https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China's main stock market index, the SHANGHAI, fell to 3560 points on August 1, 2025, losing 0.37% from the previous session. Over the past month, the index has climbed 3.04% and is up 22.53% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains all the citation data (in N-Triples format) included in the OpenCitations Index, released on March 24, 2025. In particular, any citation in the dataset, defined as an individual of the class cito:Citation, includes the following information:[citation IRI] the Open Citation Identifier (OCI) for the citation, defined in the final part of the URL identifying the citation (https://w3id.org/oc/index/ci/[OCI]);[property "cito:hasCitingEntity"] the citing entity identified by its OMID URL (https://https://opencitations.net/meta/[OMID]);[property "cito:hasCitedEntity"] the cited entity identified by its OMID URL (https://https://opencitations.net/meta/[OMID]);[property "cito:hasCitationCreationDate"] the creation date of the citation (i.e. the publication date of the citing entity);[property "cito:hasCitationTimeSpan"] the time span of the citation (i.e. the interval between the publication date of the cited entity and the publication date of the citing entity);[type "cito:JournalSelfCitation"] it records whether the citation is a journal self-citations (i.e. the citing and the cited entities are published in the same journal);[type "cito:AuthorSelfCitation"] it records whether the citation is an author self-citation (i.e. the citing and the cited entities have at least one author in common).Note: the information for each citation is sourced from OpenCitations Meta (https://opencitations.net/meta), a database that stores and delivers bibliographic metadata for all bibliographic resources included in the OpenCitations Indexes. The data provided in this dump is therefore based on the state of OpenCitations Meta at the time this collection was generated.This version of the dataset contains:2,155,497,918 citationsThe size of the zipped archive is 80.6 GB, while the size of the unzipped N-Triples files is 1.9 TB.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Measuring the usage of informatics resources such as software tools and databases is essential to quantifying their impact, value and return on investment. We have developed a publicly available dataset of informatics resource publications and their citation network, along with an associated metric (u-Index) to measure informatics resources’ impact over time. Our dataset differentiates the context in which citations occur to distinguish between ‘awareness’ and ‘usage’, and uses a citing universe of open access publications to derive citation counts for quantifying impact. Resources with a high ratio of usage citations to awareness citations are likely to be widely used by others and have a high u-Index score. We have pre-calculated the u-Index for nearly 100,000 informatics resources. We demonstrate how the u-Index can be used to track informatics resource impact over time. The method of calculating the u-Index metric, the pre-computed u-Index values, and the dataset we compiled to calculate the u-Index are publicly available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Euro Area's main stock market index, the EU50, fell to 5174 points on August 1, 2025, losing 2.80% from the previous session. Over the past month, the index has declined 2.72%, though it remains 11.54% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on August of 2025.
An Environmental Quality Index (EQI) for all counties in the United States for the time period 2000-2005 was developed which incorporated data from five environmental domains: air, water, land, built, and socio-demographic. The EQI was developed in four parts: domain identification; data source identification and review; variable construction; and data reduction using principal components analysis (PCA). The methods applied provide a reproducible approach that capitalizes almost exclusively on publically-available data sources. The primary goal in creating the EQI is to use it as a composite environmental indicator for research on human health. A series of peer reviewed manuscripts utilized the EQI in examining health outcomes. This dataset is not publicly accessible because: This series of papers are considered Human health research - not to be loaded onto ScienceHub. It can be accessed through the following means: The EQI data can be accessed at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: EQI data, metadata, formats, and data dictionary all available at website. This dataset is associated with the following publications: Gray, C., L. Messer, K. Rappazzo, J. Jagai, S. Grabich, and D. Lobdell. The association between physical inactivity and obesity is modified by five domains of environmental quality in U.S. adults: A cross-sectional study. PLoS ONE. Public Library of Science, San Francisco, CA, USA, 13(8): e0203301, (2018). Patel, A., J. Jagai, L. Messer, C. Gray, K. Rappazzo, S. DeflorioBarker, and D. Lobdell. Associations between environmental quality and infant mortality in the United States, 2000-2005. Archives of Public Health. BioMed Central Ltd, London, UK, 76(60): 1, (2018). Gray, C., D. Lobdell, K. Rappazzo, Y. Jian, J. Jagai, L. Messer, A. Patel, S. Deflorio-Barker, C. Lyttle, J. Solway, and A. Rzhetsky. Associations between environmental quality and adult asthma prevalence in medical claims data. ENVIRONMENTAL RESEARCH. Elsevier B.V., Amsterdam, NETHERLANDS, 166: 529-536, (2018).
The Case Mix Index (CMI) is the average relative DRG weight of a hospital’s inpatient discharges, calculated by summing the Medicare Severity-Diagnosis Related Group (MS-DRG) weight for each discharge and dividing the total by the number of discharges. The CMI reflects the diversity, clinical complexity, and resource needs of all the patients in the hospital. A higher CMI indicates a more complex and resource-intensive case load. Although the MS-DRG weights, provided by the Centers for Medicare & Medicaid Services (CMS), were designed for the Medicare population, they are applied here to all discharges regardless of payer. Note: It is not meaningful to add the CMI values together.
The Rossi X-ray Timing Explorer (RXTE) Index table was created for the purpose of providing a concise and easily accessible tracking of RXTE observations, both those already completed and those still scheduled to be done. Each entry in this table corresponds to a specific proposal/target combination or complete observation', in contrast to the RXTE Master table in which each entry corresponds to a specific proposal/target/ObsID combination orobserving segment'. A complete observation can consist of many (in some cases dozens) observing segments. This is a service provided by NASA HEASARC .
The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision (LOMRs) that have been issued against those databases since their publication date. The DFIRM Database is the digital, geospatial version of the flood hazard information shown on the published paper Flood Insurance Rate Maps(FIRMs). The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The NFHL data are derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The specifications for the horizontal control of DFIRM data are consistent with those required for mapping at a scale of 1:12,000. The NFHL data contain layers in the Standard DFIRM datasets except for S_Label_Pt and S_Label_Ld. The NFHL is available as State or US Territory data sets. Each State or Territory data set consists of all DFIRMs and corresponding LOMRs available on the publication date of the data set.
This dataset contains all data and code necessary to reproduce the analysis presented in the manuscript: Winzeler, H.E., Owens, P.R., Read Q.D.., Libohova, Z., Ashworth, A., Sauer, T. 2022. 2022. Topographic wetness index as a proxy for soil moisture in a hillslope catena: flow algorithms and map generalization. Land 11:2018. DOI: 10.3390/land11112018. There are several steps to this analysis. The relevant scripts for each are listed below. The first step is to use the raw digital elevation data (DEM) to produce different versions of the topographic wetness index (TWI) for the study region (Calculating TWI). Then, these TWI output files are processed, along with soil moisture (volumetric water content or VWC) time series data from a number of sensors located within the study region, to create analysis-ready data objects (Processing TWI and VWC). Next, models are fit relating TWI to soil moisture (Model fitting) and results are plotted (Visualizing main results). A number of additional analyses were also done (Additional analyses). Input data The DEM of the study region is archived in this dataset as SourceDem.zip. This contains the DEM of the study region (DEM1.sgrd) and associated auxiliary files all called DEM1.* with different extensions. In addition, the DEM is provided as a .tif file called USGS_one_meter_x39y400_AR_R6_WashingtonCO_2015.tif. The remaining data and code files are archived in the repository created with a GitHub release on 2022-10-11, twi-moisture-0.1.zip. The data are found in a subfolder called data. 2017_LoggerData_HEW.csv through 2021_HEW.csv: Soil moisture (VWC) logger data for each year 2017-2021 (5 files total). 2882174.csv: weather data from a nearby station. DryPeriods2017-2021.csv: starting and ending days for dry periods 2017-2021. LoggerLocations.csv: Geographic locations and metadata for each VWC logger. Logger_Locations_TWI_2017-2021.xlsx: 546 topographic wetness indexes calculated at each VWC logger location. note: This is intermediate input created in the first step of the pipeline. Code pipeline To reproduce the analysis in the manuscript run these scripts in the following order. The scripts are all found in the root directory of the repository. See the manuscript for more details on the methods. Calculating TWI TerrainAnalysis.R: Taking the DEM file as input, calculates 546 different topgraphic wetness indexes using a variety of different algorithms. Each algorithm is run multiple times with different input parameters, as described in more detail in the manuscript. After performing this step, it is necessary to use the SAGA-GIS GUI to extract the TWI values for each of the sensor locations. The output generated in this way is included in this repository as Logger_Locations_TWI_2017-2021.xlsx. Therefore it is not necessary to rerun this step of the analysis but the code is provided for completeness. Processing TWI and VWC read_process_data.R: Takes raw TWI and moisture data files and processes them into analysis-ready format, saving the results as CSV. qc_avg_moisture.R: Does additional quality control on the moisture data and averages it across different time periods. Model fitting Models were fit regressing soil moisture (average VWC for a certain time period) against a TWI index, with and without soil depth as a covariate. In each case, for both the model without depth and the model with depth, prediction performance was calculated with and without spatially-blocked cross-validation. Where cross validation wasn't used, we simply used the predictions from the model fit to all the data. fit_combos.R: Models were fit to each combination of soil moisture averaged over 57 months (all months from April 2017-December 2021) and 546 TWI indexes. In addition models were fit to soil moisture averaged over years, and to the grand mean across the full study period. fit_dryperiods.R: Models were fit to soil moisture averaged over previously identified dry periods within the study period (each 1 or 2 weeks in length), again for each of the 546 indexes. fit_summer.R: Models were fit to the soil moisture average for the months of June-September for each of the five years, again for each of the 546 indexes. Visualizing main results Preliminary visualization of results was done in a series of RMarkdown notebooks. All the notebooks follow the same general format, plotting model performance (observed-predicted correlation) across different combinations of time period and characteristics of the TWI indexes being compared. The indexes are grouped by SWI versus TWI, DEM filter used, flow algorithm, and any other parameters that varied. The notebooks show the model performance metrics with and without the soil depth covariate, and with and without spatially-blocked cross-validation. Crossing those two factors, there are four values for model performance for each combination of time period and TWI index presented. performance_plots_bymonth.Rmd: Using the results from the models fit to each month of data separately, prediction performance was averaged by month across the five years of data to show within-year trends. performance_plots_byyear.Rmd: Using the results from the models fit to each month of data separately, prediction performance was averaged by year to show trends across multiple years. performance_plots_dry_periods.Rmd: Prediction performance was presented for the models fit to the previously identified dry periods. performance_plots_summer.Rmd: Prediction performance was presented for the models fit to the June-September moisture averages. Additional analyses Some additional analyses were done that may not be published in the final manuscript but which are included here for completeness. 2019dryperiod.Rmd: analysis, done separately for each day, of a specific dry period in 2019. alldryperiodsbyday.Rmd: analysis, done separately for each day, of the same dry periods discussed above. best_indices.R: after fitting models, this script was used to quickly identify some of the best-performing indexes for closer scrutiny. wateryearfigs.R: exploratory figures showing median and quantile interval of VWC for sensors in low and high TWI locations for each water year. Resources in this dataset:Resource Title: Digital elevation model of study region. File Name: SourceDEM.zipResource Description: .zip archive containing digital elevation model files for the study region. See dataset description for more details.Resource Title: twi-moisture-0.1: Archived git repository containing all other necessary data and code . File Name: twi-moisture-0.1.zipResource Description: .zip archive containing all data and code, other than the digital elevation model archived as a separate file. This file was generated by a GitHub release made on 2022-10-11 of the git repository hosted at https://github.com/qdread/twi-moisture (private repository). See dataset description and README file contained within this archive for more details.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Leading Economic Index Honduras increased 3.50 percent in May of 2025 over the same month in the previous year. This dataset provides - Honduras Leading Economic Index- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Techsalerator offers an extensive dataset of End-of-Day Pricing Data for all 214 companies listed on the Panama Stock Exchange (XPTY) in Panama. This dataset includes the closing prices of equities (stocks), bonds, and indices at the end of each trading session. End-of-day prices are vital pieces of market data that are widely used by investors, traders, and financial institutions to monitor the performance and value of these assets over time.
Top 5 used data fields in the End-of-Day Pricing Dataset for Panama:
Equity Closing Price :The closing price of individual company stocks at the end of the trading day.This field provides insights into the final price at which market participants were willing to buy or sell shares of a specific company.
Bond Closing Price: The closing price of various fixed-income securities, including government bonds, corporate bonds, and municipal bonds. Bond investors use this field to assess the current market value of their bond holdings.
Index Closing Price: The closing value of market indices, such as the Botswana stock market index, at the end of the trading day. These indices track the overall market performance and direction.
Equity Ticker Symbol: The unique symbol used to identify individual company stocks. Ticker symbols facilitate efficient trading and data retrieval.
Date of Closing Price: The specific trading day for which the closing price is provided. This date is essential for historical analysis and trend monitoring.
Top 5 financial instruments with End-of-Day Pricing Data in Panama:
Panamanian Stock Exchange Domestic Company Index: The main index that tracks the performance of domestic companies listed on the Panamanian Stock Exchange (Bolsa de Valores de Panamá). This index provides an overview of the overall market performance in Panama.
Panamanian Stock Exchange Foreign Company Index: The index that tracks the performance of foreign companies listed on the Panamanian Stock Exchange. This index reflects the performance of international companies operating in Panama.
Company A: A prominent Panamanian company with diversified operations across various sectors, such as shipping, logistics, or finance. This company's stock is widely traded on the Panamanian Stock Exchange.
Company B: A leading financial institution in Panama, offering banking, insurance, or investment services. This company's stock is actively traded on the Panamanian Stock Exchange.
Company C: A major player in the Panamanian energy or real estate sector, involved in the production and distribution of related products. This company's stock is listed and actively traded on the Panamanian Stock Exchange.
If you're interested in accessing Techsalerator's End-of-Day Pricing Data for Panama, please contact info@techsalerator.com with your specific requirements. Techsalerator will provide you with a customized quote based on the number of data fields and records you need. The dataset can be delivered within 24 hours, and ongoing access options can be discussed if needed.
Data fields included:
Equity Ticker Symbol Equity Closing Price Bond Ticker Symbol Bond Closing Price Index Ticker Symbol Index Closing Price Date of Closing Price Equity Name Equity Volume Equity High Price Equity Low Price Equity Open Price Bond Name Bond Coupon Rate Bond Maturity Index Name Index Change Index Percent Change Exchange Currency Total Market Capitalization Dividend Yield Price-to-Earnings Ratio (P/E)
Q&A:
The cost of this dataset may vary depending on factors such as the number of data fields, the frequency of updates, and the total records count. For precise pricing details, it is recommended to directly consult with a Techsalerator Data specialist.
Techsalerator provides comprehensive coverage of End-of-Day Pricing Data for various financial instruments, including equities, bonds, and indices. Thedataset encompasses major companies and securities traded on Panama exchanges.
Techsalerator collects End-of-Day Pricing Data from reliable sources, including stock exchanges, financial news outlets, and other market data providers. Data is carefully curated to ensure accuracy and reliability.
Techsalerator offers the flexibility to select specific financial instruments, such as equities, bonds, or indices, depending on your needs. While the dataset focuses on Botswana, Techsalerator also provides data for other countries and international markets.
Techsalerator accepts various payment methods, including credit cards, direc...
The Coastal Salinity Index was applied to salinity data obtained from sites in North Carolina, South Carolina, Georgia, Florida, Alabama, Mississippi, Louisiana, Texas, and Puerto Rico. This data release will provide all the salinity data and Coastal Salinity Index results for many coastal salinity gages.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Index population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Index. The dataset can be utilized to understand the population distribution of Index by age. For example, using this dataset, we can identify the largest age group in Index.
Key observations
The largest age group in Index, WA was for the group of age 10 to 14 years years with a population of 24 (14.63%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Index, WA was the Under 5 years years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Index Population by Age. You can refer the same here
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.7910/DVN/P0RROUhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.0/customlicense?persistentId=doi:10.7910/DVN/P0RROU
The Value Line Investment Survey is one of the oldest, continuously running investment advisory publications. Since 1955, the Survey has been published in multiple formats including print, loose-leaf, microfilm and microfiche. Data from 1997 to present is now available online. The Survey tracks 1700 stocks across 92 industry groups. It provides reported and projected measures of firm performance, proprietary rankings and analysis for each stock on a quarterly basis. DATA AVAILABLE FOR YEARS: 1980-1989 This dataset, a subset of the Survey covering the years 1980-1989 has been digitized from the microfiche collection available at the Dewey Library (FICHE HG 4501.V26). It is only available to MIT students and faculty for academic research. Published weekly, each edition of the Survey has the following three parts: Summary & Index: includes an alphabetical listing of all industries with their relative ranking and the page number for detailed industry analysis. It also includes an alphabetical listing of all stocks in the publication with references to their location in Part 3, Ratings & Reports. Selection & Opinion: contains the latest economic and stock market commentary and advice along with one or more pages of research on interesting stocks or industries, and a variety of pertinent economic and stock market statistics. It also includes three model stock portfolios. Ratings & Reports: This is the core of the Value Line Investment Survey. Preceded by an industry report, each one-page stock report within that industry includes Timeliness, Safety and Technical rankings, 3-to 5-year analyst forecasts for stock prices, income and balance sheet items, up to 17 years of historical data, and Value Line analysts’ commentaries. The report also contains stock price charts, quarterly sales, earnings, and dividend information. Publication Schedule: Each edition of the Survey covers around 130 stocks in seven to eight industries on a preset sequential schedule so that all 1700 stocks are analyzed once every 13 weeks or each quarter. All editions are numbered 1-13 within each quarter. For example, in 1980, reports for Chrysler appear in edition 1 of each quarter on the following dates: January 4, 1980 – page 132 April 4, 1980 – page 133 July 4, 1980 – page 133 October 1, 1980 – page 133 Reports for Coca-Cola were published in edition 10 of each quarter on: March 7, 1980 – page 1514 June 6, 1980 – page 1518 Sept. 5, 1980 – page 1517 Dec. 5, 1980 – page 1548 Any significant news affecting a stock between quarters is covered in the supplementary reports that appear at the end of part 3, Ratings & Reports. File format: Digitized files within this dataset are in PDF format and are arranged by publication date within each compressed annual folder. How to Consult the Value Line Investment Survey: To find reports on a particular stock, consult the alphabetical listing of stocks in the Summary & Index part of the relevant weekly edition. Look for the page number just to the left of the company name and then use the table below to identify the edition where that page number appears. All editions within a given quarter are numbered 1-13 and follow equally sized page ranges for stock reports. The table provides page ranges for stock reports within editions 1-13 of 1980 Q1. It can be used to identify edition and page numbers for any quarter within a given year. Ratings & Reports Edition Pub. Date Pages 1 04-Jan-80 100-242 2 11-Jan-80 250-392 3 18-Jan-80 400-542 4 25-Jan-80 550-692 5 01-Feb-80 700-842 6 08-Feb-80 850-992 7 15-Feb-80 1000-1142 8 22-Feb-80 1150-1292 9 29-Feb-80 1300-1442 10 07-Mar-80 1450-1592 11 14-Mar-80 1600-1742 12 21-Mar-80 1750-1908 13 28-Mar-80 2000-2142 Another way to navigate to the Ratings & Reports part of an edition would be to look around page 50 within the PDF document. Note that the page numbers of the PDF will not match those within the publication.
As of June 28, 2010, the Master Veteran Index (MVI) database based on the enhanced Master Patient Index (MPI) is the authoritative identity service within the VA, establishing, maintaining and synchronizing identities for VA clients, Veterans and beneficiaries. The MVI includes authoritative sources for health identity data and contains over 17 million patient entries populated from all VHA facilities nationwide. The MVI provides the access point mechanism for linking patient's information to enable an enterprise-wide view of patient information, uniquely identifies all active patients who have been admitted, treated, or registered in any VHA facility, and assigns a unique identifier to the patient. The MVI correlates a patient's identity across the enterprise, including all VistA systems and external systems, such as Department of Defense (DoD) and the Nationwide Health Information Network (NwHIN). The MVI facilitates the sharing of health information, resulting in coordinated and integrated health care for Veterans. New Information Technology systems must be interoperable with the MVI and legacy systems will establish integration by October 1, 2012. The Healthcare Identity Management (HC IdM) Team within VHA's Data Quality Program is the steward of patient identity data, performing maintenance and support activities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Index by race. It includes the population of Index across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Index across relevant racial categories.
Key observations
The percent distribution of Index population by race (across all racial categories recognized by the U.S. Census Bureau): 100% are white.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Index Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Leaf Area Index (LAI) is a fundamental vegetation structural variable that drives energy and mass exchanges between the plant and the atmosphere. Moderate-resolution (300m – 7km) global LAI data products have been widely applied to track global vegetation changes, drive Earth system models, monitor crop growth and productivity, etc. Yet, cutting-edge applications in climate adaptation, hydrology, and sustainable agriculture require LAI information at higher spatial resolution (< 100m) to model and understand heterogeneous landscapes.
This dataset was built to assist a machine-learning-based approach for mapping LAI from 30m-resolution Landsat images across the contiguous US (CONUS). The data was derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Version 6 LAI/FPAR, Landsat Collection 1 surface reflectance, and NLCD Land Cover datasets over 2006 – 2018 using Google Earth Engine. Each record/sample/row includes a MODIS LAI value, corresponding Landsat surface reflectance in green, red, NIR, SWIR1 bands, a land cover (biome) type, geographic location, and other auxiliary information. Each sample represents a MODIS LAI pixel (500m) within which a single biome type dominates 90% of the area. The spatial homogeneity of the samples was further controlled by a screening process based on the coefficient of variation of the Landsat surface reflectance. In total, there are approximately 1.6 million samples, stratified by biome, Landsat sensor, and saturation status from the MODIS LAI algorithm. This dataset can be used to train machine learning models and generate LAI maps for Landsat 5, 7, 8 surface reflectance images within CONUS. Detailed information on the sample generation and quality control can be found in the related journal article. Resources in this dataset:Resource Title: README. File Name: LAI_train_samples_CONUS_README.txtResource Description: Description and metadata of the main datasetResource Software Recommended: Notepad,url: https://www.microsoft.com/en-us/p/windows-notepad/9msmlrh6lzf3?activetab=pivot:overviewtab Resource Title: LAI_training_samples_CONUS. File Name: LAI_train_samples_CONUS_v0.1.1.csvResource Description: This CSV file consists of the training samples for estimating Leaf Area Index based on Landsat surface reflectance images (Collection 1 Tire 1). Each sample has a MODIS LAI value and corresponding surface reflectance derived from Landsat pixels within the MODIS pixel.
Contact: Yanghui Kang (kangyanghui@gmail.com)
Column description
UID: Unique identifier. Format: LATITUDE_LONGITUDE_SENSOR_PATHROW_DATE
Landsat_ID: Landsat image ID
Date: Landsat image date in "YYYYMMDD"
Latitude: Latitude (WGS84) of the MODIS LAI pixel center
Longitude: Longitude (WGS84) of the MODIS LAI pixel center
MODIS_LAI: MODIS LAI value in "m2/m2"
MODIS_LAI_std: MODIS LAI standard deviation in "m2/m2"
MODIS_LAI_sat: 0 - MODIS Main (RT) method used no saturation; 1 - MODIS Main (RT) method with saturation
NLCD_class: Majority class code from the National Land Cover Dataset (NLCD)
NLCD_frequency: Percentage of the area cover by the majority class from NLCD
Biome: Biome type code mapped from NLCD (see below for more information)
Blue: Landsat surface reflectance in the blue band
Green: Landsat surface reflectance in the green band
Red: Landsat surface reflectance in the red band
Nir: Landsat surface reflectance in the near infrared band
Swir1: Landsat surface reflectance in the shortwave infrared 1 band
Swir2: Landsat surface reflectance in the shortwave infrared 2 band
Sun_zenith: Solar zenith angle from the Landsat image metadata. This is a scene-level value.
Sun_azimuth: Solar azimuth angle from the Landsat image metadata. This is a scene-level value.
NDVI: Normalized Difference Vegetation Index computed from Landsat surface reflectance
EVI: Enhanced Vegetation Index computed from Landsat surface reflectance
NDWI: Normalized Difference Water Index computed from Landsat surface reflectance
GCI: Green Chlorophyll Index = Nir/Green - 1
Biome code
1 - Deciduous Forest
2 - Evergreen Forest
3 - Mixed Forest
4 - Shrubland
5 - Grassland/Pasture
6 - Cropland
7 - Woody Wetland
8 - Herbaceous Wetland
Reference Dataset: All data was accessed through Google Earth Engine Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment. MODIS Version 6 Leaf Area Index/FPAR 4-day L5 Global 500m Myneni, R., Y. Knyazikhin, T. Park. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. 2015, distributed by NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD15A2H.006 Landsat 5/7/8 Collection 1 Surface Reflectance Landsat Level-2 Surface Reflectance Science Product courtesy of the U.S. Geological Survey. Masek, J.G., Vermote, E.F., Saleous N.E., Wolfe, R., Hall, F.G., Huemmrich, K.F., Gao, F., Kutler, J., and Lim, T-K. (2006). A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geoscience and Remote Sensing Letters 3(1):68-72. http://dx.doi.org/10.1109/LGRS.2005.857030. Vermote, E., Justice, C., Claverie, M., & Franch, B. (2016). Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment. http://dx.doi.org/10.1016/j.rse.2016.04.008. National Land Cover Dataset (NLCD) Yang, Limin, Jin, Suming, Danielson, Patrick, Homer, Collin G., Gass, L., Bender, S.M., Case, Adam, Costello, C., Dewitz, Jon A., Fry, Joyce A., Funk, M., Granneman, Brian J., Liknes, G.C., Rigge, Matthew B., Xian, George, A new generation of the United States National Land Cover Database—Requirements, research priorities, design, and implementation strategies: ISPRS Journal of Photogrammetry and Remote Sensing, v. 146, p. 108–123, at https://doi.org/10.1016/j.isprsjprs.2018.09.006 Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/en-us/microsoft-365/excel
Discover published data which is local in nature. A local search will return results which include the statewide dataset, which can then be searched and/or filtered to view a specific locality. For numerous statewide datasets, it provides quick access to local information across a broad range of categories from health to transportation, from recreation to economic development; Find local farmer’s markets, child care regulated facilities, solar installations, food service establishment inspections, and much more. Datasets may be searched on one or more local attributes (e.g., county, city), depending upon the granularity of the data. See the overview document http://on.ny.gov/1SB66oL in the “About” section of the source dataset for ways to search specific localities within Statewide datasets.
The Connecticut Courant Index, 1764-1799 contains thousands of entries searchable by Name, Town, or Subject taken from a slip index found in the History & Genealogy Reading Room of the Connecticut State Library. It includes advertisements by name of merchant or tradesmen, though not by individual items for sale. Names of specific articles offered for sale may be found under Merchants in (name of town). Druggists in (name of town), etc.
This index omits vital statistics, [except deaths of Connecticut people in other places], probate notices, tax sale lists, notices of cattle and horses lost and found, post office lists of letters (except by name of town, post office, letters held), and notices of farms, houses and land for sale.
In the spring of 2001, Kathryn Black, a volunteer from the Connecticut Professional Genealogists Council, Inc., along with State Library staff, began entering the information on the slips to The Connecticut Courant Index, 1764 -1799 into a database in order to provide researchers remote access to this wonderful resource. After 45,857 entries, volunteers and staff completed the database in December of 2007. This database is of great significance as it will likely display entries for articles not found in the scanned and indexed Historical Hartford Courant as the machine readable software used may not have correctly read the printed word as found on the original newspaper correctly.
Database Fields
Below, researchers will find a list and explanation (when necessary) of the fields used in the database.
Last Name In addition to surnames, this field contains single names, pseudonyms, and the names of businesses and organizations.
First Name
Middle Name
Title This field includes: Forms of address; Religious, Military, and Honorary titles; Pseudonyms; and designation of participation, usually within a group.
Town The first town that appears in the entry is listed, unless it is not a Connecticut town and a Connecticut town appears later in the entry.
State The state is listed only when it is not Connecticut.
Subject Headings in this comprehensive index range from “Accidents,” to mention of the Ship “Zephyr,” with many entries in between.
County This field is only listed when it appeared on the slip.
Issue Date The dates are listed in day, month, year format, e.g. 01 Jan 1765.
Page The page number where the entry was found.
Column The column number where the entry was found.
Cross Reference “See” and “See also” references are listed here. For example, those searching for the term “Loyalists” are directed to “See” or search under “Tories.” Similarly, those searching for “Shoemakers” are advised to “See also” or also search under the term “Bootmakers.”
Important Guidelines on Searching When searching for a first name of an individual, be sure to also check the Last Name Field, as single names and pseudonyms are listed here.
When searching for a first or last name, also check the Subject Field, as the names of businesses and organizations are entered here. Also, keep in mind that a person can be the Subject of an entry.
Check for the names of towns, states, and counties in the Subject Field as well as the individual fields.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.