixed-field(51763112), text/x-fixed-field(51727052), text/x-fixed-field(52050083), text/x-fixed-field(78673290), text/x-fixed-field(61359225), text/x-fixed-field(66955979), text/x-fixed-field(51737752), text/x-fixed-field(51598623), text/x-fixed-field(80246114), text/x-fixed-field(51719671), text/x-fixed-field(59537138), text/x-fixed-field(58615611), text/x-fixed-field(51869374), text/x-fixed-field(64613822), text/x-fixed-field(54144539), text/x-fixed-field(78929457), text/x-fixed-field(60776439), text/x-fixed-field(64350492), text/x-fixed-field(65848325), text/x-fixed-field(61264987), text/x-fixed-field(51638767), text/x-fixed-field(60731245), text/x-fixed-field(67001627), text/x-fixed-field(61025287), text/x-fixed-field(51582804), text/x-fixed-field(51570789), text/x-fixed-field(57634514), text/x-fixed-field(78754883), text/x-fixed-field(78874801), text/x-fixed-field(51709215), text/x-fixed-field(78677314), text/x-fixed-field(59308611), text/x-fixed-field(60782979), text/x-fixed-field(60435870), text/x-fixed-field(51671663), text/x-fixed-field(52030561), text/x-fixed-field(80170747), text/x-fixed-field(51688490), text/x-fixed-field(59585010), text/x-fixed-field(51705937), text/x-fixed-field(62210760), text/x-fixed-field(61386920), text/x-fixed-field(64351755), text/x-fixed-field(51885411), text/x-fixed-field(67131368), text/x-fixed-field(57053702), text/x-fixed-field(58953310), text/x-fixed-field(79464508), text/x-fixed-field(66023552), text/x-fixed-field(52450359), text/x-fixed-field(65875063), text/x-fixed-field(51737131), text/x-fixed-field(60980607), text/x-fixed-field(58815135), text/x-fixed-field(79636913), text/x-fixed-field(51672133), text/x-fixed-field(51673437), text/x-fixed-field(52711459), text/x-fixed-field(51591076), text/x-fixed-field(51704488), text/x-fixed-field(64108650), text/x-fixed-field(58923753), text/x-fixed-field(52628124), text/x-fixed-field(51634412), text/x-fixed-field(65861016), text/x-fixed-field(60826864), text/x-fixed-field(51951014), text/x-fixed-field(51833725), text/x-fixed-field(78923365), text/x-fixed-field(52245175), text/x-fixed-field(51654571), text/x-fixed-field(58156059), text/x-fixed-field(51690741), text/x-fixed-field(58993302), text/x-fixed-field(51560688), text/x-fixed-field(51583997), text/x-fixed-field(63110256), text/x-fixed-field(52468136), text/x-fixed-field(51876795), text/x-fixed-field(51951210), text/x-fixed-field(52570908), text/x-fixed-field(53091399), text/x-fixed-field(64116824), text/x-fixed-field(51608734), text/x-fixed-field(51586330), text/x-fixed-field(55483235), text/x-fixed-field(59700045), text/x-fixed-field(51781645), text/x-fixed-field(51743551), text/x-fixed-field(59179247), text/x-fixed-field(51659452), text/x-fixed-field(61460285), text/x-fixed-field(51749654), text/x-fixed-field(63245043), text/x-fixed-field(58237015), txt(897562), text/x-fixed-field(51731276), text/x-fixed-field(51570829), text/x-fixed-field(78855224), text/x-fixed-field(51667970), text/x-fixed-field(63316866), text/x-fixed-field(54305401), text/x-fixed-field(64557556), text/x-fixed-field(80478498), text/x-fixed-field(80066675), text/x-fixed-field(56870434), text/x-fixed-field(59895001), text/x-fixed-field(79803350), text/x-fixed-field(51673120), text/x-fixed-field(78060458), text/x-fixed-field(56032334), text/x-fixed-field(57625600), text/x-fixed-field(64531452), text/x-fixed-field(51975739), text/x-fixed-field(60815152), text/x-fixed-field(51708963), text/x-fixed-field(51589598), text/x-fixed-field(60804990), text/x-fixed-field(60155230), text/x-fixed-field(60366102), text/x-fixed-field(52284792), text/x-fixed-field(59056051), text/x-fixed-field(51677200), text/x-fixed-field(60953396), text/x-fixed-field(67026580), text/x-fixed-field(51663006), text/x-fixed-field(61432815), text/x-fixed-field(52598468), text/x-fixed-field(60840189), text/x-fixed-field(60615920), text/x-fixed-field(51561059), text/x-fixed-field(51863599), text/x-fixed-field(64555636), text/x-fixed-field(51886984), text/x-fixed-field(52042399), text/x-fixed-field(52455531), text/x-fixed-field(53182801), text/x-fixed-field(59610480), text/x-fixed-field(51692181), text/x-fixed-field(59547289), text/x-fixed-field(64599881), text/x-fixed-field(52208379), text/x-fixed-field(51737370), text/x-fixed-field(77764763), text/x-fixed-field(51671115), txt(863790), text/x-fixed-field(66958810), text/x-fixed-field(78921539), text/x-fixed-field(51771193), text/x-fixed-field(79471961), text/x-fixed-field(54652143), text/x-fixed-field(51646939), text/x-fixed-field(51876242), text/x-fixed-field(51560013), text/x-fixed-field(51603499), text/x-fixed-field(51882378), text/x-fixed-field(56010463), text/x-fixed-field(52034162), text/x-fixed-field(51654877), text/x-fixed-field(64521092), text/x-fixed-field(58988500), text/x-fixed-field(58954925), text/x-fixed-field(51570628), text/x-fixed-field(51671907), txt(21232), text/x-fixed-field(51587309), text/x-fixed-field(51571464), text/x-fixed-field(58486774), text/x-fixed-field(51570595), text/x-fixed-field(53951397), text/x-fixed-field(52454763), text/x-fixed-field(51826504), text/x-fixed-field(52159880), text/x-fixed-field(51664966), text/x-fixed-field(78697330), text/x-fixed-field(52234239), text/x-fixed-field(51866715), text/x-fixed-field(51572812), text/x-fixed-field(51570904), text/x-fixed-field(58627709), text/x-fixed-field(60733010), text/x-fixed-field(51762546), text/x-fixed-field(51980284), text/x-fixed-field(51898457), text/x-fixed-field(61024225), text/x-fixed-field(51653032), text/x-fixed-field(51658124), text/x-fixed-field(52401729), text/x-fixed-field(65829963), text/x-fixed-field(51667296), text/x-fixed-field(61054025), text/x-fixed-field(53767775), text/x-fixed-field(64116383), text/x-fixed-field(63340974), text/x-fixed-field(60530905), text/x-fixed-field(51581888), text/x-fixed-field(65886751), text/x-fixed-field(61836241), text/x-fixed-field(59757593), text/x-fixed-field(60998082), text/x-fixed-field(51620176), text/x-fixed-field(52456706), text/x-fixed-field(61163357), text/x-fixed-field(51668341), text/x-fixed-field(51689156), text/x-fixed-field(61153158), text/x-fixed-field(51733704), text/x-fixed-field(52210888), text/x-fixed-field(51695119), text/x-fixed-field(59590576), text/x-fixed-field(54377354), text/x-fixed-field(51650648), text/x-fixed-field(51572331), text/x-fixed-field(51746861), text/x-fixed-field(51780517), txt(20267), text/x-fixed-field(77672968), text/x-fixed-field(51579781), text/x-fixed-field(51677546), text/x-fixed-field(51581987), text/x-fixed-field(51654255), text/x-fixed-field(51887402), text/x-fixed-field(51675862), text/x-fixed-field(51659761), text/x-fixed-field(60839586), text/x-fixed-field(64114154), text/x-fixed-field(51617208), text/x-fixed-field(61159076), text/x-fixed-field(51912464), text/x-fixed-field(51693479), text/x-fixed-field(60845489), text/x-fixed-field(51718944), text/x-fixed-field(60844045), text/x-fixed-field(52279781), text/x-fixed-field(52076871), text/x-fixed-field(51886662), text/x-fixed-field(51692075), text/x-fixed-field(61072807), text/x-fixed-field(58823281), txt(20827), text/x-fixed-field(51674938), text/x-fixed-field(52253566), text/x-fixed-field(61220785), text/x-fixed-field(51697495), text/x-fixed-field(51665336), text/x-fixed-field(79470061), text/x-fixed-field(58771179), text/x-fixed-field(63270675), text/x-fixed-field(52046439), text/x-fixed-field(58410939), text/x-fixed-field(51980570), text/x-fixed-field(61893041), text/x-fixed-field(58370098), txt(24181), text/x-fixed-field(56010203), text/x-fixed-field(54462445), text/x-fixed-field(54235358), text/x-fixed-field(63853615), text/x-fixed-field(51645381), text/x-fixed-field(51675006), text/x-fixed-field(79462121), text/x-fixed-field(51688760), text/x-fixed-field(56033065), text/x-fixed-field(79864728), text/x-fixed-field(62737278), txt(20258), text/x-fixed-field(57526072), text/x-fixed-field(51650575), text/x-fixed-field(78356477), text/x-fixed-field(60856127), text/x-fixed-field(51783800), text/x-fixed-field(51967976), txt(20843), text/x-fixed-field(61114231), text/x-fixed-field(62342859), text/x-fixed-field(60800612), text/x-fixed-field(79834395), text/x-fixed-field(51591042), text/x-fixed-field(51672812), text/x-fixed-field(51780964), text/x-fixed-field(78915139), text/x-fixed-field(51622311), text/x-fixed-field(77831702), text/x-fixed-field(51882365), text/x-fixed-field(51894784), text/x-fixed-field(64569785), txt(868647), text/x-fixed-field(51616038), text/x-fixed-field(66090699), text/x-fixed-field(60824628), text/x-fixed-field(65142454), text/x-fixed-field(65882269), text/x-fixed-field(54170261), text/x-fixed-field(51582832), text/x-fixed-field(65848539), text/x-fixed-field(59644129), text/x-fixed-field(51763692), text/x-fixed-field(51957657), text/x-fixed-field(61302164), text/x-fixed-field(78694429), text/x-fixed-field(61043019), text/x-fixed-field(65189498), txt(22495), text/x-fixed-field(58904396), text/x-fixed-field(61363798), text/x-fixed-field(59722308), text/x-fixed-field(59736165), text/x-fixed-field(60551177), text/x-fixed-field(65418644), text/x-fixed-field(61393469), text/x-fixed-field(60880077), text/x-fixed-field(59577116), text/x-fixed-field(51667397), text/x-fixed-field(57825342), text/x-fixed-field(65869141), text/x-fixed-field(66081353), text/x-fixed-field(52940644), text/x-fixed-field(63527090), text/x-fixed-field(58837350), text/x-fixed-field(77934621), text/x-fixed-field(59311784), text/x-fixed-field(60250021), text/x-fixed-field(61335622), text/x-fixed-field(62491422), text/x-fixed-field(78933799), text/x-fixed-field(51693220), text/x-fixed-field(61172323), text/x-fixed-field(61729201), text/x-fixed-field(51705995), text/x-fixed-field(58730406), text/x-fixed-field(59451247), text/x-fixed-field(60212362), text/x-fixed-field(66526928), text/x-fixed-field(51706843), text/x-fixed-field(51700200), text/x-fixed-field(51669212), text/x-fixed-field(58811456), text/x-fixed-field(54213639), text/x-fixed-field(54674504), text/x-fixed-field(58884614), text/x-fixed-field(59568831), text/x-fixed-field(55568564), text/x-fixed-field(66987512), text/x-fixed-field(51668934), text/x-fixed-field(61232896), text/x-fixed-field(52063312), text/x-fixed-field(51586044), text/x-fixed-field(51777345), txt(854272), text/x-fixed-field(79466890), text/x-fixed-field(58440622), text/x-fixed-field(60768088), text/x-fixed-field(59781638), text/x-fixed-field(61407955), text/x-fixed-field(60764776), text/x-fixed-field(67044766), text/x-fixed-field(51689990), text/x-fixed-field(62125750), text/x-fixed-field(51674874), text/x-fixed-field(64118859), text/x-fixed-field(51722746), text/x-fixed-field(54372159), text/x-fixed-field(60063769), text/x-fixed-field(51693954), text/x-fixed-field(79473237), text/x-fixed-field(58814093), text/x-fixed-field(60537761), text/x-fixed-field(66075759), text/x-fixed-field(78915841), text/x-fixed-field(56005695), txt(890687), text/x-fixed-field(60014830), text/x-fixed-field(63350043), text/x-fixed-field(58758300), text/x-fixed-field(65979941), text/x-fixed-field(54976870), text/x-fixed-field(51991215), text/x-fixed-field(51582097), text/x-fixed-field(51741591), text/x-fixed-field(65859191), text/x-fixed-field(78884613), text/x-fixed-field(51771242), text/x-fixed-field(51596887), text/x-fixed-field(54322393), text/x-fixed-field(61119242), text/x-fixed-field(59084686), text/x-fixed-field(55637869), txt(857633), txt(21439), text/x-fixed-field(78467617), text/x-fixed-field(57820040), text/x-fixed-field(60180737), text/x-fixed-field(52072484), text/x-fixed-field(61315556), text/x-fixed-field(51755543), text/x-fixed-field(51570704), text/x-fixed-field(51660464), text/x-fixed-field(51672369), text/x-fixed-field(78912616), text/x-fixed-field(79007110), text/x-fixed-field(51720288), text/x-fixed-field(58895072), text/x-fixed-field(55930374), text/x-fixed-field(52463899), text/x-fixed-field(51640105), text/x-fixed-field(77821711), text/x-fixed-field(65903495), text/x-fixed-field(51662814), text/x-fixed-field(51685465), text/x-fixed-field(51726185), text/x-fixed-field(54786541), txt(20273), text/x-fixed-field(56010956), text/x-fixed-field(52455491), text/x-fixed-field(51765870), text/x-fixed-field(63132898), text/x-fixed-field(51582233), text/x-fixed-field(61454788), text/x-fixed-field(51716879), text/x-fixed-field(51774729), text/x-fixed-field(51715685), text/x-fixed-field(58921767), text/x-fixed-field(51676512), text/x-fixed-field(67136412), text/x-fixed-field(51713867), text/x-fixed-field(53285476), text/x-fixed-field(64565131), text/x-fixed-field(51586040), text/x-fixed-field(67362794), text/x-fixed-field(79914388), text/x-fixed-field(60478076), text/x-fixed-field(52205316), text/x-fixed-field(53221683), text/x-fixed-field(51580485), text/x-fixed-field(60394747), text/x-fixed-field(79660892), text/x-fixed-field(51778141), text/x-fixed-field(54572178), text/x-fixed-field(51670903), text/x-fixed-field(58800542), text/x-fixed-field(78372734), text/x-fixed-field(61415147), text/x-fixed-field(56049138), text/x-fixed-field(51675885), text/x-fixed-field(60124887), text/x-fixed-field(61034228), text/x-fixed-field(58317270), text/x-fixed-field(51653994), text/x-fixed-field(51607238), text/x-fixed-field(51949729), text/x-fixed-field(57450775), text/x-fixed-field(61043497), text/x-fixed-field(51848407), text/x-fixed-field(62487919), zip(1776126), text/x-fixed-field(52233967), text/x-fixed-field(64314067), text/x-fixed-field(58821956), text/x-fixed-field(51558240), text/x-fixed-field(58282740), text/x-fixed-field(56050115), text/x-fixed-field(51716235), text/x-fixed-field(60952220), text/x-fixed-field(51931057), text/x-fixed-field(51643161), text/x-fixed-field(51732284), text/x-fixed-field(59535666), text/x-fixed-field(51699921), text/x-fixed-field(51935122), text/x-fixed-field(61413824), text/x-fixed-field(60968124), text/x-fixed-field(65952455), text/x-fixed-field(54765035), text/x-fixed-field(60467152), txt(857827), text/x-fixed-field(62555712), text/x-fixed-field(51715191), text/x-fixed-field(59438849), text/x-fixed-field(53180867), text/x-fixed-field(79853839), text/x-fixed-field(51559849), text/x-fixed-field(63235267), text/x-fixed-field(61147288), text/x-fixed-field(64276924), text/x-fixed-field(51669380), text/x-fixed-field(52450735), text/x-fixed-field(60196300), text/x-fixed-field(52358303), text/x-fixed-field(51605447), text/x-fixed-field(58561324), text/x-fixed-field(51736105), text/x-fixed-field(51862049), text/x-fixed-field(58813303), text/x-fixed-field(65921007), text/x-fixed-field(78888036), text/x-fixed-field(51713701), text/x-fixed-field(51714802), text/x-fixed-field(78812848), text/x-fixed-field(51725897), text/x-fixed-field(60689655), text/x-fixed-field(64073395), text/x-fixed-field(58707088), text/x-fixed-field(61476719), text/x-fixed-field(51586043), text/x-fixed-field(64081148), text/x-fixed-field(51771097), text/x-fixed-field(51663201), text/x-fixed-field(63827109), text/x-fixed-field(51619820), txt(22545), text/x-fixed-field(78935716), text/x-fixed-field(59748868), text/x-fixed-field(51994133), txt(857376), text/x-fixed-field(59849179), text/x-fixed-field(51560470), text/x-fixed-field(56010031), text/x-fixed-field(52898301), text/x-fixed-field(51861432), text/x-fixed-field(66127467), text/x-fixed-field(59326660), text/x-fixed-field(59204896), text/x-fixed-field(52003121), text/x-fixed-field(61236344), text/x-fixed-field(52107911), text/x-fixed-field(52468442), text/x-fixed-field(57003533), text/x-fixed-field(60056213), text/x-fixed-field(66979017), text/x-fixed-field(66104656), text/x-fixed-field(65851126), text/x-fixed-field(55427951), text/x-fixed-field(51717592), text/x-fixed-field(52456676), text/x-fixed-field(59173047), text/x-fixed-field(51723747), text/x-fixed-field(60870899), text/x-fixed-field(57474835), text/x-fixed-field(79831371), text/x-fixed-field(60960211), text/x-fixed-field(51652568), text/x-fixed-field(51882896), text/x-fixed-field(51736439), text/x-fixed-field(61444478), text/x-fixed-field(51580751), text/x-fixed-field(54008477), text/x-fixed-field(60654309), text/x-fixed-field(51667361), text/x-fixed-field(51582109), text/x-fixed-field(51763748), text/x-fixed-field(61340921), text/x-fixed-field(60687704), text/x-fixed-field(55445131), text/x-fixed-field(52417699), text/x-fixed-field(58215269), text/x-fixed-field(55277895), text/x-fixed-field(66044124), text/x-fixed-field(56070113), text/x-fixed-field(51618073), text/x-fixed-field(60660964), text/x-fixed-field(51653792), text/x-fixed-field(51662799), text/x-fixed-field(60756147), text/x-fixed-field(58979068), text/x-fixed-field(64521121), text/x-fixed-field(51715180), text/x-fixed-field(51668576), text/x-fixed-field(51738080), text/x-fixed-field(79776010), text/x-fixed-field(58523833), text/x-fixed-field(63872244), text/x-fixed-field(59663323), text/x-fixed-field(51701817), text/x-fixed-field(51774838), text/x-fixed-field(65868471), text/x-fixed-field(59499631), text/x-fixed-field(61378603), text/x-fixed-field(60724245), text/x-fixed-field(51637842), txt(858477), text/x-fixed-field(56010857), text/x-fixed-field(51623744), text/x-fixed-field(52210680), text/x-fixed-field(59411134), text/x-fixed-field(51663146), text/x-fixed-field(51684990), text/x-fixed-field(52553574), text/x-fixed-field(61419761), text/x-fixed-field(58533281), text/x-fixed-field(51912735), text/x-fixed-field(54828912), text/x-fixed-field(78892108), text/x-fixed-field(59805747), text/x-fixed-field(60459847), text/x-fixed-field(60680469), text/x-fixed-field(53626398), text/x-fixed-field(62799041), text/x-fixed-field(65141879), text/x-fixed-field(61051755), text/x-fixed-field(66038645), text/x-fixed-field(54929663), text/x-fixed-field(60614271), text/x-fixed-field(62834269), text/x-fixed-field(61442018), text/x-fixed-field(60221516), text/x-fixed-field(54070939), text/x-fixed-field(51668680), text/x-fixed-field(51823015), text/x-fixed-field(60642919), text/x-fixed-field(51610291), txt(871920), text/x-fixed-field(66082260), text/x-fixed-field(53891378), text/x-fixed-field(51653896), text/x-fixed-field(56041074), text/x-fixed-field(56035207), text/x-fixed-field(59940421), text/x-fixed-field(52002523), text/x-fixed-field(60833916), text/x-fixed-field(59885734), text/x-fixed-field(56010362), text/x-fixed-field(79849887), text/x-fixed-field(79459805), text/x-fixed-field(79603700), text/x-fixed-field(52289758), text/x-fixed-field(63683716), text/x-fixed-field(78647733), text/x-fixed-field(51672084), text/x-fixed-field(61486824), text/x-fixed-field(79762379), text/x-fixed-field(51673669), text/x-fixed-field(51678408), text/x-fixed-field(78911018), text/x-fixed-field(51720040), text/x-fixed-field(52415641), text/x-fixed-field(51667971), text/x-fixed-field(59295872), text/x-fixed-field(58167910), text/x-fixed-field(79917360), text/x-fixed-field(62825301), text/x-fixed-field(66909671), text/x-fixed-field(51645509), text/x-fixed-field(60855471), text/x-fixed-field(51749107), text/x-fixed-field(58882550), text/x-fixed-field(61474023), txt(897802), text/x-fixed-field(51755266), text/x-fixed-field(51610357), text/x-fixed-field(66042876), text/x-fixed-field(51642629), text/x-fixed-field(52182980), text/x-fixed-field(51588095), text/x-fixed-field(61130157), text/x-fixed-field(51672491), text/x-fixed-field(51571047), text/x-fixed-field(60590945), text/x-fixed-field(78402026), text/x-fixed-field(51749490), text/x-fixed-field(61312730), text/x-fixed-field(63457983), text/x-fixed-field(52880561), text/x-fixed-field(78564518), text/x-fixed-field(66889828), text/x-fixed-field(51640174), text/x-fixed-field(59671550), text/x-fixed-field(60781675), text/x-fixed-field(64475444), text/x-fixed-field(60819565), txt(858367), text/x-fixed-field(55418358), text/x-fixed-field(51712164), text/x-fixed-field(51589834), text/x-fixed-field(51672357), text/x-fixed-field(66431871), text/x-fixed-field(51722355), text/x-fixed-field(60738075), text/x-fixed-field(52001032), text/x-fixed-field(55376849), text/x-fixed-field(64099796), text/x-fixed-field(51715342), text/x-fixed-field(51674900), text/x-fixed-field(52374822), text/x-fixed-field(60655125), text/x-fixed-field(51826489), text/x-fixed-field(60887729), text/x-fixed-field(51994198), text/x-fixed-field(51707495), text/x-fixed-field(60642452), text/x-fixed-field(51916134), text/x-fixed-field(78799242), text/x-fixed-field(61064687), text/x-fixed-field(51698266), text/x-fixed-field(51709084), text/x-fixed-field(61887679), text/x-fixed-field(52068939), text/x-fixed-field(78794063), text/x-fixed-field(58523489), text/x-fixed-field(60546857), text/x-fixed-field(64102322), text/x-fixed-field(61981678), text/x-fixed-field(59038530), text/x-fixed-field(52876896), text/x-fixed-field(62190896), text/x-fixed-field(56041071), text/x-fixed-field(51653786), text/x-fixed-field(51873240), text/x-fixed-field(60277325), text/x-fixed-field(59921900), text/x-fixed-field(58698626), text/x-fixed-field(65830384), text/x-fixed-field(60900527), txt(897685), text/x-fixed-field(61395546), text/x-fixed-field(60787508), text/x-fixed-field(51584121), text/x-fixed-field(51659409), text/x-fixed-field(61175488), text/x-fixed-field(51562945), text/x-fixed-field(51586832), text/x-fixed-field(51674882), text/x-fixed-field(51584998), text/x-fixed-field(61674421), text/x-fixed-field(59484824), text/x-fixed-field(52341014), text/x-fixed-field(60651614), text/x-fixed-field(60935809), text/x-fixed-field(51570251), text/x-fixed-field(63069819), text/x-fixed-field(58650600), text/x-fixed-field(61232903), text/x-fixed-field(51745978), text/x-fixed-field(51654238), text/x-fixed-field(53306498), text/x-fixed-field(65639511), text/x-fixed-field(59623544), text/x-fixed-field(52255501), text/x-fixed-field(51561136), text/x-fixed-field(56011881), text/x-fixed-field(51601962), text/x-fixed-field(55245026), text/x-fixed-field(51887044), text/x-fixed-field(67148898), text/x-fixed-field(58505590), text/x-fixed-field(51679018), txt(22024), text/x-fixed-field(51579280), text/x-fixed-field(63381863), text/x-fixed-field(54400608), text/x-fixed-field(55132663), text/x-fixed-field(51599604), text/x-fixed-field(64350676), text/x-fixed-field(52374478), txt(861029), text/x-fixed-field(51726258), text/x-fixed-field(51925871), text/x-fixed-field(59012118), text/x-fixed-field(52360881), text/x-fixed-field(51999555), text/x-fixed-field(61888238), text/x-fixed-field(57566316), text/x-fixed-field(54430098), text/x-fixed-field(51749741), text/x-fixed-field(64128475), text/x-fixed-field(51877454), text/x-fixed-field(51640021), text/x-fixed-field(66365630), text/x-fixed-field(59584079), text/x-fixed-field(62982103), text/x-fixed-field(56025970), text/x-fixed-field(58774475), text/x-fixed-field(51700965), text/x-fixed-field(51671484), text/x-fixed-field(51885173), text/x-fixed-field(51765116), text/x-fixed-field(62567002), text/x-fixed-field(61383529), text/x-fixed-field(56011149), text/x-fixed-field(51671946), text/x-fixed-field(61212499), text/x-fixed-field(60918419), text/x-fixed-field(51622996), text/x-fixed-field(60727623), text/x-fixed-field(60955125), text/x-fixed-field(58687523), text/x-fixed-field(52468550), text/x-fixed-field(65643603), text/x-fixed-field(65764694), text/x-fixed-field(59577175), text/x-fixed-field(59441060), text/x-fixed-field(52669861), text/x-fixed-field(65834473), text/x-fixed-field(51677222), text/x-fixed-field(51882775), text/x-fixed-field(60767872), text/x-fixed-field(51724731), text/x-fixed-field(51605083), text/x-fixed-field(51651861), text/x-fixed-field(56955106), text/x-fixed-field(51953343), text/x-fixed-field(52113227), text/x-fixed-field(65831059), text/x-fixed-field(51669544), text/x-fixed-field(51911125), text/x-fixed-field(51986657), text/x-fixed-field(51581344), text/x-fixed-field(64340571), text/x-fixed-field(60959911), text/x-fixed-field(51770073), text/x-fixed-field(51641151), text/x-fixed-field(51748926), text/x-fixed-field(52468064), text/x-fixed-field(51640002), text/x-fixed-field(51769854), text/x-fixed-field(59802645), text/x-fixed-field(79530631), text/x-fixed-field(59276551), text/x-fixed-field(58815788), text/x-fixed-field(59661748), text/x-fixed-field(60736460), text/x-fixed-field(51586932), text/x-fixed-field(52839070), text/x-fixed-field(53562823), text/x-fixed-field(52255217), text/x-fixed-field(51653930), text/x-fixed-field(67576007), text/x-fixed-field(64082029), text/x-fixed-field(60265053), text/x-fixed-field(51637655), text/x-fixed-field(51708717), text/x-fixed-field(51643332), text/x-fixed-field(62340243), text/x-fixed-field(65912828), text/x-fixed-field(52036078), text/x-fixed-field(61493236), text/x-fixed-field(78919225), text/x-fixed-field(52455474), text/x-fixed-field(51717414), text/x-fixed-field(54946385), text/x-fixed-field(66864001), text/x-fixed-field(55298103), text/x-fixed-field(52540672), text/x-fixed-field(59819526), text/x-fixed-field(59403216), text/x-fixed-field(60955679), text/x-fixed-field(58481681), text/x-fixed-field(65950414), text/x-fixed-field(51640022), text/x-fixed-field(66079678), text/x-fixed-field(51716713), text/x-fixed-field(51751263), text/x-fixed-field(54513470), text/x-fixed-field(58938415), text/x-fixed-field(63351821), text/x-fixed-field(61380735), text/x-fixed-field(67119182), text/x-fixed-field(78828184), text/x-fixed-field(51676877), text/x-fixed-field(60143567), text/x-fixed-field(51622398), text/x-fixed-field(52143936), text/x-fixed-field(51596328), text/x-fixed-field(56010976), txt(858716), text/x-fixed-field(51586532), text/x-fixed-field(60926416), text/x-fixed-field(52156731), text/x-fixed-field(79883061), text/x-fixed-field(61003204), text/x-fixed-field(51875381), text/x-fixed-field(59524923), text/x-fixed-field(53890186), text/x-fixed-field(58191664), text/x-fixed-field(64125707), text/x-fixed-field(51695946), text/x-fixed-field(60915641), text/x-fixed-field(60654666), text/x-fixed-field(61148312), text/x-fixed-field(58657048), text/x-fixed-field(78053688), text/x-fixed-field(64145714), text/x-fixed-field(59881897), text/x-fixed-field(52456074), text/x-fixed-field(52074236), text/x-fixed-field(61621907), text/x-fixed-field(51740385), text/x-fixed-field(60733519), text/x-fixed-field(51641604), text/x-fixed-field(60780096), text/x-fixed-field(51769219), text/x-fixed-field(52724264), text/x-fixed-field(61409704), text/x-fixed-field(52456268), text/x-fixed-field(51700299), text/x-fixed-field(57995059), text/x-fixed-field(52424742), text/x-fixed-field(66007350), text/x-fixed-field(79570993), text/x-fixed-field(51670944), text/x-fixed-field(51690804), text/x-fixed-field(51737634), text/x-fixed-field(78883027), text/x-fixed-field(59852854), text/x-fixed-field(79865212), text/x-fixed-field(51889863), text/x-fixed-field(60530386), txt(20825), text/x-fixed-field(51769129), text/x-fixed-field(59737740), text/x-fixed-field(59662551), text/x-fixed-field(61446978), text/x-fixed-field(78920406), text/x-fixed-field(58288677), text/x-fixed-field(52942087), text/x-fixed-field(51677400), text/x-fixed-field(51571078), text/x-fixed-field(58972751), text/x-fixed-field(51588495), text/x-fixed-field(64051569), text/x-fixed-field(51596679), text/x-fixed-field(51660156), text/x-fixed-field(61124447), text/x-fixed-field(60600824), text/x-fixed-field(59546683), text/x-fixed-field(60386786), text/x-fixed-field(51667739), text/x-fixed-field(66931684), text/x-fixed-field(51708303), text/x-fixed-field(58128295), text/x-fixed-field(59620916), text/x-fixed-field(55340061), text/x-fixed-field(51639071), text/x-fixed-field(51638141), text/x-fixed-field(58787593), text/x-fixed-field(51676624), text/x-fixed-field(51693448), text/x-fixed-field(52463967), text/x-fixed-field(51988016), text/x-fixed-field(55119190), text/x-fixed-field(51590603), text/x-fixed-field(51588120), text/x-fixed-field(54623443), text/x-fixed-field(59799336), text/x-fixed-field(58984953), text/x-fixed-field(61288891), text/x-fixed-field(59520201), text/x-fixed-field(51998673), text/x-fixed-field(51745035), text/x-fixed-field(61898764), text/x-fixed-field(51634649), text/x-fixed-field(56052045), text/x-fixed-field(51570953), text/x-fixed-field(51669903), text/x-fixed-field(51676247), text/x-fixed-field(80180843), text/x-fixed-field(58837706), text/x-fixed-field(58872815), text/x-fixed-field(60688146), text/x-fixed-field(51611260), text/x-fixed-field(60596061), text/x-fixed-field(60975030), text/x-fixed-field(51766932), text/x-fixed-field(51662568), text/x-fixed-field(51741816), text/x-fixed-field(51670197), text/x-fixed-field(62332643), text/x-fixed-field(60063539), text/x-fixed-field(51769897), text/x-fixed-field(61116124), text/x-fixed-field(51680010), text/x-fixed-field(51885264), text/x-fixed-field(51882819), text/x-fixed-field(51689667), text/x-fixed-field(51765129), text/x-fixed-field(60084404), text/x-fixed-field(64542557), text/x-fixed-field(55231653), text/x-fixed-field(51559021), text/x-fixed-field(62643159), text/x-fixed-field(63181190), text/x-fixed-field(51608292), text/x-fixed-field(66044737), text/x-fixed-field(51667119), text/x-fixed-field(65632674), text/x-fixed-field(51583381), text/x-fixed-field(51675993), text/x-fixed-field(66860268), text/x-fixed-field(61389096), text/x-fixed-field(60758058), text/x-fixed-field(60625695), text/x-fixed-field(51741644), text/x-fixed-field(51589581), text/x-fixed-field(65885600), text/x-fixed-field(57013956), text/x-fixed-field(51861678), text/x-fixed-field(78922942), text/x-fixed-field(51743689), text/x-fixed-field(55816976), text/x-fixed-field(51579874), text/x-fixed-field(51564800), text/x-fixed-field(61174642), text/x-fixed-field(54844178), text/x-fixed-field(51724285), text/x-fixed-field(60347206), text/x-fixed-field(58533905), text/x-fixed-field(52453611), text/x-fixed-field(51666600), text/x-fixed-field(60684995), text/x-fixed-field(51691087), text/x-fixed-field(59918490), text/x-fixed-field(51679066), text/x-fixed-field(51714331), text/x-fixed-field(59816645), text/x-fixed-field(61413151), text/x-fixed-field(51748356), text/x-fixed-field(60945723), text/x-fixed-field(58673984), text/x-fixed-field(51858283), text/x-fixed-field(52245075), text/x-fixed-field(59385590), text/x-fixed-field(58663489), text/x-fixed-field(56036009), text/x-fixed-field(51663189), text/x-fixed-field(66287225), text/x-fixed-field(57246338), text/x-fixed-field(51602735), text/x-fixed-field(56010030), text/x-fixed-field(78310816), text/x-fixed-field(61461064), text/x-fixed-field(56010743), txt(20869), text/x-fixed-field(61069987), text/x-fixed-field(78911451), text/x-fixed-field(51711108), text/x-fixed-field(67573581), text/x-fixed-field(51583906), text/x-fixed-field(57153072), text/x-fixed-field(51606157), text/x-fixed-field(58278887), txt(20262), text/x-fixed-field(58533629), text/x-fixed-field(78916325), text/x-fixed-field(58829145), text/x-fixed-field(58471247), text/x-fixed-field(78243319), text/x-fixed-field(51691445), text/x-fixed-field(55387760), text/x-fixed-field(51658598), text/x-fixed-field(61331319), text/x-fixed-field(51584228), text/x-fixed-field(59662535), text/x-fixed-field(51582906), text/x-fixed-field(65124846), text/x-fixed-field(51765180), text/x-fixed-field(51781835), text/x-fixed-field(64489342), text/x-fixed-field(51596451), text/x-fixed-field(51559952), text/x-fixed-field(60845783), text/x-fixed-field(51697808), text/x-fixed-field(51694966), text/x-fixed-field(52674527), text/x-fixed-field(51632890), text/x-fixed-field(61006130), text/x-fixed-field(51717391), text/x-fixed-field(51728698), text/x-fixed-field(56031849), text/x-fixed-field(51672609), text/x-fixed-field(59656623), text/x-fixed-field(67279917), text/x-fixed-field(61666213), text/x-fixed-field(51718682), text/x-fixed-field(62520011), text/x-fixed-field(53921389), text/x-fixed-field(51676266), txt(861007), text/x-fixed-field(80018755), text/x-fixed-field(51670562), text/x-fixed-field(52854733), text/x-fixed-field(58977966), text/x-fixed-field(52205421), text/x-fixed-field(60081777), text/x-fixed-field(59718852), text/x-fixed-field(51570138), text/x-fixed-field(55561681), text/x-fixed-field(51560438), text/x-fixed-field(61379942), text/x-fixed-field(51655742), text/x-fixed-field(66968594), text/x-fixed-field(51696209), text/x-fixed-field(51700870), text/x-fixed-field(53033144), text/x-fixed-field(51695642), text/x-fixed-field(79461015), text/x-fixed-field(58310930), text/x-fixed-field(57586772), text/x-fixed-field(59663878), text/x-fixed-field(51655775), text/x-fixed-field(64340559), text/x-fixed-field(58851594), text/x-fixed-field(51765463), text/x-fixed-field(56048343), text/x-fixed-field(59835440), text/x-fixed-field(60181696), text/x-fixed-field(51770203), text/x-fixed-field(58970787), text/x-fixed-field(65956983), text/x-fixed-field(51762608), text/x-fixed-field(51693700), text/x-fixed-field(59952871), text/x-fixed-field(59756092), text/x-fixed-field(64109188), text/x-fixed-field(60868405), text/x-fixed-field(51638347), text/x-fixed-field(51606053), text/x-fixed-field(59072057), text/x-fixed-field(60773634), text/x-fixed-field(51793142), text/x-fixed-field(51724122), text/x-fixed-field(61087415), text/x-fixed-field(51639562), text/x-fixed-field(51611584), text/x-fixed-field(59732018), text/x-fixed-field(60438819), text/x-fixed-field(51754109), text/x-fixed-field(60866726), text/x-fixed-field(51571224), text/x-fixed-field(58149378), text/x-fixed-field(60852941), text/x-fixed-field(51641587), text/x-fixed-field(51639526), text/x-fixed-field(51677160), text/x-fixed-field(65820809), text/x-fixed-field(51783452), text/x-fixed-field(61156042), text/x-fixed-field(51600685), text/x-fixed-field(51655690), text/x-fixed-field(61446181), text/x-fixed-field(51966682), text/x-fixed-field(47059415), text/x-fixed-field(64118637), text/x-fixed-field(61353888), text/x-fixed-field(51872972), txt(20253), text/x-fixed-field(58588447), text/x-fixed-field(51762056), text/x-fixed-field(60682760), text/x-fixed-field(51749042), text/x-fixed-field(62079712), txt(882751), text/x-fixed-field(51698078), text/x-fixed-field(51689144), text/x-fixed-field(58479707), text/x-fixed-field(51742382), text/x-fixed-field(51675907), text/x-fixed-field(65881013), text/x-fixed-field(61409893), text/x-fixed-field(64825977), text/x-fixed-field(51716302), text/x-fixed-field(53380128), text/x-fixed-field(60947275), text/x-fixed-field(51585609), text/x-fixed-field(51665791), text/x-fixed-field(60591685), text/x-fixed-field(52255115), text/x-fixed-field(52052491), text/x-fixed-field(60889129), text/x-fixed-field(60934904), text/x-fixed-field(51987796), text/x-fixed-field(51585294), text/x-fixed-field(58801003), text/x-fixed-field(53257992), text/x-fixed-field(54015432), text/x-fixed-field(51564776), text/x-fixed-field(61314613), text/x-fixed-field(52635209), text/x-fixed-field(61446533), text/x-fixed-field(54221471), text/x-fixed-field(52044721), text/x-fixed-field(51833903), text/x-fixed-field(58764464), text/x-fixed-field(58965792), text/x-fixed-field(58918624), text/x-fixed-field(51582325), text/x-fixed-field(60804237), text/x-fixed-field(51700409), text/x-fixed-field(51607562), text/x-fixed-field(58044427), text/x-fixed-field(53212103), text/x-fixed-field(64093757), text/x-fixed-field(51745148), text/x-fixed-field(54170867), text/x-fixed-field(61177791), text/x-fixed-field(52769625), text/x-fixed-field(64573604), text/x-fixed-field(65829288), text/x-fixed-field(51581470), text/x-fixed-field(52814533), text/x-fixed-field(55731725), text/x-fixed-field(51771056), text/x-fixed-field(51693072), text/x-fixed-field(60716115), text/x-fixed-field(51563155), text/x-fixed-field(51606750), text/x-fixed-field(60602909), text/x-fixed-field(51712566), text/x-fixed-field(51882237), text/x-fixed-field(53826593), text/x-fixed-field(51580948), text/x-fixed-field(52204863), text/x-fixed-field(62577849), text/x-fixed-field(51961464), text/x-fixed-field(51652475), text/x-fixed-field(51674036), text/x-fixed-field(64089675), text/x-fixed-field(51583121), text/x-fixed-field(66100899), text/x-fixed-field(51716430), text/x-fixed-field(51607422), text/x-fixed-field(60062662), text/x-fixed-field(64645178), text/x-fixed-field(51638905), text/x-fixed-field(67564480), text/x-fixed-field(52468250), text/x-fixed-field(51674783), text/x-fixed-field(51876367), text/x-fixed-field(51764900), text/x-fixed-field(51668650), text/x-fixed-field(51641170), text/x-fixed-field(51650566), text/x-fixed-field(60799297), text/x-fixed-field(51677769), text/x-fixed-field(52051382), text/x-fixed-field(51560592), text/x-fixed-field(60538589), text/x-fixed-field(78700307), text/x-fixed-field(61137200), text/x-fixed-field(52245096), text/x-fixed-field(65833077), text/x-fixed-field(54121459), text/x-fixed-field(60773781), text/x-fixed-field(62127727), text/x-fixed-field(62114691), text/x-fixed-field(51625924), text/x-fixed-field(61252345), text/x-fixed-field(60017454), text/x-fixed-field(51698060), text/x-fixed-field(51723774), text/x-fixed-field(60502467), txt(861201), text/x-fixed-field(51609778), text/x-fixed-field(58806151), txt(20888), text/x-fixed-field(51585082), text/x-fixed-field(51673479), text/x-fixed-field(62278000), text/x-fixed-field(51668792), text/x-fixed-field(61517370), text/x-fixed-field(52061529), text/x-fixed-field(65870067), text/x-fixed-field(61397680), text/x-fixed-field(52347599), text/x-fixed-field(51571147), text/x-fixed-field(51723215), text/x-fixed-field(62164549), text/x-fixed-field(51658831), text/x-fixed-field(51641562), text/x-fixed-field(51900457), text/x-fixed-field(51986857), text/x-fixed-field(51637548), text/x-fixed-field(61648258), text/x-fixed-field(65955590), text/x-fixed-field(58669946), text/x-fixed-field(51672700), text/x-fixed-field(51741659), text/x-fixed-field(51944446), text/x-fixed-field(61956374), text/x-fixed-field(51653946), text/x-fixed-field(51670974), text/x-fixed-field(51641978), text/x-fixed-field(59209842), text/x-fixed-field(51596500), text/x-fixed-field(51668730), txt(882616), text/x-fixed-field(51979795), text/x-fixed-field(60780484), text/x-fixed-field(51685131), text/x-fixed-field(58771785), text/x-fixed-field(78905986), text/x-fixed-field(59753273), text/x-fixed-field(51695510), text/x-fixed-field(61204157), text/x-fixed-field(51693124), text/x-fixed-field(60659752), text/x-fixed-field(59345340), text/x-fixed-field(58601835), text/x-fixed-field(58477562), text/x-fixed-field(51875537), text/x-fixed-field(59854876), text/x-fixed-field(52347959), text/x-fixed-field(51739952), text/x-fixed-field(51690376), text/x-fixed-field(61151246), text/x-fixed-field(51651469), text/x-fixed-field(64421559), text/x-fixed-field(51570533), text/x-fixed-field(57408111), text/x-fixed-field(51982109), text/x-fixed-field(55163125), text/x-fixed-field(62921676), text/x-fixed-field(51663941), text/x-fixed-field(55309629), text/x-fixed-field(52060053), text/x-fixed-field(51640594), text/x-fixed-field(51598552), text/x-fixed-field(51674131), text/x-fixed-field(60735582), text/x-fixed-field(52207798), txt(21128), text/x-fixed-field(56908962), text/x-fixed-field(51717593), text/x-fixed-field(52047963), text/x-fixed-field(60020828), text/x-fixed-field(51572108), text/x-fixed-field(52255721), text/x-fixed-field(60958031), txt(21442), txt(21450), txt(858279), txt(21431), text/x-fixed-field(54095860), text/x-fixed-field(51702245), text/x-fixed-field(51981533), text/x-fixed-field(51605917), text/x-fixed-field(51689636), text/x-fixed-field(53865395), text/x-fixed-field(51890933), txt(872274), text/x-fixed-field(51652149), text/x-fixed-field(58403447), text/x-fixed-field(51558287), text/x-fixed-field(52625172), text/x-fixed-field(52456644), text/x-fixed-field(64926416), txt(897422), text/x-fixed-field(51693986), text/x-fixed-field(61037099), text/x-fixed-field(51716966), text/x-fixed-field(51618352), text/x-fixed-field(64528732), text/x-fixed-field(51655798), text/x-fixed-field(51713171), text/x-fixed-field(55085605), text/x-fixed-field(51690857), text/x-fixed-field(61123186), text/x-fixed-field(65864963), text/x-fixed-field(51876007), text/x-fixed-field(61383484), text/x-fixed-field(59851906), text/x-fixed-field(51819187), text/x-fixed-field(51720675), text/x-fixed-field(58301245), text/x-fixed-field(64681095), text/x-fixed-field(61905621), txt(857550), text/x-fixed-field(51582001), text/x-fixed-field(65947249), text/x-fixed-field(52109241), text/x-fixed-field(51766993), text/x-fixed-field(60857641), text/x-fixed-field(56004222), text/x-fixed-field(51677641), text/x-fixed-field(51847782), text/x-fixed-field(66037396), text/x-fixed-field(52255780), text/x-fixed-field(51721663), text/x-fixed-field(60708497), text/x-fixed-field(61148586), text/x-fixed-field(51673318), text/x-fixed-field(51702944), text/x-fixed-field(51743654), text/x-fixed-field(61068700), text/x-fixed-field(58393810), text/x-fixed-field(78696095), text/x-fixed-field(52056692), text/x-fixed-field(51722872), text/x-fixed-field(59996002), text/x-fixed-field(59560228), text/x-fixed-field(61139875), text/x-fixed-field(52182971), text/x-fixed-field(58333739), text/x-fixed-field(54484937), text/x-fixed-field(51670678), text/x-fixed-field(51696953), text/x-fixed-field(67700653), text/x-fixed-field(51657704), text/x-fixed-field(79552804), txt(20874), text/x-fixed-field(51695391), text/x-fixed-field(58256462), text/x-fixed-field(51675719), text/x-fixed-field(61280694), text/x-fixed-field(58392650), text/x-fixed-field(64665790), text/x-fixed-field(52253469), text/x-fixed-field(55682877), text/x-fixed-field(51677785), text/x-fixed-field(51755390), text/x-fixed-field(52628686), text/x-fixed-field(56032007), text/x-fixed-field(64196594), text/x-fixed-field(51640898), text/x-fixed-field(51989435), text/x-fixed-field(60861575), txt(21435), text/x-fixed-field(51561166), text/x-fixed-field(52455615), text/x-fixed-field(51706814), text/x-fixed-field(51675573), text/x-fixed-field(79582978), text/x-fixed-field(52833949), text/x-fixed-field(52662200), text/x-fixed-field(60876564), text/x-fixed-field(51699626), text/x-fixed-field(51706866), text/x-fixed-field(60969491), text/x-fixed-field(64999802), text/x-fixed-field(51685487), text/x-fixed-field(60755851), text/x-fixed-field(51959892), text/x-fixed-field(51768769), text/x-fixed-field(51698047), text/x-fixed-field(52374417), text/x-fixed-field(52455076), text/x-fixed-field(52902775), text/x-fixed-field(51692495), text/x-fixed-field(51769978), text/x-fixed-field(51670934), text/x-fixed-field(60735434), text/x-fixed-field(61253337), text/x-fixed-field(51681322), text/x-fixed-field(65904636), text/x-fixed-field(51755133), text/x-fixed-field(59436408), text/x-fixed-field(60985587), text/x-fixed-field(51882394), text/x-fixed-field(60062764), text/x-fixed-field(51733546), text/x-fixed-field(51743852), text/x-fixed-field(64559305), text/x-fixed-field(78922713), txt(24121), text/x-fixed-field(60939333), text/x-fixed-field(65916443), text/x-fixed-field(56061464), text/x-fixed-field(51678994), text/x-fixed-field(61340865), text/x-fixed-field(51583148), text/x-fixed-field(60667737), text/x-fixed-field(60474783), text/x-fixed-field(64498494), text/x-fixed-field(60399462), text/x-fixed-field(61157478), text/x-fixed-field(51605693), text/x-fixed-field(60830156), text/x-fixed-field(51692765), text/x-fixed-field(53323372), text/x-fixed-field(60774060), text/x-fixed-field(63752234), text/x-fixed-field(62440912), text/x-fixed-field(79815989), text/x-fixed-field(60555535), text/x-fixed-field(60793545), text/x-fixed-field(51583737), text/x-fixed-field(60207768), text/x-fixed-field(58414003), text/x-fixed-field(51581408), text/x-fixed-field(51980118), text/x-fixed-field(58671303), text/x-fixed-field(58390378), text/x-fixed-field(60703348), text/x-fixed-field(51654711), text/x-fixed-field(51633916), text/x-fixed-field(62113230), text/x-fixed-field(51655338), text/x-fixed-field(59522447), text/x-fixed-field(61394800), text/x-fixed-field(58912494), text/x-fixed-field(60485938), text/x-fixed-field(60567091), text/x-fixed-field(60328904), text/x-fixed-field(63679447), text/x-fixed-field(57238868), text/x-fixed-field(51705602), text/x-fixed-field(51888653), text/x-fixed-field(56012520), text/x-fixed-field(51717757), text/x-fixed-field(51712989), text/x-fixed-field(58398420), text/x-fixed-field(60743387), text/x-fixed-field(58588203), text/x-fixed-field(51634471), text/x-fixed-field(60971844), text/x-fixed-field(51737597), text/x-fixed-field(51682588), text/x-fixed-field(61271840), text/x-fixed-field(61117268), text/x-fixed-field(51700114), text/x-fixed-field(52249859), text/x-fixed-field(51223203), text/x-fixed-field(51693686), text/x-fixed-field(51645188), txt(897502), text/x-fixed-field(52417511), text/x-fixed-field(60081026), text/x-fixed-field(60871725), text/x-fixed-field(60792569), text/x-fixed-field(51584915), text/x-fixed-field(58833951), text/x-fixed-field(51754416), text/x-fixed-field(51645882), text/x-fixed-field(51887255), text/x-fixed-field(60704632), text/x-fixed-field(60817029), text/x-fixed-field(51575274), text/x-fixed-field(60752097), text/x-fixed-field(65576547), text/x-fixed-field(57217197), text/x-fixed-field(60999322), text/x-fixed-field(61096253), text/x-fixed-field(51622817), text/x-fixed-field(52397324), text/x-fixed-field(52396104), text/x-fixed-field(51764909), text/x-fixed-field(51596989), text/x-fixed-field(60478876), text/x-fixed-field(64297148), text/x-fixed-field(59588830), text/x-fixed-field(58678701), text/x-fixed-field(64531942), text/x-fixed-field(61310348), text/x-fixed-field(51658537), text/x-fixed-field(60674776), text/x-fixed-field(51588619), text/x-fixed-field(52156014), text/x-fixed-field(60153865), text/x-fixed-field(54261649), text/x-fixed-field(62347484), text/x-fixed-field(61117371), text/x-fixed-field(61458952), text/x-fixed-field(51735239), text/x-fixed-field(51736859), text/x-fixed-field(62661755), txt(24114), text/x-fixed-field(66889994), text/x-fixed-field(60877906), text/x-fixed-field(51716016), text/x-fixed-field(61045605), text/x-fixed-field(51571622), text/x-fixed-field(51671959), text/x-fixed-field(51682677), text/x-fixed-field(60166992), text/x-fixed-field(60113624), text/x-fixed-field(60853874), text/x-fixed-field(60042880), text/x-fixed-field(61478373), text/x-fixed-field(51667999), text/x-fixed-field(51741290), text/x-fixed-field(55576136), text/x-fixed-field(51755369), text/x-fixed-field(60886934), text/x-fixed-field(52659662), text/x-fixed-field(58429167), text/x-fixed-field(58772889), text/x-fixed-field(51607726), text/x-fixed-field(51680814), text/x-fixed-field(51695335), text/x-fixed-field(52055909), text/x-fixed-field(52455659), text/x-fixed-field(51652319), text/x-fixed-field(56075188), text/x-fixed-field(51755512), text/x-fixed-field(60316296), text/x-fixed-field(60084129), text/x-fixed-field(51666734), text/x-fixed-field(56049250), text/x-fixed-field(51570864), text/x-fixed-field(52237460), text/x-fixed-field(52877146), text/x-fixed-field(51703331), text/x-fixed-field(51588497), text/x-fixed-field(65791126), text/x-fixed-field(51581634), text/x-fixed-field(51725887), text/x-fixed-field(51768749), text/x-fixed-field(54593104), text/x-fixed-field(51673963), text/x-fixed-field(51755500), text/x-fixed-field(56009652), text/x-fixed-field(51563099), text/x-fixed-field(52054740), text/x-fixed-field(60248700), text/x-fixed-field(51592707), text/x-fixed-field(51623767), text/x-fixed-field(51771084), text/x-fixed-field(53721475), text/x-fixed-field(61460850), text/x-fixed-field(61133809), text/x-fixed-field(51708775), text/x-fixed-field(58568384), text/x-fixed-field(51719042), text/x-fixed-field(60547336), text/x-fixed-field(64090718), text/x-fixed-field(64503826), text/x-fixed-field(51664501), text/x-fixed-field(51678123), txt(882094), text/x-fixed-field(51965736), text/x-fixed-field(51637735), txt(4842), text/x-fixed-field(53834285), text/x-fixed-field(59111869), text/x-fixed-field(52273526), text/x-fixed-field(65333004), text/x-fixed-field(51590489), text/x-fixed-field(51676288), text/x-fixed-field(51618558), text/x-fixed-field(51896629), text/x-fixed-field(51671610), text/x-fixed-field(51704427), text/x-fixed-field(59010964), text/x-fixed-field(51582411), text/x-fixed-field(55863439), text/x-fixed-field(53948159), text/x-fixed-field(61271725), text/x-fixed-field(54118859), text/x-fixed-field(51885954), text/x-fixed-field(51597743), text/x-fixed-field(60744961), text/x-fixed-field(52076000), text/x-fixed-field(61465332), text/x-fixed-field(62017506), text/x-fixed-field(51725345), text/x-fixed-field(58496636), text/x-fixed-field(59652071), text/x-fixed-field(51993179), text/x-fixed-field(51673350), text/x-fixed-field(52562606), text/x-fixed-field(51743050), text/x-fixed-field(51560418), text/x-fixed-field(64030334), text/x-fixed-field(51701764), text/x-fixed-field(51946270), text/x-fixed-field(51595820), text/x-fixed-field(64893438), text/x-fixed-field(59659596), text/x-fixed-field(61377317), text/x-fixed-field(51638232), text/x-fixed-field(61161570), text/x-fixed-field(51671635), text/x-fixed-field(51586125), text/x-fixed-field(51625494), text/x-fixed-field(60099813), text/x-fixed-field(60528980), text/x-fixed-field(51966280), text/x-fixed-field(52246586), text/x-fixed-field(59122226), text/x-fixed-field(51672068), text/x-fixed-field(60962303), text/x-fixed-field(61221662), text/x-fixed-field(51663661), text/x-fixed-field(59694198), text/x-fixed-field(53222816), text/x-fixed-field(60842721), text/x-fixed-field(63983564), text/x-fixed-field(51695246), text/x-fixed-field(52250194), text/x-fixed-field(60766455), text/x-fixed-field(51706103), text/x-fixed-field(58547145), text/x-fixed-field(60090097), text/x-fixed-field(61292801), text/x-fixed-field(56011954), text/x-fixed-field(51723220), text/x-fixed-field(60668477), txt(858127), text/x-fixed-field(59938493), text/x-fixed-field(59853857), text/x-fixed-field(51744345), text/x-fixed-field(60754420), text/x-fixed-field(65831624), text/x-fixed-field(59013782), text/x-fixed-field(65025274), text/x-fixed-field(63129912), text/x-fixed-field(57104359), text/x-fixed-field(51672412), text/x-fixed-field(59097083), text/x-fixed-field(52402438), text/x-fixed-field(52143575), text/x-fixed-field(56005381), text/x-fixed-field(51884994), text/x-fixed-field(51560453), text/x-fixed-field(51685124), text/x-fixed-field(59952408), text/x-fixed-field(58235560), text/x-fixed-field(56032547), text/x-fixed-field(60747793), text/x-fixed-field(61366490), text/x-fixed-field(59654738), text/x-fixed-field(60223655), text/x-fixed-field(51754248), text/x-fixed-field(64969258), text/x-fixed-field(51740063), text/x-fixed-field(51929422), text/x-fixed-field(51889869), text/x-fixed-field(51744762), txt(858519), text/x-fixed-field(61461813), text/x-fixed-field(59653371), text/x-fixed-field(58842943), text/x-fixed-field(65572620), text/x-fixed-field(60721307), text/x-fixed-field(52072943), text/x-fixed-field(58376269), text/x-fixed-field(56032407), txt(21432), text/x-fixed-field(51587140), text/x-fixed-field(60322572), text/x-fixed-field(61448433), text/x-fixed-field(52944534), text/x-fixed-field(64519506), text/x-fixed-field(60945558), text/x-fixed-field(51680540), text/x-fixed-field(58862521), text/x-fixed-field(51684314), text/x-fixed-field(60711751), text/x-fixed-field(51748869), text/x-fixed-field(63182653), text/x-fixed-field(52238869), text/x-fixed-field(56005826), text/x-fixed-field(61488033), text/x-fixed-field(51585938), text/x-fixed-field(52416562), text/x-fixed-field(51898630), txt(863511), text/x-fixed-field(61083269), txt(22050), text/x-fixed-field(61814605), text/x-fixed-field(60780615), text/x-fixed-field(51967808), text/x-fixed-field(59935960), text/x-fixed-field(65908663), text/x-fixed-field(61202958), text/x-fixed-field(52255237), text/x-fixed-field(60879417), text/x-fixed-field(51685069), text/x-fixed-field(60661462), text/x-fixed-field(56012301), text/x-fixed-field(52253507), text/x-fixed-field(61156650), text/x-fixed-field(51714995), text/x-fixed-field(57486534), text/x-fixed-field(59677022), text/x-fixed-field(51686009), text/x-fixed-field(52051646), text/x-fixed-field(51675013), text/x-fixed-field(51591491), text/x-fixed-field(66425423), text/x-fixed-field(62438740), text/x-fixed-field(51694762), text/x-fixed-field(51671285), text/x-fixed-field(60899724), text/x-fixed-field(53284350), text/x-fixed-field(61382352), text/x-fixed-field(60949145), text/x-fixed-field(60884253), text/x-fixed-field(60805072), text/x-fixed-field(61760041), text/x-fixed-field(59455692), text/x-fixed-field(67707800), text/x-fixed-field(52010736), text/x-fixed-field(59851715), text/x-fixed-field(65478221), text/x-fixed-field(51626264), text/x-fixed-field(51611446), text/x-fixed-field(60955759), text/x-fixed-field(58409164), text/x-fixed-field(60775587), text/x-fixed-field(51816983), text/x-fixed-field(51600256), text/x-fixed-field(51570587), text/x-fixed-field(52461214), text/x-fixed-field(51976764), text/x-fixed-field(51671512), text/x-fixed-field(61384905), text/x-fixed-field(59944336), text/x-fixed-field(60898962), text/x-fixed-field(51667486), text/x-fixed-field(56011289), text/x-fixed-field(52031190), text/x-fixed-field(52465747), text/x-fixed-field(51738162), text/x-fixed-field(51681071), text/x-fixed-field(51679988), text/x-fixed-field(51590147), text/x-fixed-field(51886866), text/x-fixed-field(55692035), text/x-fixed-field(59806023), text/x-fixed-field(59077841), text/x-fixed-field(51582019), text/x-fixed-field(59596586), text/x-fixed-field(60087427), text/x-fixed-field(58760450), text/x-fixed-field(51641293), text/x-fixed-field(60750307), text/x-fixed-field(55971161), text/x-fixed-field(51755057), text/x-fixed-field(52463772), text/x-fixed-field(58851040), text/x-fixed-field(55526898), text/x-fixed-field(61451792), txt(20266), text/x-fixed-field(64872155), text/x-fixed-field(51690960), text/x-fixed-field(51638780), text/x-fixed-field(60300126), text/x-fixed-field(59059861), text/x-fixed-field(58554620), text/x-fixed-field(61597299), text/x-fixed-field(51675904), text/x-fixed-field(56010827), text/x-fixed-field(60835803), text/x-fixed-field(52143721), text/x-fixed-field(61439431), text/x-fixed-field(58997658), text/x-fixed-field(51599898), text/x-fixed-field(55637993), text/x-fixed-field(51875781), text/x-fixed-field(58753262), text/x-fixed-field(52246460), text/x-fixed-field(52414738), text/x-fixed-field(58751298), text/x-fixed-field(60161701), text/x-fixed-field(60714356), text/x-fixed-field(51656566)Available download formats
    Dataset updated
    May 11, 2016
    Dataset provided by
    DANS Data Station Archaeology
    Authors
    Klein Klein Goldewijk; Klein Klein Goldewijk
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    -This dataset is replaced by a new version, see below.-Land use plays an important role in the climate system (Feddema et al., 2005). Many ecosystem processes are directly or indirectly climate driven, and together with human driven land use changes, they determine how the land surface will evolve through time. To assess the effects of land cover changes on the climate system, models are required which are capable of simulating interactions between the involved components of the Earth system (land, atmosphere, ocean, and carbon cycle). Since driving forces for global environmental change differ among regions, a geographically (spatially) explicit modeling approach is called for, so that it can be incorporated in global and regional (climate and/or biophysical) change models in order to enhance our understanding of the underlying processes and thus improving future projections.Integrated records of the co-evolving human-environment system over millennia are needed to provide a basis for a deeper understanding of the present and for forecasting the future. This requires the major task of assembling and integrating regional and global historical, archaeological, and paleo-environmental records. Humans cannot predict the future. But, if we can adequately understand the past, we can use that understanding to influence our decisions and to create a better, more sustainable and desirable future.Some researchers suggest that mankind has shifted from living in the Holocene (~emergence of agriculture) into the Anthropocene (~humans capable of changing the Earth’ atmosphere) since the start of the Industrial Revolution. But in the light of the sheer size and magnitude of some historical land use changes (e.g. collapse of the Roman Empire in the 4th century, the depopulation of Europe due to the Black Plague in the 14th century and the aftermath of the colonization of the Americas in the 16th century), some believe that this point might have occurred earlier in time (Ruddiman, 2003; Kaplan et al., 2010). Many uncertainties still remain today and gaps in our knowledge of the Antiquity and its aftermath can only be improved by interdisciplinary research.HYDE presents (gridded) time series of population and land use for the last 12,000 years. It is an update (v 3.2) of the History Database of the Global Environment (HYDE) from Klein Goldewijk et al. (2011, 2013) with new quantitative estimates of the underlying demographic and agricultural developments for the Holocene. Date Submitted: 2016-05-10 The datasets consist of different time steps for each period: 10k BCE - 1 CE: 1000 yr, 1 - 1700 CE: 100 yr, 1700 - 2000 CE: 10 yr, 2000 - 2015 CE: 1 yr.This dataset has been made available from May until November 2016, when a new version was deposited in order to fix an incompleteness in the data.A newer version was deposited and published in September 2017.See the relations for the new version.

  10. e

    The Living Land

    • gisinschools.eagle.co.nz
    • agriculture.africageoportal.com
    • +5more
    Updated Oct 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). The Living Land [Dataset]. https://gisinschools.eagle.co.nz/datasets/Story::the-living-land
    Explore at:
    Dataset updated
    Oct 3, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    For many of us, urban areas are the first thing that comes to mind when we think of spaces that have been altered by people. But, as it turns out, these mental images aren't very representative of our overall land use. In the second chapter of our Living in the Age of Humans series, the Esri Story Maps team takes a closer look at the ways Homo sapiens have modified Earth's limited land, and what implications this use has for our future.Data:NASA Blue Marble, July 2004Esri World ImageryESA CCI-LC Land Cover (2015)CIESIN Global Croplands, v1 (2000)CIESIN Global Pastures, v1 (2000)WheatMaizeRiceSoybeansForest Loss

  11. d

    Low Elevation Coastal Zone (LECZ) Global Delta Urban-Rural Population and...

    • catalog.data.gov
    • dataverse.harvard.edu
    • +2more
    Updated Aug 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Low Elevation Coastal Zone (LECZ) Global Delta Urban-Rural Population and Land Area Estimates, Version 1 [Dataset]. https://catalog.data.gov/dataset/low-elevation-coastal-zone-lecz-global-delta-urban-rural-population-and-land-area-estimate
    Explore at:
    Dataset updated
    Aug 23, 2025
    Dataset provided by
    SEDAC
    Description

    The Low Elevation Coastal Zone (LECZ) Global Delta Urban-Rural Population and Land Area Estimates, Version 1 data set provides country-level estimates of urban, quasi-urban, rural, and total population (count), land area (square kilometers), and built-up areas in river delta- and non-delta contexts for 246 statistical areas (countries and other UN-recognized territories) for the years 1990, 2000, 2014 and 2015. The population estimates are disaggregated such that compounding risk factors including elevation, settlement patterns, and delta zones can be cross-examined. The Intergovernmental Panel on Climate Change (IPCC) recently concluded that without significant adaptation and mitigation action, risk to coastal commUnities will increase at least one order of magnitude by 2100, placing people, property, and environmental resources at greater risk. Greater-risk zones were then generated: 1) the global extent of two low-elevation zones contiguous to the coast, one bounded by an upper elevation of 10m (LECZ10), and one by an upper elevation of 5m (LECZ05); 2) the extent of the world's major deltas; 3) the distribution of people and built-up area around the world; 4) the extents of urban centers around the world. The data are layered spatially, along with political and land/water boundaries, allowing the densities and quantities of population and built-up area, as well as levels of urbanization (defined as the share of population living in "urban centers") to be estimated for any country or region, both inside and outside the LECZs and deltas, and at two points in time (1990 and 2015). In using such estimates of populations living in 5m and 10m LECZs and outside of LECZs, policymakers can make informed decisions based on perceived exposure and vulnerability to potential damages from sea level rise.

  12. Description of dataset features.

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Raza; Furqan Rustam; Hafeez Ur Rehman Siddiqui; Isabel de la Torre Diez; Imran Ashraf (2023). Description of dataset features. [Dataset]. http://doi.org/10.1371/journal.pone.0284522.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ali Raza; Furqan Rustam; Hafeez Ur Rehman Siddiqui; Isabel de la Torre Diez; Imran Ashraf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Microbe organisms make up approximately 60% of the earth’s living matter and the human body is home to millions of microbe organisms. Microbes are microbial threats to health and may lead to several diseases in humans like toxoplasmosis and malaria. The microbiological toxoplasmosis disease in humans is widespread, with a seroprevalence of 3.6-84% in sub-Saharan Africa. This necessitates an automated approach for microbe organisms detection. The primary objective of this study is to predict microbe organisms in the human body. A novel hybrid microbes classifier (HMC) is proposed in this study which is based on a decision tree classifier and extra tree classifier using voting criteria. Experiments involve different machine learning and deep learning models for detecting ten different living microforms of life. Results suggest that the proposed HMC approach achieves a 98% accuracy score, 98% geometric mean score, 97% precision score, and 97% Cohen Kappa score. The proposed model outperforms employed models, as well as, existing state-of-the-art models. Moreover, the k-fold cross-validation corroborates the results as well. The research helps microbiologists identify the type of microbe organisms with high accuracy and prevents many diseases through early detection.

  13. Fuel Moisture Content (Live and Dead) over the Conterminous United States

    • gdex.ucar.edu
    • data.ucar.edu
    Updated Dec 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Branko Kosovic; Steven Massie; Tyler McCandless; Bill Petzke; Pedro Jimenez Munoz; Amy DeCastro; Amanda Siems-Anderson (2019). Fuel Moisture Content (Live and Dead) over the Conterminous United States [Dataset]. http://doi.org/10.5065/qt42-zd40
    Explore at:
    Dataset updated
    Dec 6, 2019
    Dataset provided by
    National Science Foundationhttp://www.nsf.gov/
    Authors
    Branko Kosovic; Steven Massie; Tyler McCandless; Bill Petzke; Pedro Jimenez Munoz; Amy DeCastro; Amanda Siems-Anderson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 6, 2019 - Feb 28, 2021
    Description

    A dynamic gridded dataset of live and dead fuel moisture content (FMC) over the Conterminous United States (CONUS). The FMC dataset is created by combining satellite observations, reflectances from MODIS Terra and Aqua platforms, with surface, in situ observations of FMC from the National Fuel Moisture Database (NFMD) using a machine learning model as well as environmental data provided by the National Water Model based on the WRF-Hydro model.

  14. Effects of microgravity on human iPSC-derived neural organoids on the...

    • data.nasa.gov
    • catalog.data.gov
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Effects of microgravity on human iPSC-derived neural organoids on the International Space Station - dopaminergic organoids [Dataset]. https://data.nasa.gov/dataset/effects-of-microgravity-on-human-ipsc-derived-neural-organoids-on-the-international-space--c4013
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    Research conducted on the International Space Station (ISS) in low-Earth orbit (LEO) has shown the effects of microgravity on multiple organs. To investigate the effects of microgravity on the central nervous system, we developed a unique organoid strategy for modeling specific regions of the brain that are affected by neurodegenerative diseases. We generated 3-dimensional human neural organoids from induced pluripotent stem cells (iPSCs) derived from individuals affected by primary progressive multiple sclerosis (PPMS) or Parkinson's disease (PD) and non-symptomatic controls, by differentiating them toward cortical and dopaminergic fates, respectively, and combined them with isogenic microglia. The organoids were cultured for a month using a novel sealed cryovial culture method on the International Space Station (ISS) and a parallel set that remained on Earth. Live samples were returned to Earth for analysis by RNA expression and histology and were attached to culture dishes to enable neurite outgrowth. Our results show that both cortical and dopaminergic organoids cultured in LEO had lower levels of genes associated with cell proliferation and higher levels of maturation-associated genes, suggesting that the cells matured more quickly in LEO. This study is continuing with several more missions in order to understand the mechanisms underlying accelerated maturation and to investigate other neurological diseases. Our goal is to make use of the opportunity to study neural cells in LEO to better understand and treat neurodegenerative disease on Earth and to help ameliorate potentially adverse neurological effects of space travel. This study hosts data from dopaminergic organoids. Data for the cortical organoids is available under OSD-863.

  15. Metadata record for: Outlining where humans live, the World Settlement...

    • commons.datacite.org
    • springernature.figshare.com
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scientific Data Curation Team (2020). Metadata record for: Outlining where humans live, the World Settlement Footprint 2015 [Dataset]. http://doi.org/10.6084/m9.figshare.12424970.v1
    Explore at:
    Dataset updated
    Jul 16, 2020
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    DataCitehttps://www.datacite.org/
    Authors
    Scientific Data Curation Team
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset contains key characteristics about the data described in the Data Descriptor Outlining where humans live, the World Settlement Footprint 2015.
    Contents:
    1. human readable metadata summary table in CSV format 2. machine readable metadata file in JSON format


  16. Data from: S1 Dataset -

    • plos.figshare.com
    zip
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Raza; Furqan Rustam; Hafeez Ur Rehman Siddiqui; Isabel de la Torre Diez; Imran Ashraf (2023). S1 Dataset - [Dataset]. http://doi.org/10.1371/journal.pone.0284522.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Ali Raza; Furqan Rustam; Hafeez Ur Rehman Siddiqui; Isabel de la Torre Diez; Imran Ashraf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Microbe organisms make up approximately 60% of the earth’s living matter and the human body is home to millions of microbe organisms. Microbes are microbial threats to health and may lead to several diseases in humans like toxoplasmosis and malaria. The microbiological toxoplasmosis disease in humans is widespread, with a seroprevalence of 3.6-84% in sub-Saharan Africa. This necessitates an automated approach for microbe organisms detection. The primary objective of this study is to predict microbe organisms in the human body. A novel hybrid microbes classifier (HMC) is proposed in this study which is based on a decision tree classifier and extra tree classifier using voting criteria. Experiments involve different machine learning and deep learning models for detecting ten different living microforms of life. Results suggest that the proposed HMC approach achieves a 98% accuracy score, 98% geometric mean score, 97% precision score, and 97% Cohen Kappa score. The proposed model outperforms employed models, as well as, existing state-of-the-art models. Moreover, the k-fold cross-validation corroborates the results as well. The research helps microbiologists identify the type of microbe organisms with high accuracy and prevents many diseases through early detection.

  17. Land Cover 2050 - Global

    • rwanda.africageoportal.com
    • pacificgeoportal.com
    • +11more
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://rwanda.africageoportal.com/datasets/cee96e0ada6541d0bd3d67f3f8b5ce63
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  18. 2020 Census Tracts

    • catalog.data.gov
    • data.oregon.gov
    • +3more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (2025). 2020 Census Tracts [Dataset]. https://catalog.data.gov/dataset/census-tracts
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    This data layer is an element of the Oregon GIS Framework. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  19. a

    The Living Land: Atlas

    • climate-center-lincolninstitute.hub.arcgis.com
    • hub-lincolninstitute.hub.arcgis.com
    • +5more
    Updated Oct 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). The Living Land: Atlas [Dataset]. https://climate-center-lincolninstitute.hub.arcgis.com/datasets/Story::the-living-land-atlas
    Explore at:
    Dataset updated
    Oct 4, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    This collection of maps complements The Living Land, the second chapter in Living in the Age of Humans, a series of story maps examining humankind's impact on the planet. Explore the data in each map to see patterns in global land use, key growing regions for specific crops, the vast spread of pasturelands, and more.

  20. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Aman Chauhan (2022). World Population Live Dataset 2022 [Dataset]. https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset/code
Organization logo

World Population Live Dataset 2022

World Population Live Dataset by Country 2022

Explore at:
zip(10169 bytes)Available download formats
Dataset updated
Sep 10, 2022
Authors
Aman Chauhan
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
World
Description

The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.

Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.

Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.

Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.

ColumnsDescription
CCA33 Digit Country/Territories Code
NameName of the Country/Territories
2022Population of the Country/Territories in the year 2022.
2020Population of the Country/Territories in the year 2020.
2015Population of the Country/Territories in the year 2015.
2010Population of the Country/Territories in the year 2010.
2000Population of the Country/Territories in the year 2000.
1990Population of the Country/Territories in the year 1990.
1980Population of the Country/Territories in the year 1980.
1970Population of the Country/Territories in the year 1970.
Area (km²)Area size of the Country/Territories in square kilometer.
Density (per km²)Population Density per square kilometer.
Grow...
Search
Clear search
Close search
Google apps
Main menu