100+ datasets found
  1. COVID-19 Time-Series Metrics by County and State (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +2more
    csv, xlsx, zip
    Updated Aug 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2024). COVID-19 Time-Series Metrics by County and State (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
    Explore at:
    csv(7729431), xlsx(7811), csv(4836928), xlsx(6471), csv(3313), xlsx(11305), csv(6223281), zipAvailable download formats
    Dataset updated
    Aug 28, 2024
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This COVID-19 data set is no longer being updated as of December 1, 2023. Access current COVID-19 data on the CDPH respiratory virus dashboard (https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx) or in open data format (https://data.chhs.ca.gov/dataset/respiratory-virus-dashboard-metrics).

    As of August 17, 2023, data is being updated each Friday.

    For death data after December 31, 2022, California uses Provisional Deaths from the Center for Disease Control and Prevention’s National Center for Health Statistics (NCHS) National Vital Statistics System (NVSS). Prior to January 1, 2023, death data was sourced from the COVID-19 registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023.

    As of May 11, 2023, data on cases, deaths, and testing is being updated each Thursday. Metrics by report date have been removed, but previous versions of files with report date metrics are archived below.

    All metrics include people in state and federal prisons, US Immigration and Customs Enforcement facilities, US Marshal detention facilities, and Department of State Hospitals facilities. Members of California's tribal communities are also included.

    The "Total Tests" and "Positive Tests" columns show totals based on the collection date. There is a lag between when a specimen is collected and when it is reported in this dataset. As a result, the most recent dates on the table will temporarily show NONE in the "Total Tests" and "Positive Tests" columns. This should not be interpreted as no tests being conducted on these dates. Instead, these values will be updated with the number of tests conducted as data is received.

  2. d

    California Land Ownership

    • catalog.data.gov
    • data.cnra.ca.gov
    • +5more
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2025). California Land Ownership [Dataset]. https://catalog.data.gov/dataset/california-land-ownership-b6394
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    CAL FIRE
    Area covered
    California
    Description

    This dataset was updated April, 2024.This ownership dataset was generated primarily from CPAD data, which already tracks the majority of ownership information in California. CPAD is utilized without any snapping or clipping to FRA/SRA/LRA. CPAD has some important data gaps, so additional data sources are used to supplement the CPAD data. Currently this includes the most currently available data from BIA, DOD, and FWS. Additional sources may be added in subsequent versions. Decision rules were developed to identify priority layers in areas of overlap.Starting in 2022, the ownership dataset was compiled using a new methodology. Previous versions attempted to match federal ownership boundaries to the FRA footprint, and used a manual process for checking and tracking Federal ownership changes within the FRA, with CPAD ownership information only being used for SRA and LRA lands. The manual portion of that process was proving difficult to maintain, and the new method (described below) was developed in order to decrease the manual workload, and increase accountability by using an automated process by which any final ownership designation could be traced back to a specific dataset.The current process for compiling the data sources includes: Clipping input datasets to the California boundary Filtering the FWS data on the Primary Interest field to exclude lands that are managed by but not owned by FWS (ex: Leases, Easements, etc) Supplementing the BIA Pacific Region Surface Trust lands data with the Western Region portion of the LAR dataset which extends into California. Filtering the BIA data on the Trust Status field to exclude areas that represent mineral rights only. Filtering the CPAD data on the Ownership Level field to exclude areas that are Privately owned (ex: HOAs) In the case of overlap, sources were prioritized as follows: FWS > BIA > CPAD > DOD As an exception to the above, DOD lands on FRA which overlapped with CPAD lands that were incorrectly coded as non-Federal were treated as an override, such that the DOD designation could win out over CPAD.In addition to this ownership dataset, a supplemental _source dataset is available which designates the source that was used to determine the ownership in this dataset.Data Sources: GreenInfo Network's California Protected Areas Database (CPAD2023a). https://www.calands.org/cpad/; https://www.calands.org/wp-content/uploads/2023/06/CPAD-2023a-Database-Manual.pdf US Fish and Wildlife Service FWSInterest dataset (updated December, 2023). https://gis-fws.opendata.arcgis.com/datasets/9c49bd03b8dc4b9188a8c84062792cff_0/explore Department of Defense Military Bases dataset (updated September 2023) https://catalog.data.gov/dataset/military-bases Bureau of Indian Affairs, Pacific Region, Surface Trust and Pacific Region Office (PRO) land boundaries data (2023) via John Mosley John.Mosley@bia.gov Bureau of Indian Affairs, Land Area Representations (LAR) and BIA Regions datasets (updated Oct 2019) https://biamaps.doi.gov/bogs/datadownload.htmlData Gaps & Changes:Known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. Additionally, any feedback received about missing or inaccurate data can be taken back to the appropriate source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.24_1: Input datasets this year included numerous changes since the previous version, particularly the CPAD and DOD inputs. Of particular note was the re-addition of Camp Pendleton to the DOD input dataset, which is reflected in this version of the ownership dataset. We were unable to obtain an updated input for tribral data, so the previous inputs was used for this version.23_1: A few discrepancies were discovered between data changes that occurred in CPAD when compared with parcel data. These issues will be taken to CPAD for clarification for future updates, but for ownership23_1 it reflects the data as it was coded in CPAD at the time. In addition, there was a change in the DOD input data between last year and this year, with the removal of Camp Pendleton. An inquiry was sent for clarification on this change, but for ownership23_1 it reflects the data per the DOD input dataset.22_1 : represents an initial version of ownership with a new methodology which was developed under a short timeframe. A comparison with previous versions of ownership highlighted the some data gaps with the current version. Some of these known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. In addition, any topological errors (like overlaps or gaps) that exist in the input datasets may thus carry over to the ownership dataset. Ideally, any feedback received about missing or inaccurate data can be taken back to the relevant source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.

  3. Live Birth Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +4more
    csv, zip
    Updated Aug 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Live Birth Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/live-birth-profiles-by-county
    Explore at:
    csv(1911), zip, csv(9986780), csv(509041), csv(8256822)Available download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.

    The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.

  4. MHS Dashboard Adult Demographic Datasets

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Aug 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health Care Services (2024). MHS Dashboard Adult Demographic Datasets [Dataset]. https://data.chhs.ca.gov/dataset/adult-ab470-datasets
    Explore at:
    csv(197911), csv(1916691), csv(1637878), csv(42734), csv(11278), csv(297746), csv(3515490), csv(1254239), csv(402564), csv(1135935), csv(499193), csv(30400), csv(142267), csv(451612), csv(1699554), csv(512596), csv(45828311), csv(54553345), csv(22469442), csv(41051287), zipAvailable download formats
    Dataset updated
    Aug 28, 2024
    Dataset provided by
    California Department of Health Care Serviceshttp://www.dhcs.ca.gov/
    Authors
    Department of Health Care Services
    Description

    The following datasets are based on the adult (age 21 and over) beneficiary population and consist of aggregate MHS data derived from Medi-Cal claims, encounter, and eligibility systems. These datasets were developed in accordance with California Welfare and Institutions Code (WIC) § 14707.5 (added as part of Assembly Bill 470 on 10/7/17). Please contact BHData@dhcs.ca.gov for any questions or to request previous years’ versions of these datasets. Note: The Performance Dashboard AB 470 Report Application Excel tool development has been discontinued. Please see the Behavioral Health reporting data hub at https://behavioralhealth-data.dhcs.ca.gov/ for access to dashboards utilizing these datasets and other behavioral health data.

  5. N

    California, PA Age Group Population Dataset: A Complete Breakdown of...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). California, PA Age Group Population Dataset: A Complete Breakdown of California Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/451533ea-f122-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California, Pennsylvania
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the California population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for California. The dataset can be utilized to understand the population distribution of California by age. For example, using this dataset, we can identify the largest age group in California.

    Key observations

    The largest age group in California, PA was for the group of age 15 to 19 years years with a population of 1,371 (27.17%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in California, PA was the 75 to 79 years years with a population of 60 (1.19%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the California is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of California total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California Population by Age. You can refer the same here

  6. N

    California, PA Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). California, PA Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6e24269d-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California, Pennsylvania
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the California population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of California across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of California was 5,074, a 0.16% decrease year-by-year from 2021. Previously, in 2021, California population was 5,082, a decline of 5.12% compared to a population of 5,356 in 2020. Over the last 20 plus years, between 2000 and 2022, population of California decreased by 169. In this period, the peak population was 6,809 in the year 2011. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the California is shown in this column.
    • Year on Year Change: This column displays the change in California population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for California Population by Year. You can refer the same here

  7. California Land Ownership

    • catalog.data.gov
    • data.cnra.ca.gov
    • +4more
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CAL FIRE (2025). California Land Ownership [Dataset]. https://catalog.data.gov/dataset/california-land-ownership-8a515
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    California Department of Forestry and Fire Protectionhttp://calfire.ca.gov/
    Area covered
    California
    Description

    This dataset is intended to provide a statewide depiction of land ownership in California. It includes lands owned by each federal agency, state agency, local government entities, conservation organizations, and special districts. It does not include lands that are in private ownership. Ownership is derived from CAL FIRE's State Responsibility Area (SRA) dataset and GreenInfo Network's California Protected Areas Database (CPAD). CAL FIRE tracks lands owned by federal agencies as part of our efforts to maintain fire protection responsibility boundaries, captured as part of our State Responsibility Areas (SRA) dataset. This effort draws on data provided by various federal agencies including USDA Forest Service, BLM, National Park Service, US Fish and Wildlife Service, and Bureau of Indian Affairs. Since SRA lands are matched to county parcel data where appropriate, often federal land boundaries are also adjusted to match parcels, and may not always exactly match the source federal data. Federal lands from the SRA dataset are combined with ownership data for non-federal lands from CPAD, in order to capture lands owned by various state and local agencies, special districts, and conservation organizations. Data from CPAD are imported directly and not adjusted to match parcels or other features. However, CPAD features may be trimmed if they overlap federal lands from the SRA dataset. This service represents the latest release of the dataset by FRAP, and is updated annually. As of November 2018, it represents ownership18_2.

  8. Vital Signs: Housing Production – by county

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Feb 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Finance (2023). Vital Signs: Housing Production – by county [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Housing-Production-by-county/nyee-uw6v
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 3, 2023
    Dataset authored and provided by
    California Department of Financehttps://dof.ca.gov/
    Description

    VITAL SIGNS INDICATOR Housing Production (LU4)

    FULL MEASURE NAME Produced housing units by unit type

    LAST UPDATED October 2019

    DESCRIPTION Housing production is measured in terms of the number of units that local jurisdictions produces throughout a given year. The annual production count captures housing units added by new construction and annexations, subtracts demolitions and destruction from natural disasters, and adjusts for units lost or gained by conversions.

    DATA SOURCE California Department of Finance Form E-8 1990-2010 http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-8/

    California Department of Finance Form E-5 2011-2018 http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-5/

    U.S. Census Bureau Population Estimates 2000-2018 https://www.census.gov/programs-surveys/popest.html

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Single-family housing units include single detached units and single attached units. Multi-family housing includes two to four units and five plus or apartment units.

    Housing production data for metropolitan areas for each year is the difference of annual housing unit estimates from the Census Bureau’s Population Estimates Program. Housing production data for the region, counties, and cities for each year is the difference of annual housing unit estimates from the California Department of Finance. Department of Finance data uses an annual cycle between January 1 and December 31, whereas U.S. Census Bureau data uses an annual cycle from April 1 to March 31 of the following year.

    Housing production data shows how many housing units have been produced over time. Like housing permit statistics, housing production numbers are an indicator of where the region is growing. However, since permitted units are sometimes not constructed or there can be a long lag time between permit approval and the start of construction, production data also reflects the effects of barriers to housing production. These range from a lack of builder confidence to high construction costs and limited financing. Data also differentiates the trends in multi-family, single-family and mobile home production.

  9. California Important Farmland: Most Recent

    • catalog.data.gov
    • data.cnra.ca.gov
    • +8more
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Conservation (2025). California Important Farmland: Most Recent [Dataset]. https://catalog.data.gov/dataset/california-important-farmland-most-recent-3057b
    Explore at:
    Dataset updated
    Jul 23, 2025
    Dataset provided by
    California Department of Conservationhttp://www.conservation.ca.gov/
    Area covered
    California
    Description

    This dataset may be a mix of two years and is updated as the data is released for each county. For example, one county may have data from 2014 while a neighboring county may have had a more recent release of 2016 data. For specific years, please check the service that specifies the year, i.e. California Important Farmland: 2016.Established in 1982, Government Code Section 65570 mandates FMMP to biennially report on the conversion of farmland and grazing land, and to provide maps and data to local government and the public.The Farmland Mapping and Monitoring Program (FMMP) provides data to decision makers for use in planning for the present and future use of California's agricultural land resources. The data is a current inventory of agricultural resources. This data is for general planning purposes and has a minimum mapping unit of ten acres.

  10. l

    California Statewide Parcel Boundaries

    • geohub.lacity.org
    • hub.arcgis.com
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2020). California Statewide Parcel Boundaries [Dataset]. https://geohub.lacity.org/documents/baaf8251bfb94d3984fb58cb5fd93258
    Explore at:
    Dataset updated
    Jul 9, 2020
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    California
    Description

    This dataset includes one file for each of the 51 counties that were collected, as well as a CA_Merged file with the parcels merged into a single file.Note – this data does not include attributes beyond the parcel ID number (PARNO) – that will be provided when available, most likely by the state of California.DownloadA 1.6 GB zipped file geodatabase is available for download - click here.DescriptionA geodatabase with parcel boundaries for 51 (out of 58) counties in the State of California. The original target was to collect data for the close of the 2013 fiscal year. As the collection progressed, it became clear that holding to that time standard was not practical. Out of expediency, the date requirement was relaxed, and the currently available dataset was collected for a majority of the counties. Most of these were distributed with minimal metadata.The table “ParcelInfo” includes the data that the data came into our possession, and our best estimate of the last time the parcel dataset was updated by the original source. Data sets listed as “Downloaded from” were downloaded from a publicly accessible web or FTP site from the county. Other data sets were provided directly to us by the county, though many of them may also be available for direct download. Â These data have been reprojected to California Albers NAD84, but have not been checked for topology, or aligned to county boundaries in any way. Tulare County’s dataset arrived with an undefined projection and was identified as being California State Plane NAD83 (US Feet) and was assigned by ICE as that projection prior to reprojection. Kings County’s dataset was delivered as individual shapefiles for each of the 50 assessor’s books maintained at the county. These were merged to a single feature class prior to importing to the database.The attribute tables were standardized and truncated to include only a PARNO (APN). The format of these fields has been left identical to the original dataset. The Data Interoperablity Extension ETL tool used in this process is included in the zip file. Where provided by the original data sources, metadata for the original data has been maintained. Please note that the attribute table structure changes were made at ICE, UC Davis, not at the original data sources.Parcel Source InformationCountyDateCollecDateCurrenNotesAlameda4/8/20142/13/2014Download from Alamenda CountyAlpine4/22/20141/26/2012Alpine County PlanningAmador5/21/20145/14/2014Amador County Transportation CommissionButte2/24/20141/6/2014Butte County Association of GovernmentsCalaveras5/13/2014Download from Calaveras County, exact date unknown, labelled 2013Contra Costa4/4/20144/4/2014Contra Costa Assessor’s OfficeDel Norte5/13/20145/8/2014Download from Del Norte CountyEl Dorado4/4/20144/3/2014El Dorado County AssessorFresno4/4/20144/4/2014Fresno County AssessorGlenn4/4/201410/13/2013Glenn County Public WorksHumboldt6/3/20144/25/2014Humbodt County AssessorImperial8/4/20147/18/2014Imperial County AssessorKern3/26/20143/16/2014Kern County AssessorKings4/21/20144/14/2014Kings CountyLake7/15/20147/19/2013Lake CountyLassen7/24/20147/24/2014Lassen CountyLos Angeles10/22/201410/9/2014Los Angeles CountyMadera7/28/2014Madera County, Date Current unclear likely 7/2014Marin5/13/20145/1/2014Marin County AssessorMendocino4/21/20143/27/2014Mendocino CountyMerced7/15/20141/16/2014Merced CountyMono4/7/20144/7/2014Mono CountyMonterey5/13/201410/31/2013Download from Monterey CountyNapa4/22/20144/22/2014Napa CountyNevada10/29/201410/26/2014Download from Nevada CountyOrange3/18/20143/18/2014Download from Orange CountyPlacer7/2/20147/2/2014Placer CountyRiverside3/17/20141/6/2014Download from Riverside CountySacramento4/2/20143/12/2014Sacramento CountySan Benito5/12/20144/30/2014San Benito CountySan Bernardino2/12/20142/12/2014Download from San Bernardino CountySan Diego4/18/20144/18/2014San Diego CountySan Francisco5/23/20145/23/2014Download from San Francisco CountySan Joaquin10/13/20147/1/2013San Joaquin County Fiscal year close dataSan Mateo2/12/20142/12/2014San Mateo CountySanta Barbara4/22/20149/17/2013Santa Barbara CountySanta Clara9/5/20143/24/2014Santa Clara County, Required a PRA requestSanta Cruz2/13/201411/13/2014Download from Santa Cruz CountyShasta4/23/20141/6/2014Download from Shasta CountySierra7/15/20141/20/2014Sierra CountySolano4/24/2014Download from Solano Couty, Boundaries appear to be from 2013Sonoma5/19/20144/3/2014Download from Sonoma CountyStanislaus4/23/20141/22/2014Download from Stanislaus CountySutter11/5/201410/14/2014Download from Sutter CountyTehama1/16/201512/9/2014Tehama CountyTrinity12/8/20141/20/2010Download from Trinity County, Note age of data 2010Tulare7/1/20146/24/2014Tulare CountyTuolumne5/13/201410/9/2013Download from Tuolumne CountyVentura11/4/20146/18/2014Download from Ventura CountyYolo11/4/20149/10/2014Download from Yolo CountyYuba11/12/201412/17/2013Download from Yuba County

  11. California Water Rights Irrigation Use Annual Reports

    • catalog.data.gov
    • data.ca.gov
    • +2more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California State Water Resources Control Board (2024). California Water Rights Irrigation Use Annual Reports [Dataset]. https://catalog.data.gov/dataset/california-water-rights-irrigation-use-annual-reports-02298
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    California State Water Resources Control Board
    Area covered
    California
    Description

    This list includes detail information for IRRIGATION WATER USE as reported annually under each water right as stored in the State Water Resources Control Board's "Electronic Water Rights Information Management System" (EWRIMS) database. All water right holders are required to submit an online report of water diversion and use detailing their annual Irrigation water use by crop type (even if no water was diverted or used during the period). The information is required pursuant to Title 23, Sections 847 and 925, of the California Code of Regulations. The annual report contains information about the water diversion and use for irrigation. Each row correspond with a unique annual report-water right id and crop combination and its associated data. Each crop type includes total water use, multiple crops, area irrigated and primary irrigation method. The list include basic summary information about the Water Right record, such as the type and status, the location of the Points of Diversion, the amount of water allowed (Face Value), and summary data associated with the electronic Water Right record. This file is in flat file format and may not include all information associated to a water right such all uses and seasons or the amounts reported used for every month. Other information may be available in the associated flat files for each category. Examples of annual reports templates are provided as supporting information.

  12. Northern California Data Center Market Size & Share Analysis - Industry...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Sep 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Northern California Data Center Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/northern-california-data-center-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Sep 3, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2031
    Area covered
    Northern California, California, United States
    Description

    The Northern California Data Center Market Report is Segmented by Data Center Size (Small, Medium, Large, Mega, Massive), Tier Standard (Tier 1 and 2, Tier 3, Tier 4), and Absorption (Utilized by Colocation Type and End-User Industry, Non-Utilized). The Market Forecasts are Provided in Terms of MW Capacity.

  13. California Streams

    • catalog.data.gov
    • data.ca.gov
    • +4more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2025). California Streams [Dataset]. https://catalog.data.gov/dataset/california-streams-50d37
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Area covered
    California
    Description

    Notes: As of June 2020 this dataset has been static for several years. Recent versions of NHD High Res may be more detailed than this dataset for some areas, while this dataset may still be more detailed than NHD High Res in other areas. This dataset is considered authoritative as used by CDFW for particular tracking purposes but may not be current or comprehensive for all streams in the state.National Hydrography Dataset (NHD) high resolution NHDFlowline features for California were originally dissolved on common GNIS_ID or StreamLevel attributes and routed from mouth to headwater in meters. The results are measured polyline features representing entire streams. Routes on these streams are measured upstream, i.e., the measure at the mouth of a stream is zero and at the upstream end the measure matches the total length of the stream feature. Using GIS tools, a user of this dataset can retrieve the distance in meters upstream from the mouth at any point along a stream feature. CA_Streams_v3 Update Notes: This version includes over 200 stream modifications and additions resulting from requests for updating from CDFW staff and others. New locator fields from the USGS Watershed Boundary Dataset (WBD) have been added for v3 to enhance user's ability to search for or extract subsets of California Streams by hydrologic area. See the Source Citation section of this metadata for further information on NHD, WBD, NHDFlowline, GNIS_ID and StreamLevel. **See the Data Quality section of this metadata for further explanation of stream feature development. Some current NHD data has not yet been included in CA_Streams. The effort to synchronize CA_Streams with NHD is ongoing.

  14. n

    California Electric Power Plants - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). California Electric Power Plants - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/california-electric-power-plants
    Explore at:
    Dataset updated
    Feb 28, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    California
    Description

    This data is usually updated quarterly by February 1st, May 1st, August 1st, and November 1st.The CEC Power Plant geospatial data layer contains point features representing power generating facilities in California, and power plants with imported electricity from Nevada, Arizona, Utah and Mexico.The transmission line, substation and power plant mapping database were started in 1990 by the CEC GIS staffs. The final project was completed in October 2010. The enterprise GIS system on CEC's critical infrastructure database was leaded by GIS Unit in November 2014 and was implemented in May 2016. The data was derived from CEC's Quarterly Fuel and Energy Report (QFER), Energy Facility Licensing (Siting), Wind Performance Reporting System (WPRS), and Renewable Energy Action Team (REAT). The sources for the power plant point digitizing are including sub-meter resolution of Digital Globe, Bing, Google, ESRI and NAIP aerial imageries, with scale at least 1:10,000. Occasionally, USGS Topographic map, Google Street View and Bing Bird's Eye are used to verify the precise location of a facility.Although a power plant may have multiple generators, or units, the power plant layer represents all units at a plant as one feature. Detailed attribute information associated with the power plant layer includes CEC Plant ID, Plant Label, Plant Capacity (MW), General Fuel, Plant Status, CEC Project Status, CEC Docket ID, REAT ID, Plant County, Plant State, Renewable Energy, Wind Resource Area, Local Reliability Area, Sub Area, Electric Service Area, Service Area Category, California Balancing Authorities, California Air District, California Air Basin, Quad Name, Senate District, Assembly District, Congressional District, Power Project Web Link, CEC Link, Aerial, QRERGEN Comment, WPRS Comment, Geoscience Comment, Carto Comment, QFERGEN Excel Link, WPRS Excel Link, Schedule 3 Excel Link, and CEC Data Source. For power plant layer which is joined with QFer database, additional fields are displayed: CEC Plant Name (full name), Plant Alias, EIA Plant ID, Plant City, Initial Start Date, Online Year, Retire Date, Generator or Turbine Count, RPS Eligible, RPS Number, Operator Company Name, and Prime Mover ID. In general, utility and non-utility operated power plant spatial data with at least 1 MW of demonstrated capacity and operating status are distributed. Special request is required on power plant spatial data with all capacities and all stages of status, including Cold Standby, Indefinite Shutdown, Maintenance, Non-Operational, Proposed, Retired, Standby, Terminated, and Unknown.For question on power generation or others, please contact Michael Nyberg at (916) 654-5968.California Energy Commission's Open Data Portal.

  15. p

    May Locations Data for California, United States

    • poidata.io
    csv, json
    Updated Sep 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business Data Provider (2025). May Locations Data for California, United States [Dataset]. https://poidata.io/brand-report/may/united-states/california
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 24, 2025
    Dataset authored and provided by
    Business Data Provider
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    California
    Variables measured
    Website URL, Phone Number, Review Count, Business Name, Email Address, Business Hours, Customer Rating, Business Address, Brand Affiliation, Geographic Coordinates
    Description

    Comprehensive dataset containing 1 verified May locations in California, United States with complete contact information, ratings, reviews, and location data.

  16. N

    Los Angeles County, CA Census Bureau Gender Demographics and Population...

    • neilsberg.com
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Los Angeles County, CA Census Bureau Gender Demographics and Population Distribution Across Age Datasets [Dataset]. https://www.neilsberg.com/research/datasets/e1929e47-52cf-11ee-804b-3860777c1fe6/
    Explore at:
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Los Angeles County, California
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Los Angeles County population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Los Angeles County.

    Content

    The dataset constitues the following two datasets across these two themes

    • Los Angeles County, CA Population Breakdown by Gender
    • Los Angeles County, CA Population Breakdown by Gender and Age

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  17. Earthquakes UCR Archive Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Southampton (2024). Earthquakes UCR Archive Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_11186658
    Explore at:
    Dataset updated
    May 14, 2024
    Dataset provided by
    University of Californiahttp://universityofcalifornia.edu/
    University of Southampton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is part of the UCR Archive maintained by University of Southampton researchers. Please cite a relevant or the latest full archive release if you use the datasets. See http://www.timeseriesclassification.com/.

    The earthquake classification problem involves predicting whether a major event is about to occur based on the most recent readings in the surrounding area. The data is taken from Northern California Earthquake Data Center and each data is an averaged reading for one hour, with the first reading taken on Dec 1st 1967, the last in 2003. We transform this single time series into a classification problem by first defining a major event as any reading of over 5 on the Rictor scale. Major events are often followed by aftershocks. The physics of these are well understood and their detection is not the objective of this exercise. Hence we consider a positive case to be one where a major event is not preceded by another major event for at least 512 hours. To construct a negative case, we consider instances where there is a reading below 4 (to avoid blurring of the boundaries between major and non major events) that is preceded by at least 20 readings in the previous 512 hours that are non-zero (to avoid trivial negative cases). None of the cases overlap in time (i.e. we perform a segmentation rather than use a sliding window). Of the 86,066 hourly readings, we produce 368 negative cases and 93 positive.

    Donator: A. Bagnall

  18. d

    California Overlapping Cities and Counties and Identifiers with Coastal...

    • catalog.data.gov
    • data.ca.gov
    • +2more
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2025). California Overlapping Cities and Counties and Identifiers with Coastal Buffers [Dataset]. https://catalog.data.gov/dataset/california-overlapping-cities-and-counties-and-identifiers-with-coastal-buffers
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Technology
    Area covered
    California
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal Buffers (this dataset)Without Coastal BuffersPlace AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.

  19. Vital Signs: Migration - by county (simple)

    • data.bayareametro.gov
    csv, xlsx, xml
    Updated Dec 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2018). Vital Signs: Migration - by county (simple) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Migration-by-county-simple-/qmud-33nk
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Dec 12, 2018
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Description

    VITAL SIGNS INDICATOR Migration (EQ4)

    FULL MEASURE NAME Migration flows

    LAST UPDATED December 2018

    DESCRIPTION Migration refers to the movement of people from one location to another, typically crossing a county or regional boundary. Migration captures both voluntary relocation – for example, moving to another region for a better job or lower home prices – and involuntary relocation as a result of displacement. The dataset includes metropolitan area, regional, and county tables.

    DATA SOURCE American Community Survey County-to-County Migration Flows 2012-2015 5-year rolling average http://www.census.gov/topics/population/migration/data/tables.All.html

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Data for migration comes from the American Community Survey; county-to-county flow datasets experience a longer lag time than other standard datasets available in FactFinder. 5-year rolling average data was used for migration for all geographies, as the Census Bureau does not release 1-year annual data. Data is not available at any geography below the county level; note that flows that are relatively small on the county level are often within the margin of error. The metropolitan area comparison was performed for the nine-county San Francisco Bay Area, in addition to the primary MSAs for the nine other major metropolitan areas, by aggregating county data based on current metropolitan area boundaries. Data prior to 2011 is not available on Vital Signs due to inconsistent Census formats and a lack of net migration statistics for prior years. Only counties with a non-negligible flow are shown in the data; all other pairs can be assumed to have zero migration.

    Given that the vast majority of migration out of the region was to other counties in California, California counties were bundled into the following regions for simplicity: Bay Area: Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, Sonoma Central Coast: Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz Central Valley: Fresno, Kern, Kings, Madera, Merced, Tulare Los Angeles + Inland Empire: Imperial, Los Angeles, Orange, Riverside, San Bernardino, Ventura Sacramento: El Dorado, Placer, Sacramento, Sutter, Yolo, Yuba San Diego: San Diego San Joaquin Valley: San Joaquin, Stanislaus Rural: all other counties (23)

    One key limitation of the American Community Survey migration data is that it is not able to track emigration (movement of current U.S. residents to other countries). This is despite the fact that it is able to quantify immigration (movement of foreign residents to the U.S.), generally by continent of origin. Thus the Vital Signs analysis focuses primarily on net domestic migration, while still specifically citing in-migration flows from countries abroad based on data availability.

  20. COVID-19 Outbreak Data (ARCHIVED)

    • data.chhs.ca.gov
    • data.ca.gov
    • +1more
    csv, zip
    Updated Aug 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). COVID-19 Outbreak Data (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-outbreak-data
    Explore at:
    csv(62919), csv(326192), zipAvailable download formats
    Dataset updated
    Aug 5, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    Note: This dataset is no longer being updated as of June 2, 2025.

    This dataset contains numbers of COVID-19 outbreaks and associated cases, categorized by setting, reported to CDPH since January 1, 2021.

    AB 685 (Chapter 84, Statutes of 2020) and the Cal/OSHA COVID-19 Emergency Temporary Standards (Title 8, Subchapter 7, Sections 3205-3205.4) required non-healthcare employers in California to report workplace COVID-19 outbreaks to their local health department (LHD) between January 1, 2021 – December 31, 2022. Beginning January 1, 2023, non-healthcare employer reporting of COVID-19 outbreaks to local health departments is voluntary, unless a local order is in place. More recent data collected without mandated reporting may therefore be less representative of all outbreaks that have occurred, compared to earlier data collected during mandated reporting. Licensed health facilities continue to be mandated to report outbreaks to LHDs.

    LHDs report confirmed outbreaks to the California Department of Public Health (CDPH) via the California Reportable Disease Information Exchange (CalREDIE), the California Connected (CalCONNECT) system, or other established processes. Data are compiled and categorized by setting by CDPH. Settings are categorized by U.S. Census industry codes. Total outbreaks and cases are included for individual industries as well as for broader industrial sectors.

    The first dataset includes numbers of outbreaks in each setting by month of onset, for outbreaks reported to CDPH since January 1, 2021. This dataset includes some outbreaks with onset prior to January 1 that were reported to CDPH after January 1; these outbreaks are denoted with month of onset “Before Jan 2021.” The second dataset includes cumulative numbers of COVID-19 outbreaks with onset after January 1, 2021, categorized by setting. Due to reporting delays, the reported numbers may not reflect all outbreaks that have occurred as of the reporting date; additional outbreaks may have occurred that have not yet been reported to CDPH.

    While many of these settings are workplaces, cases may have occurred among workers, other community members who visited the setting, or both. Accordingly, these data do not distinguish between outbreaks involving only workers, outbreaks involving only residents or patrons, or outbreaks involving both.

    Several additional data limitations should be kept in mind:

    • Outbreaks are classified as “Insufficient information” for outbreaks where not enough information was available for CDPH to assign an industry code.

    • Some sectors, particularly congregate residential settings, may have increased testing and therefore increased likelihood of outbreak recognition and reporting. As a result, in congregate residential settings, the number of outbreak-associated cases may be more accurate.

    • However, in most settings, outbreak and case counts are likely underestimates. For most cases, it is not possible to identify the source of exposure, as many cases have multiple possible exposures.

    • Because some settings have been at times been closed or open with capacity restrictions, numbers of outbreak reports in those settings do not reflect COVID-19 transmission risk.

    • The number of outbreaks in different settings will depend on the number of different workplaces in each setting. More outbreaks would be expected in settings with many workplaces compared to settings with few workplaces.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
California Department of Public Health (2024). COVID-19 Time-Series Metrics by County and State (ARCHIVED) [Dataset]. https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
Organization logo

COVID-19 Time-Series Metrics by County and State (ARCHIVED)

Explore at:
42 scholarly articles cite this dataset (View in Google Scholar)
csv(7729431), xlsx(7811), csv(4836928), xlsx(6471), csv(3313), xlsx(11305), csv(6223281), zipAvailable download formats
Dataset updated
Aug 28, 2024
Dataset authored and provided by
California Department of Public Healthhttps://www.cdph.ca.gov/
Description

Note: This COVID-19 data set is no longer being updated as of December 1, 2023. Access current COVID-19 data on the CDPH respiratory virus dashboard (https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx) or in open data format (https://data.chhs.ca.gov/dataset/respiratory-virus-dashboard-metrics).

As of August 17, 2023, data is being updated each Friday.

For death data after December 31, 2022, California uses Provisional Deaths from the Center for Disease Control and Prevention’s National Center for Health Statistics (NCHS) National Vital Statistics System (NVSS). Prior to January 1, 2023, death data was sourced from the COVID-19 registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023.

As of May 11, 2023, data on cases, deaths, and testing is being updated each Thursday. Metrics by report date have been removed, but previous versions of files with report date metrics are archived below.

All metrics include people in state and federal prisons, US Immigration and Customs Enforcement facilities, US Marshal detention facilities, and Department of State Hospitals facilities. Members of California's tribal communities are also included.

The "Total Tests" and "Positive Tests" columns show totals based on the collection date. There is a lag between when a specimen is collected and when it is reported in this dataset. As a result, the most recent dates on the table will temporarily show NONE in the "Total Tests" and "Positive Tests" columns. This should not be interpreted as no tests being conducted on these dates. Instead, these values will be updated with the number of tests conducted as data is received.

Search
Clear search
Close search
Google apps
Main menu