67 datasets found
  1. b

    Apple Statistics (2025)

    • businessofapps.com
    Updated Jul 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). Apple Statistics (2025) [Dataset]. https://www.businessofapps.com/data/apple-statistics/
    Explore at:
    Dataset updated
    Jul 20, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...

  2. Number of smartphone users in the United States 2014-2029

    • statista.com
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of smartphone users in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/2711/us-smartphone-market/
    Explore at:
    Dataset updated
    May 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.

  3. Apple iPhone 15 (15 pro, plus and pro max) Reviews

    • kaggle.com
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nuhmanpk (2023). Apple iPhone 15 (15 pro, plus and pro max) Reviews [Dataset]. https://www.kaggle.com/datasets/nuhmanpk/iphone-15-15-pro-pro-max-reviews
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 20, 2023
    Dataset provided by
    Kaggle
    Authors
    nuhmanpk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contain video transcript from a limited number of youtubers who post Their review on iPhone 15, 15 plus , pro and pro max model . These are the videos used for the videos. Video Credits are owned by respective creators.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13244501%2Fc3bf6524f3ddfa376794de29f97651a1%2F_results_14_0.png?generation=1695205189424943&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13244501%2F645638973f5f8f5782cc8720ac4214c1%2F_results_15_0.png?generation=1695205202162850&alt=media" alt="">

    For more check Here

  4. Smartphones Sales Dataset

    • kaggle.com
    Updated Mar 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yamin Hossain (2024). Smartphones Sales Dataset [Dataset]. https://www.kaggle.com/datasets/yaminh/smartphone-sale-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 3, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yamin Hossain
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Description for each of the variables:

    1. Brands: The brands of smartphones included in the dataset.
    2. Colors: The colors available for the smartphones.
    3. Memory: The storage capacity of the smartphones, typically measured in gigabytes (GB) or megabytes (MB).
    4. Storage: The internal storage capacity of the smartphones, often measured in gigabytes (GB) or megabytes (MB).
    5. Rating: The user ratings or scores assigned to the smartphones, reflecting user satisfaction or performance.
    6. Selling Price: The price at which the smartphones are sold to consumers.
    7. Original Price: The original or list price of the smartphones before any discounts or promotions.
    8. Mobile: Indicates whether the device is a mobile phone.
    9. Discount: The discount applied to the original price to calculate the selling price.
    10. Discount percentage: The percentage discount applied to the original price to calculate the selling price.
  5. Unlocking User Sentiment: The App Store Reviews Dataset

    • crawlfeeds.com
    json, zip
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Unlocking User Sentiment: The App Store Reviews Dataset [Dataset]. https://crawlfeeds.com/datasets/app-store-reviews-dataset
    Explore at:
    json, zipAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    This dataset offers a focused and invaluable window into user perceptions and experiences with applications listed on the Apple App Store. It is a vital resource for app developers, product managers, market analysts, and anyone seeking to understand the direct voice of the customer in the dynamic mobile app ecosystem.

    Dataset Specifications:

    • Investment: $45.0
    • Status: Published and immediately available.
    • Category: Ratings and Reviews Data
    • Format: Compressed ZIP archive containing JSON files, ensuring easy integration into your analytical tools and platforms.
    • Volume: Comprises 10,000 unique app reviews, providing a robust sample for qualitative and quantitative analysis of user feedback.
    • Timeliness: Last crawled: (This field is blank in your provided info, which means its recency is currently unknown. If this were a real product, specifying this would be critical for its value proposition.)

    Richness of Detail (11 Comprehensive Fields):

    Each record in this dataset provides a detailed breakdown of a single App Store review, enabling multi-dimensional analysis:

    1. Review Content:

      • review: The full text of the user's written feedback, crucial for Natural Language Processing (NLP) to extract themes, sentiment, and common keywords.
      • title: The title given to the review by the user, often summarizing their main point.
      • isEdited: A boolean flag indicating whether the review has been edited by the user since its initial submission. This can be important for tracking evolving sentiment or understanding user behavior.
    2. Reviewer & Rating Information:

      • username: The public username of the reviewer, allowing for analysis of engagement patterns from specific users (though not personally identifiable).
      • rating: The star rating (typically 1-5) given by the user, providing a quantifiable measure of satisfaction.
    3. App & Origin Context:

      • app_name: The name of the application being reviewed.
      • app_id: A unique identifier for the application within the App Store, enabling direct linking to app details or other datasets.
      • country: The country of the App Store storefront where the review was left, allowing for geographic segmentation of feedback.
    4. Metadata & Timestamps:

      • _id: A unique identifier for the specific review record in the dataset.
      • crawled_at: The timestamp indicating when this particular review record was collected by the data provider (Crawl Feeds).
      • date: The original date the review was posted by the user on the App Store.

    Expanded Use Cases & Analytical Applications:

    This dataset is a goldmine for understanding what users truly think and feel about mobile applications. Here's how it can be leveraged:

    • Product Development & Improvement:

      • Bug Detection & Prioritization: Analyze negative review text to identify recurring technical issues, crashes, or bugs, allowing developers to prioritize fixes based on user impact.
      • Feature Requests & Roadmap Prioritization: Extract feature suggestions from positive and neutral review text to inform future product roadmap decisions and develop features users actively desire.
      • User Experience (UX) Enhancement: Understand pain points related to app design, navigation, and overall usability by analyzing common complaints in the review field.
      • Version Impact Analysis: If integrated with app version data, track changes in rating and sentiment after new app updates to assess the effectiveness of bug fixes or new features.
    • Market Research & Competitive Intelligence:

      • Competitor Benchmarking: Analyze reviews of competitor apps (if included or combined with similar datasets) to identify their strengths, weaknesses, and user expectations within a specific app category.
      • Market Gap Identification: Discover unmet user needs or features that users desire but are not adequately provided by existing apps.
      • Niche Opportunities: Identify specific use cases or user segments that are underserved based on recurring feedback.
    • Marketing & App Store Optimization (ASO):

      • Sentiment Analysis: Perform sentiment analysis on the review and title fields to gauge overall user satisfaction, pinpoint specific positive and negative aspects, and track sentiment shifts over time.
      • Keyword Optimization: Identify frequently used keywords and phrases in reviews to optimize app store listings, improving discoverability and search ranking.
      • Messaging Refinement: Understand how users describe and use the app in their own words, which can inform marketing copy and advertising campaigns.
      • Reputation Management: Monitor rating trends and identify critical reviews quickly to facilitate timely responses and proactive customer engagement.
    • Academic & Data Science Research:

      • Natural Language Processing (NLP): The review and title fields are excellent for training and testing NLP models for sentiment analysis, topic modeling, named entity recognition, and text summarization.
      • User Behavior Analysis: Study patterns in rating distribution, isEdited status, and date to understand user engagement and feedback cycles.
      • Cross-Country Comparisons: Analyze country-specific reviews to understand regional differences in app perception, feature preferences, or cultural nuances in feedback.

    This App Store Reviews dataset provides a direct, unfiltered conduit to understanding user needs and ultimately driving better app performance and greater user satisfaction. Its structured format and granular detail make it an indispensable asset for data-driven decision-making in the mobile app industry.

  6. Apple iPhone sales worldwide 2007-2023

    • statista.com
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Apple iPhone sales worldwide 2007-2023 [Dataset]. https://www.statista.com/statistics/276306/global-apple-iphone-sales-since-fiscal-year-2007/
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The number of Apple iPhone unit sales dramatically increased between 2007 and 2023. Indeed, in 2007, when the iPhone was first introduced, Apple shipped around *** million smartphones. By 2023, this number reached over *** million units. The newest models and iPhone’s lasting popularity Apple has ventured into its 17th smartphone generation with its Phone ** lineup, which, released in September 2023, includes the **, ** Plus, ** Pro and Pro Max. Powered by the A16 bionic chip and running on iOS **, these models present improved displays, cameras, and functionalities. On the one hand, such features come, however, with hefty price tags, namely, an average of ***** U.S. dollars. On the other hand, they contribute to making Apple among the leading smartphone vendors worldwide, along with Samsung and Xiaomi. In the first quarter of 2024, Samsung shipped over ** million smartphones, while Apple recorded shipments of roughly ** million units. Success of Apple’s other products Apart from the iPhone, which is Apple’s most profitable product, Apple is also the inventor of other heavy-weight players in the consumer electronics market. The Mac computer and the iPad, like the iPhone, are both pioneers in their respective markets and have helped popularize the use of PCs and tablets. The iPad is especially successful, having remained as the largest vendor in the tablet market ever since its debut. The hottest new Apple gadget is undoubtedly the Apple Watch, which is a line of smartwatches that has fitness tracking capabilities and can be integrated via iOS with other Apple products and services. The Apple Watch has also been staying ahead of other smart watch vendors since its initial release and secures around ** percent of the market share as of the latest quarter.

  7. IOS App Store reviews dataset

    • crawlfeeds.com
    csv, zip
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). IOS App Store reviews dataset [Dataset]. https://crawlfeeds.com/datasets/ios-app-store-reviews-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Unlock the power of user feedback with our iOS App Store Reviews Dataset, a comprehensive collection of reviews from thousands of apps across various categories. This robust App Store dataset includes essential details such as app names, ratings, user comments, timestamps, and more, offering valuable insights into user experiences and preferences.

    Perfect for app developers, marketers, and data analysts, this dataset allows you to conduct sentiment analysis, monitor app performance, and identify trends in user behavior. By leveraging the iOS App Store Reviews Dataset, you can refine app features, optimize marketing strategies, and elevate user satisfaction.

    Whether you’re tracking mobile app trends, analyzing specific app categories, or developing data-driven strategies, this App Store dataset is an indispensable tool. Download the iOS App Store Reviews Dataset today or contact us for custom datasets tailored to your unique project requirements.

    Ready to take your app insights to the next level? Get the iOS App Store Reviews Dataset now or explore our custom data solutions to meet your needs.

  8. c

    Apple iPhone SE reviews & ratings Dataset

    • cubig.ai
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Apple iPhone SE reviews & ratings Dataset [Dataset]. https://cubig.ai/store/products/143/apple-iphone-se-reviews-ratings-dataset
    Explore at:
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data introduction • Apple-iphone-se-reviews dataset is a dataset that scrapes data from the Flipkart website using Selenium and BeautifulSoup links.

    2) Data utilization (1)Apple-iphone-se-reviews data has characteristics that: • User ratings for Apple iPhone SE on Indian e-commerce website Flipkart are . We aim at NLP text classification through user ratings, review titles, and review text. (2)Apple-iphone-se-reviews data can be used to: • Rating prediction: You can support automated review analysis and summarization by developing machine learning models to predict ratings based on review text. • Product Improvement: Insights gained from reviews can help us identify common issues and areas for improvement in iPhone SE and guide product development and quality improvements.

  9. IOS application reviews dataset in English

    • crawlfeeds.com
    csv, zip
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). IOS application reviews dataset in English [Dataset]. https://crawlfeeds.com/datasets/ios-application-reviews-dataset-in-english
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    This comprehensive iOS application reviews dataset contains thousands of authentic user reviews from the Apple App Store in English. The dataset provides valuable insights for app developers, marketers, and researchers studying mobile application performance and user sentiment.

    Key Features:

    • Real user reviews from popular iOS apps
    • Star ratings from 1 to 5 stars
    • Review dates and timestamps
    • App store URLs and metadata
    • User demographics and location data
    • App version information
    • Review titles and detailed feedback

    Applications: Perfect for sentiment analysis, app store optimization, mobile app development research, user experience studies, and competitive analysis. This dataset enables businesses to understand user preferences, identify app improvement opportunities, and develop better mobile applications.

    Data Quality: All reviews are genuine user feedback collected from the official Apple App Store, ensuring authenticity and reliability for research and business intelligence purposes. The dataset covers various app categories including fitness, shopping, education, entertainment, and productivity applications.

  10. b

    App Store Data (2025)

    • businessofapps.com
    Updated Aug 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2025). App Store Data (2025) [Dataset]. https://www.businessofapps.com/data/app-stores/
    Explore at:
    Dataset updated
    Aug 1, 2025
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Apple App Store Key StatisticsApps & Games in the Apple App StoreApps in the Apple App StoreGames in the Apple App StoreMost Popular Apple App Store CategoriesPaid vs Free Apps in Apple App...

  11. Apple Mobile Phones Reviews from Amazon

    • kaggle.com
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yam Peleg (2021). Apple Mobile Phones Reviews from Amazon [Dataset]. http://doi.org/10.34740/kaggle/dsv/2905231
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 9, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Yam Peleg
    Description

    About this dataset

    • The dataset contains written reviews over time written on amazon on Apple mobile devices. This dataset was created by CrawlFeeds and contains around 180K reviews along with Country & Date and other features such as:
    • Did the user buy the product?
    • On what product did the user write the review?
    • and more.

    How to use this dataset

    • Analyze the sentiment of the review, try to isolate the phrases associated with positive/negative reviews.
    • Study the connection between country and review sentiment
    • Study the connection between the time of day and sentiment
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit CrawlFeeds

  12. w

    Dataset of books called Apple people

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Apple people [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Apple+people
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Apple people. It features 7 columns including author, publication date, language, and book publisher.

  13. m

    Apple Inc - Cash-and-Equivalents

    • macro-rankings.com
    csv, excel
    Updated Jul 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Apple Inc - Cash-and-Equivalents [Dataset]. https://www.macro-rankings.com/Markets/Stocks?Entity=AAPL.US&Item=Cash-and-Equivalents
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Cash-and-Equivalents Time Series for Apple Inc. Apple Inc. designs, manufactures, and markets smartphones, personal computers, tablets, wearables, and accessories worldwide. The company offers iPhone, a line of smartphones; Mac, a line of personal computers; iPad, a line of multi-purpose tablets; and wearables, home, and accessories comprising AirPods, Apple TV, Apple Watch, Beats products, and HomePod. It also provides AppleCare support and cloud services; and operates various platforms, including the App Store that allow customers to discover and download applications and digital content, such as books, music, video, games, and podcasts, as well as advertising services include third-party licensing arrangements and its own advertising platforms. In addition, the company offers various subscription-based services, such as Apple Arcade, a game subscription service; Apple Fitness+, a personalized fitness service; Apple Music, which offers users a curated listening experience with on-demand radio stations; Apple News+, a subscription news and magazine service; Apple TV+, which offers exclusive original content; Apple Card, a co-branded credit card; and Apple Pay, a cashless payment service, as well as licenses its intellectual property. The company serves consumers, and small and mid-sized businesses; and the education, enterprise, and government markets. It distributes third-party applications for its products through the App Store. The company also sells its products through its retail and online stores, and direct sales force; and third-party cellular network carriers, wholesalers, retailers, and resellers. Apple Inc. was founded in 1976 and is headquartered in Cupertino, California.

  14. M

    Apple Mobility Data - COVID-19 Mobility Trends Report

    • catalog.midasnetwork.us
    csv
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIDAS Coordination Center (2023). Apple Mobility Data - COVID-19 Mobility Trends Report [Dataset]. https://catalog.midasnetwork.us/collection/87
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 13, 2023
    Dataset authored and provided by
    MIDAS Coordination Center
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Variables measured
    disease, COVID-19, behavior, pathogen, Homo sapiens, host organism, infectious disease, human daily movement data set, Severe acute respiratory syndrome coronavirus 2
    Dataset funded by
    National Institute of General Medical Sciences
    Description

    Dataset contains daily COVID‑19 mobility trends reports. It features daily changes in requests for directions by transportation type for all available country, regions, sub-regions, and cities. There is no demographic information about users, so no statements are available about the representativeness of usage against the overall population. The full data can be downloaded as a CSV. Data is compared to a baseline volume, which is usage on January 13, 2020. Website also includes visualization that displays daily usage data and can be filtered to display any region in the dataset.

  15. m

    Apple Inc - Current-Deferred-Revenue

    • macro-rankings.com
    csv, excel
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Apple Inc - Current-Deferred-Revenue [Dataset]. https://www.macro-rankings.com/markets/stocks/aapl-nasdaq/balance-sheet/current-deferred-revenue
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Current-Deferred-Revenue Time Series for Apple Inc. Apple Inc. designs, manufactures, and markets smartphones, personal computers, tablets, wearables, and accessories worldwide. The company offers iPhone, a line of smartphones; Mac, a line of personal computers; iPad, a line of multi-purpose tablets; and wearables, home, and accessories comprising AirPods, Apple TV, Apple Watch, Beats products, and HomePod. It also provides AppleCare support and cloud services; and operates various platforms, including the App Store that allow customers to discover and download applications and digital content, such as books, music, video, games, and podcasts, as well as advertising services include third-party licensing arrangements and its own advertising platforms. In addition, the company offers various subscription-based services, such as Apple Arcade, a game subscription service; Apple Fitness+, a personalized fitness service; Apple Music, which offers users a curated listening experience with on-demand radio stations; Apple News+, a subscription news and magazine service; Apple TV+, which offers exclusive original content; Apple Card, a co-branded credit card; and Apple Pay, a cashless payment service, as well as licenses its intellectual property. The company serves consumers, and small and mid-sized businesses; and the education, enterprise, and government markets. It distributes third-party applications for its products through the App Store. The company also sells its products through its retail and online stores, and direct sales force; and third-party cellular network carriers, wholesalers, retailers, and resellers. Apple Inc. was founded in 1976 and is headquartered in Cupertino, California.

  16. f

    Dataset.

    • plos.figshare.com
    • figshare.com
    xlsx
    Updated Oct 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer J. Lee; Mavra Ahmed; Rim Mouhaffel; Mary R. L’Abbé (2023). Dataset. [Dataset]. http://doi.org/10.1371/journal.pdig.0000360.s005
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 25, 2023
    Dataset provided by
    PLOS Digital Health
    Authors
    Jennifer J. Lee; Mavra Ahmed; Rim Mouhaffel; Mary R. L’Abbé
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    There has been an increased emphasis on plant-based foods and diets. Although mobile technology has the potential to be a convenient and innovative tool to help consumers adhere to dietary guidelines, little is known about the content and quality of free, popular mobile health (mHealth) plant-based diet apps. The objective of the study was to assess the content and quality of free, popular mHealth apps supporting plant-based diets for Canadians. Free mHealth apps with high user ratings, a high number of user ratings, available on both Apple App and GooglePlay stores, and primarily marketed to help users follow plant-based diet were included. Using pre-defined search terms, Apple App and GooglePlay App stores were searched on December 22, 2020; the top 100 returns for each search term were screened for eligibility. Included apps were downloaded and assessed for quality by three dietitians/nutrition research assistants using the Mobile App Rating Scale (MARS) and the App Quality Evaluation (AQEL) scale. Of the 998 apps screened, 16 apps (mean user ratings±SEM: 4.6±0.1) met the eligibility criteria, comprising 10 recipe managers and meal planners, 2 food scanners, 2 community builders, 1 restaurant identifier, and 1 sustainability assessor. All included apps targeted the general population and focused on changing behaviors using education (15 apps), skills training (9 apps), and/or goal setting (4 apps). Although MARS (scale: 1–5) revealed overall adequate app quality scores (3.8±0.1), domain-specific assessments revealed high functionality (4.0±0.1) and aesthetic (4.0±0.2), but low credibility scores (2.4±0.1). The AQEL (scale: 0–10) revealed overall low score in support of knowledge acquisition (4.5±0.4) and adequate scores in other nutrition-focused domains (6.1–7.6). Despite a variety of free plant-based apps available with different focuses to help Canadians follow plant-based diets, our findings suggest a need for increased credibility and additional resources to complement the low support of knowledge acquisition among currently available plant-based apps. This research received no specific grant from any funding agency.

  17. Google Location History (GLH) mobility dataset

    • zenodo.org
    Updated Jan 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thiago Andrade; Thiago Andrade (2024). Google Location History (GLH) mobility dataset [Dataset]. http://doi.org/10.5281/zenodo.8349569
    Explore at:
    Dataset updated
    Jan 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Thiago Andrade; Thiago Andrade
    Description

    This is a GPS dataset acquired from Google.

    Google tracks the user’s device location through Google Maps, which also works on Android devices, the iPhone, and the web.
    It’s possible to see the Timeline from the user’s settings in the Google Maps app on Android or directly from the Google Timeline Website.
    It has detailed information such as when an individual is walking, driving, and flying.
    Such functionality of tracking can be enabled or disabled on demand by the user directly from the smartphone or via the website.
    Google has a Take Out service where the users can download all their data or select from the Google products they use the data they want to download.
    The dataset contains 120,847 instances from a period of 9 months or 253 unique days from February 2019 to October 2019 from a single user.
    The dataset comprises a pair of (latitude, and longitude), and a timestamp.
    All the data was delivered in a single CSV file.
    As the locations of this dataset are well known by the researchers, this dataset will be used as ground truth in many mobility studies.

    Please cite the following papers in order to use the datasets:

    T. Andrade, B. Cancela, and J. Gama, "Discovering locations and habits from human mobility data," Annals of Telecommunications, vol. 75, no. 9, pp. 505–521, 2020.
    10.1007/s12243-020-00807-x (DOI)
    and
    T. Andrade, B. Cancela, and J. Gama, "From mobility data to habits and common pathways," Expert Systems, vol. 37, no. 6, p. e12627, 2020.
    10.1111/exsy.12627 (DOI)

  18. G

    Smartphone use and smartphone habits by gender and age group, inactive

    • open.canada.ca
    • www150.statcan.gc.ca
    csv, html, xml
    Updated Jan 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2023). Smartphone use and smartphone habits by gender and age group, inactive [Dataset]. https://open.canada.ca/data/en/dataset/f62f8b9e-8057-43de-a1cb-5affd0a5c6e7
    Explore at:
    html, xml, csvAvailable download formats
    Dataset updated
    Jan 17, 2023
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Percentage of smartphone users by selected smartphone use habits in a typical day.

  19. R

    Person,apple,lemon Dataset

    • universe.roboflow.com
    zip
    Updated Oct 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hsoh0003@student.monash.edu (2021). Person,apple,lemon Dataset [Dataset]. https://universe.roboflow.com/hsoh0003-student-monash-edu/person-apple-lemon/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 19, 2021
    Dataset authored and provided by
    hsoh0003@student.monash.edu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Person Lemon Apple Bounding Boxes
    Description

    Here are a few use cases for this project:

    1. Grocery Store Automation: The model can be employed in automated systems within grocery or fruit stores to identify if a person is picking up apples or lemons. This could serve in real-time inventory management and loss prevention.

    2. Health & Wellness Applications: This model could be used in health and diet-based applications to track and count the number of apples or lemons a user consumes, further providing insights about their daily fruit intake.

    3. Interactive Educational Games: The model can be leveraged to develop interactive, educational games where children or adults need to identify and count the number of persons, apples, or lemons in an image.

    4. Surveillance Systems in Farming: The model could be beneficial in monitoring orchards of apple and lemon trees for signs of harvesting or any unusual activity.

    5. New AI Training: The model's output could be used as input to other AI models for complex tasks, for instance, recognizing actions such as a person eating an apple or a lemon.

  20. m

    Apple Inc - Other-Current-Assets

    • macro-rankings.com
    csv, excel
    Updated Jul 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2025). Apple Inc - Other-Current-Assets [Dataset]. https://www.macro-rankings.com/Markets/Stocks?Entity=AAPL.US&Item=Other-Current-Assets
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Other-Current-Assets Time Series for Apple Inc. Apple Inc. designs, manufactures, and markets smartphones, personal computers, tablets, wearables, and accessories worldwide. The company offers iPhone, a line of smartphones; Mac, a line of personal computers; iPad, a line of multi-purpose tablets; and wearables, home, and accessories comprising AirPods, Apple TV, Apple Watch, Beats products, and HomePod. It also provides AppleCare support and cloud services; and operates various platforms, including the App Store that allow customers to discover and download applications and digital content, such as books, music, video, games, and podcasts, as well as advertising services include third-party licensing arrangements and its own advertising platforms. In addition, the company offers various subscription-based services, such as Apple Arcade, a game subscription service; Apple Fitness+, a personalized fitness service; Apple Music, which offers users a curated listening experience with on-demand radio stations; Apple News+, a subscription news and magazine service; Apple TV+, which offers exclusive original content; Apple Card, a co-branded credit card; and Apple Pay, a cashless payment service, as well as licenses its intellectual property. The company serves consumers, and small and mid-sized businesses; and the education, enterprise, and government markets. It distributes third-party applications for its products through the App Store. The company also sells its products through its retail and online stores, and direct sales force; and third-party cellular network carriers, wholesalers, retailers, and resellers. Apple Inc. was founded in 1976 and is headquartered in Cupertino, California.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Business of Apps (2025). Apple Statistics (2025) [Dataset]. https://www.businessofapps.com/data/apple-statistics/

Apple Statistics (2025)

Explore at:
44 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 20, 2025
Dataset authored and provided by
Business of Apps
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

Apple is one of the most influential and recognisable brands in the world, responsible for the rise of the smartphone with the iPhone. Valued at over $2 trillion in 2021, it is also the most valuable...

Search
Clear search
Close search
Google apps
Main menu