https://www.icpsr.umich.edu/web/ICPSR/studies/37499/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37499/terms
In the years 2014 through 2019, three U.S. universities, Michigan State University, the University of Minnesota, Twin Cities, and The University of Utah, received Language Proficiency Flagship Initiative grants as part of the larger Language Flagship, which is a National Security Education Program (NSEP) and Defense Language and National Security Education Office (DLNSEO) initiative to improve language learning in the United States. The goal of the three universities' Language Proficiency Flagship Initiative grants was to document language proficiency in regular tertiary foreign language programs so that the programs, and ones like them at other universities, could use the proficiency-achievement data to set programmatic learning benchmarks and recommendations, as called for by the Modern Language Association in 2007. This call was reiterated by the National Standards Collaborative Board in 2015.During the first three years of the three, university-specific five-year grants (Fall 2014 through Spring 2017), each university collected language proficiency data during academic years 2014-2015, 2015-2016, and 2016-2017, from language learners in selected, regular language programs to document the students' proficiency achievements.University A tested Chinese, French, Russian, and Spanish with the NSEP grant funding, and German, Italian, Japanese, Korean, and Portuguese with additional (in-kind) financial support from within University A.University B tested Arabic, French, Portuguese, Russian, and Spanish with the NSEP grant funding, and German and Korean with additional (in-kind) financial support from University B.University C tested Arabic, Chinese, Portuguese, and Russian with the NSEP grant funding, and Korean with additional (in-kind) financial support from University C.Each university additionally provided the students background questionnaires at the time of testing. As stipulated by the grant terms, at the universities, students were offered to take up to three proficiency tests each semester: speaking, listening, and reading. Writing was not assessed because the grants did not financially cover the costs of writing assessments. The universities were required by grant terms to use official, nationally recognized, and standardized language tests that reported scores out on one of two standardized proficiency test scales: either the American Councils of Teaching Foreign Languages (ACTFL, 2012) proficiency scale, or the Interagency Language Roundtable (ILR: Herzog, n.d.) proficiency scale. The three universities thus contracted mostly with Language Testing International, ACTFL's official testing subsidiary, to purchase and administer to students the Oral Proficiency Interview - computer (OPIc) for speaking, the Listening Proficiency Test (LPT) for listening, and the Reading Proficiency Test (RPT) for reading. However, earlier in the grant cycling, because ACTFL did not yet have tests in all of the languages to be tested, some of the earlier testing was contracted with American Councils and Avant STAMP, even though those tests are not specifically geared for the specific populations of learners present in the given project.Students were able to opt out of testing in certain cases; those cases varied from university to university. The speaking tests occurred normally within intact classes that came into computer labs to take the tests. Students were often times requested to take the listening and reading tests outside of class time in proctored language labs on the campuses on walk-in bases, or they took the listening and reading tests in a language lab during a regular class setting. These decisions were often made by the language instructors and/or the language programs. The data are cross-sectional, but certain individuals took the tests repeatedly, thus, longitudinal data sets are nested within the cross-sectional data.The three universities worked mostly independently during the initial year of data collection because the identities of the three universities receiving the grants was not announced until weeks before testing was to begin at all three campuses. Thus, each university independently designed its background questionnaire. However, because all three were guided by the same set of grant-rules to use nationally-recognized standardized tests for the assessments, combining all three universities' test data was
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Adjusted Net Enrollment Rate: Primary: Male: % of Primary School Age Children data was reported at 93.137 % in 2015. This records an increase from the previous number of 92.551 % for 2014. United States US: Adjusted Net Enrollment Rate: Primary: Male: % of Primary School Age Children data is updated yearly, averaging 94.128 % from Dec 1986 (Median) to 2015, with 25 observations. The data reached an all-time high of 98.628 % in 1991 and a record low of 91.823 % in 2004. United States US: Adjusted Net Enrollment Rate: Primary: Male: % of Primary School Age Children data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Education Statistics. Adjusted net enrollment is the number of pupils of the school-age group for primary education, enrolled either in primary or secondary education, expressed as a percentage of the total population in that age group.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Version 11.1 Release Date: August 22, 2022
The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. These data and their derivatives are the only international boundary lines approved for U.S. Government use. They reflect U.S. Government policy, and not necessarily de facto limits of control. This dataset is a National Geospatial Data Asset.
Sources for these data include treaties, relevant maps, and data from boundary commissions and national mapping agencies. Where available, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery of the data involves analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.
The dataset uses the following attributes: Attribute Name Explanation Country Code Country-level codes are from the Geopolitical Entities, Names, and Codes Standard (GENC). The Q2 code denotes a line representing a boundary associated with an area not in GENC. Country Names Names approved by the U.S. Board on Geographic Names (BGN). Names for lines associated with a Q2 code are descriptive and are not necessarily BGN-approved. Label Required text label for the line segment where scale permits Rank/Status Rank 1: International Boundary Rank 2: Other Line of International Separation Rank 3: Special Line Notes Explanation of any applicable special circumstances Cartographic Usage Depiction of the LSIB requires a visual differentiation between the three categories of boundaries: International Boundaries (Rank 1), Other Lines of International Separation (Rank 2), and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Additional cartographic information can be found in Guidance Bulletins (https://hiu.state.gov/data/cartographic_guidance_bulletins/) published by the Office of the Geographer and Global Issues. Please direct inquiries to internationalboundaries@state.gov.
The lines in the LSIB dataset are the product of decades of collaboration between geographers at the Department of State and the National Geospatial-Intelligence Agency with contributions from the Central Intelligence Agency and the UK Defence Geographic Centre. Attribution is welcome: U.S. Department of State, Office of the Geographer and Global Issues.
This version of the LSIB contains changes and accuracy refinements for the following line segments. These changes reflect improvements in spatial accuracy derived from newly available source materials, an ongoing review process, or the publication of new treaties or agreements. Changes to lines include: • Akrotiri (UK) / Cyprus • Albania / Montenegro • Albania / Greece • Albania / North Macedonia • Armenia / Turkey • Austria / Czechia • Austria / Slovakia • Austria / Hungary • Austria / Slovenia • Austria / Germany • Austria / Italy • Austria / Switzerland • Azerbaijan / Turkey • Azerbaijan / Iran • Belarus / Latvia • Belarus / Russia • Belarus / Ukraine • Belarus / Poland • Bhutan / India • Bhutan / China • Bulgaria / Turkey • Bulgaria / Romania • Bulgaria / Serbia • Bulgaria / Romania • China / Tajikistan • China / India • Croatia / Slovenia • Croatia / Hungary • Croatia / Serbia • Croatia / Montenegro • Czechia / Slovakia • Czechia / Poland • Czechia / Germany • Finland / Russia • Finland / Norway • Finland / Sweden • France / Italy • Georgia / Turkey • Germany / Poland • Germany / Switzerland • Greece / North Macedonia • Guyana / Suriname • Hungary / Slovenia • Hungary / Serbia • Hungary / Romania • Hungary / Ukraine • Iran / Turkey • Iraq / Turkey • Italy / Slovenia • Italy / Switzerland • Italy / Vatican City • Italy / San Marino • Kazakhstan / Russia • Kazakhstan / Uzbekistan • Kosovo / north Macedonia • Kosovo / Serbia • Kyrgyzstan / Tajikistan • Kyrgyzstan / Uzbekistan • Latvia / Russia • Latvia / Lithuania • Lithuania / Poland • Lithuania / Russia • Moldova / Ukraine • Moldova / Romania • Norway / Russia • Norway / Sweden • Poland / Russia • Poland / Ukraine • Poland / Slovakia • Romania / Ukraine • Romania / Serbia • Russia / Ukraine • Syria / Turkey • Tajikistan / Uzbekistan
This release also contains topology fixes, land boundary terminus refinements, and tripoint adjustments.
While U.S. Government works prepared by employees of the U.S. Government as part of their official duties are not subject to Federal copyright protection (see 17 U.S.C. § 105), copyrighted material incorporated in U.S. Government works retains its copyright protection. The works on or made available through download from the U.S. Department of State’s website may not be used in any manner that infringes any intellectual property rights or other proprietary rights held by any third party. Use of any copyrighted material beyond what is allowed by fair use or other exemptions may require appropriate permission from the relevant rightsholder. With respect to works on or made available through download from the U.S. Department of State’s website, neither the U.S. Government nor any of its agencies, employees, agents, or contractors make any representations or warranties—express, implied, or statutory—as to the validity, accuracy, completeness, or fitness for a particular purpose; nor represent that use of such works would not infringe privately owned rights; nor assume any liability resulting from use of such works; and shall in no way be liable for any costs, expenses, claims, or demands arising out of use of such works.
The Census data API provides access to the most comprehensive set of data on current month and cumulative year-to-date exports using the End-use classification system. The End-use endpoint in the Census data API also provides value, shipping weight, and method of transportation totals at the district level for all U.S. trading partners. The Census data API will help users research new markets for their products, establish pricing structures for potential export markets, and conduct economic planning. If you have any questions regarding U.S. international trade data, please call us at 1(800)549-0595 option #4 or email us at eid.international.trade.data@census.gov.
THIS DATASET WAS LAST UPDATED AT 8:10 PM EASTERN ON MARCH 24
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datasets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of acquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis: - Analyze missing data: Project Tycho datasets do not include time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. - Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format. Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc. Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employment Level - Foreign Born (LNU02073395) from Jan 2007 to Feb 2025 about foreign, household survey, employment, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population: as % of Total: Female: Aged 65 and Above data was reported at 16.925 % in 2017. This records an increase from the previous number of 16.550 % for 2016. United States US: Population: as % of Total: Female: Aged 65 and Above data is updated yearly, averaging 14.035 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 16.925 % in 2017 and a record low of 10.023 % in 1960. United States US: Population: as % of Total: Female: Aged 65 and Above data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Population and Urbanization Statistics. Female population 65 years of age or older as a percentage of the total female population. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; Weighted average; Relevance to gender indicator: Knowing how many girls, adolescents and women there are in a population helps a country in determining its provision of services.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Cities can be tremendously efficient. It is easier to provide water and sanitation to people living closer together, while access to health, education, and other social and cultural services is also much more readily available. However, as cities grow, the cost of meeting basic needs increases, as does the strain on the environment and natural resources. Data on urbanization, traffic and congestion, and air pollution are from the United Nations Population Division, World Health Organization, International Road Federation, World Resources Institute, and other sources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Employment To Population Ratio: National Estimate: Aged 15-24 data was reported at 50.340 % in 2017. This records an increase from the previous number of 49.410 % for 2016. United States US: Employment To Population Ratio: National Estimate: Aged 15-24 data is updated yearly, averaging 54.810 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 61.150 % in 1989 and a record low of 45.000 % in 2010. United States US: Employment To Population Ratio: National Estimate: Aged 15-24 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Employment and Unemployment. Employment to population ratio is the proportion of a country's population that is employed. Employment is defined as persons of working age who, during a short reference period, were engaged in any activity to produce goods or provide services for pay or profit, whether at work during the reference period (i.e. who worked in a job for at least one hour) or not at work due to temporary absence from a job, or to working-time arrangements. Ages 15-24 are generally considered the youth population.; ; International Labour Organization, ILOSTAT database. Data retrieved in November 2017.; Weighted Average; The series for ILO estimates is also available in the WDI database. Caution should be used when comparing ILO estimates with national estimates.
According to the EITI Standard 5.3.b: "Summary data from each EITI Report should be submitted electronically to the International Secretariat according to the standardised reporting format provided by the International Secretariat" This template should be completed in full and submitted by email by the national secretariat to the International EITI Secretariat following the publication of the report. The data will be used to populate the global EITI data repository, available on the international EITI website.
NB: The data available on ResourceData is republished from the EITI API and covers one section of the Summary Data, Part 3 which is comprised of data on government revenues per revenue stream and company.
Notes for consideration:
Disclaimer: The EITI Secretariat advice that users consult the original reports for detailed information. Where figures are not available in US dollars, the annual average exchange rate is used. Any questions regarding the data collection and Summary Data methodology can be directed to the EITI Secretariat: data@eiti.org or by visiting eiti.org/summary-data
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datasets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of acquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis: - Analyze missing data: Project Tycho datasets do not include time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. - Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Gross Purchases by Foreigners: Intl Organizations: Foreign Stocks data was reported at 28.000 USD mn in May 2018. This records a decrease from the previous number of 41.000 USD mn for Apr 2018. United States Gross Purchases by Foreigners: Intl Organizations: Foreign Stocks data is updated monthly, averaging 52.000 USD mn from Jan 1977 (Median) to May 2018, with 497 observations. The data reached an all-time high of 688.000 USD mn in Jan 2000 and a record low of 0.000 USD mn in Mar 1984. United States Gross Purchases by Foreigners: Intl Organizations: Foreign Stocks data remains active status in CEIC and is reported by US Department of Treasury. The data is categorized under Global Database’s USA – Table US.Z037: Foreign Purchases and Sales in Long Term Securities.
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format.
Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datasets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of acquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc.
Depending on the intended use of a dataset, we recommend a few data processing steps before analysis: - Analyze missing data: Project Tycho datasets do not include time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. - Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
The Demographic and Health Surveys (DHS) Program overseen by the US Agency for International AID (USAID) uses nationally representative surveys, biomarker testing, and geographic location to collect data on monitoring and impact evaluation indicators for individual countries and for cross-country comparisons.
Standardized DHS surveys include the Demographic and Health Survey, Service Provision Assessment, HIV/AIDS Indicator Survey, Malaria Indicator Survey, and Key Indicators Survey. The DHS Program also collects biomarkers and geographic data. Data availability varies by year and country. A table that lists all currently available data can be found here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretabilty. We also formatted the data into a standard data format. Each Project Tycho dataset contains case counts for a specific condition (e.g. measles) and for a specific country (e.g. The United States). Case counts are reported per time interval. In addition to case counts, datsets include information about these counts (attributes), such as the location, age group, subpopulation, diagnostic certainty, place of aquisition, and the source from which we extracted case counts. One dataset can include many series of case count time intervals, such as "US measles cases as reported by CDC", or "US measles cases reported by WHO", or "US measles cases that originated abroad", etc. Depending on the intended use of a dataset, we recommend a few data processing steps before analysis:
Analyze missing data: Project Tycho datasets do not inlcude time intervals for which no case count was reported (for many datasets, time series of case counts are incomplete, due to incompleteness of source documents) and users will need to add time intervals for which no count value is available. Project Tycho datasets do include time intervals for which a case count value of zero was reported. Separate cumulative from non-cumulative time interval series. Case count time series in Project Tycho datasets can be "cumulative" or "fixed-intervals". Cumulative case count time series consist of overlapping case count intervals starting on the same date, but ending on different dates. For example, each interval in a cumulative count time series can start on January 1st, but end on January 7th, 14th, 21st, etc. It is common practice among public health agencies to report cases for cumulative time intervals. Case count series with fixed time intervals consist of mutually exxclusive time intervals that all start and end on different dates and all have identical length (day, week, month, year). Given the different nature of these two types of case count data, we indicated this with an attribute for each count value, named "PartOfCumulativeCountSeries".
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
RDM preparedness by participants’ personal characteristics.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Nominal Gross Domestic Product for United States (NGDPSAXDCUSQ) from Q1 1950 to Q3 2024 about GDP and USA.
https://www.icpsr.umich.edu/web/ICPSR/studies/37499/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37499/terms
In the years 2014 through 2019, three U.S. universities, Michigan State University, the University of Minnesota, Twin Cities, and The University of Utah, received Language Proficiency Flagship Initiative grants as part of the larger Language Flagship, which is a National Security Education Program (NSEP) and Defense Language and National Security Education Office (DLNSEO) initiative to improve language learning in the United States. The goal of the three universities' Language Proficiency Flagship Initiative grants was to document language proficiency in regular tertiary foreign language programs so that the programs, and ones like them at other universities, could use the proficiency-achievement data to set programmatic learning benchmarks and recommendations, as called for by the Modern Language Association in 2007. This call was reiterated by the National Standards Collaborative Board in 2015.During the first three years of the three, university-specific five-year grants (Fall 2014 through Spring 2017), each university collected language proficiency data during academic years 2014-2015, 2015-2016, and 2016-2017, from language learners in selected, regular language programs to document the students' proficiency achievements.University A tested Chinese, French, Russian, and Spanish with the NSEP grant funding, and German, Italian, Japanese, Korean, and Portuguese with additional (in-kind) financial support from within University A.University B tested Arabic, French, Portuguese, Russian, and Spanish with the NSEP grant funding, and German and Korean with additional (in-kind) financial support from University B.University C tested Arabic, Chinese, Portuguese, and Russian with the NSEP grant funding, and Korean with additional (in-kind) financial support from University C.Each university additionally provided the students background questionnaires at the time of testing. As stipulated by the grant terms, at the universities, students were offered to take up to three proficiency tests each semester: speaking, listening, and reading. Writing was not assessed because the grants did not financially cover the costs of writing assessments. The universities were required by grant terms to use official, nationally recognized, and standardized language tests that reported scores out on one of two standardized proficiency test scales: either the American Councils of Teaching Foreign Languages (ACTFL, 2012) proficiency scale, or the Interagency Language Roundtable (ILR: Herzog, n.d.) proficiency scale. The three universities thus contracted mostly with Language Testing International, ACTFL's official testing subsidiary, to purchase and administer to students the Oral Proficiency Interview - computer (OPIc) for speaking, the Listening Proficiency Test (LPT) for listening, and the Reading Proficiency Test (RPT) for reading. However, earlier in the grant cycling, because ACTFL did not yet have tests in all of the languages to be tested, some of the earlier testing was contracted with American Councils and Avant STAMP, even though those tests are not specifically geared for the specific populations of learners present in the given project.Students were able to opt out of testing in certain cases; those cases varied from university to university. The speaking tests occurred normally within intact classes that came into computer labs to take the tests. Students were often times requested to take the listening and reading tests outside of class time in proctored language labs on the campuses on walk-in bases, or they took the listening and reading tests in a language lab during a regular class setting. These decisions were often made by the language instructors and/or the language programs. The data are cross-sectional, but certain individuals took the tests repeatedly, thus, longitudinal data sets are nested within the cross-sectional data.The three universities worked mostly independently during the initial year of data collection because the identities of the three universities receiving the grants was not announced until weeks before testing was to begin at all three campuses. Thus, each university independently designed its background questionnaire. However, because all three were guided by the same set of grant-rules to use nationally-recognized standardized tests for the assessments, combining all three universities' test data was