67 datasets found
  1. o

    Amazon Products

    • opendatabay.com
    .undefined
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Amazon Products [Dataset]. https://www.opendatabay.com/data/premium/2f7668e7-009e-4c7d-9822-78955a22a20a
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Bright Data
    Area covered
    Retail & Consumer Behavior
    Description

    Amazon Products dataset to explore detailed product listings, pricing, reviews, and sales data. Popular use cases include competitive analysis, market trend forecasting, and e-commerce strategy optimization.

    Use our Amazon Products dataset to explore detailed information on products across various categories, including pricing, reviews, ratings, and sales data. This dataset is ideal for e-commerce professionals, market analysts, and product managers looking to analyze market trends, optimize product listings, and refine competitive strategies.

    Leverage this dataset to track pricing trends, assess customer feedback, and uncover popular product categories. Whether you're conducting competitive analysis, performing market research, or optimizing product strategies, the Amazon Products dataset provides key insights to stay ahead in the e-commerce landscape.

    Dataset Features

    • Title: The name or title of the product.
    • seller_name: The name of the seller offering the product.
    • Brand: The brand associated with the product.
    • Description: A detailed description of the product, including key features.
    • initial_price: The original price of the product before any discounts.
    • final_price: The current price of the product after discounts.
    • Currency: The currency in which the product is priced (e.g., GBP, USD).
    • Availability: The stock status (e.g., in stock, out of stock).
    • reviews_count: The total number of customer reviews.
    • Categories: The specific category the product belongs to.
    • asin: Amazon Standard Identification Number.
    • buybox_seller: The seller currently winning the Amazon Buy Box.
    • number_of_sellers: The number of sellers offering this product.
    • root_bs_rank: The overall ranking of the product in the Amazon best-sellers list.
    • answered_questions: The number of questions answered in the product Q&A section.
    • domain: The website domain where the product is being sold.
    • images_count: The number of images available for the product.
    • URL: The link to the product page on Amazon.
    • video_count: The number of videos available for the product.
    • image_url: The URL of the primary image associated with the product.
    • item_weight: The weight of the product.
    • Rating: The average rating of the product based on customer reviews.
    • product_dimensions: The dimensions of the product (e.g., length, width, height) and weight.
    • seller_id: The unique identifier for the seller.
    • date_first_available: The date when the product was first made available on Amazon.
    • discount: Any discount applied to the product.
    • model_number: The model number of the product.
    • manufacturer: The company that manufactures the product.
    • department: The department under which the product is categorized (e.g., Health & Household).
    • plus_content: A flag indicating if the product has Amazon’s “Plus Content” (additional marketing content).
    • upc: The Universal Product Code (UPC) associated with the product.
    • video: URL(s) of any video content associated with the product.
    • top_review: A summary or excerpt from the top customer review.
    • variations: Different product variations (e.g., different sizes or flavors).
    • delivery: Information on the delivery options (e.g., free delivery or Prime delivery).
    • features: Key features or highlights of the product.
    • format: The format of the product (e.g., powder, liquid).
    • buybox_prices: Pricing details for the product, including the base and tiered prices.
    • parent_asin: The ASIN of the parent product (if the product is part of a larger group of similar products).
    • input_asin: The ASIN of the product as input for Amazon searches.
    • ingredients: List of ingredients in the product (if applicable).
    • origin_url: The source URL for product-related information or ingredients.
    • bought_past_month: A flag indicating if the product was bought in the past month.
    • is_available: Availability status of the product (True/False).
    • root_bs_category: The broad product category (e.g., Health & Household).
    • bs_category: The specific subcategory the product belongs to.
    • bs_rank: The rank of the product in its specific subcategory.
    • badge: Any badge or label the product has earned (e.g., Amazon's Choice).
    • subcategory_rank: The rank of the product within its subcategory.
    • amazon_choice: A flag indicating if the product has been selected as Amazon’s Choice.
    • images: A list of URLs for additional product images.
    • product_details: Detailed product specifications and features.
    • prices_breakdown: A breakdown of the price, including any discounts or promotions.
    • country_of_origin: The country where the product is made.
    • from_the_brand: Information from the brand or manufact
  2. Amazon Products Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Apr 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Amazon Products Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/product
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Apr 11, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Buy Amazon datasets and get access to over 300 million records from any Amazon domain. Get insights on Amazon products, sellers, and reviews.

  3. c

    Amazon Sales Dataset

    • cubig.ai
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Amazon Sales Dataset [Dataset]. https://cubig.ai/store/products/309/amazon-sales-dataset
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Amazon Sales Dataset includes e-commerce product and consumer feedback data, including details on more than 1,000 products collected from Amazon's official website, discount prices, ratings, reviews, and categories.

    2) Data Utilization (1) Amazon Sales Dataset has characteristics that: • The dataset includes a variety of product and review-related attributes, including product ID, product name, category, real and discounted prices, discount rates, ratings, rating numbers, product descriptions, user reviews, images, and product links. (2) Amazon Sales Dataset can be used to: • Product Rating and Review Analysis: Use rating and review data to analyze consumer satisfaction, popular products, review trends, and develop marketing strategies for each product. • Development of Price Policy and Recommendation System: Based on price information such as actual price, discount price, and discount rate, it can be used for price policy analysis, product recommendation system, consumer purchasing behavior prediction, etc.

  4. P

    Amazon Product Data Dataset

    • paperswithcode.com
    • opendatalab.com
    Updated Mar 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ruining He; Julian McAuley (2024). Amazon Product Data Dataset [Dataset]. https://paperswithcode.com/dataset/amazon-product-data
    Explore at:
    Dataset updated
    Mar 5, 2024
    Authors
    Ruining He; Julian McAuley
    Description

    This dataset contains product reviews and metadata from Amazon, including 142.8 million reviews spanning May 1996 - July 2014.

    This dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs).

  5. c

    Amazon Products Sales 2023 Dataset

    • cubig.ai
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Amazon Products Sales 2023 Dataset [Dataset]. https://cubig.ai/store/products/369/amazon-products-sales-2023-dataset
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data Introduction • The Amazon Products Sales Dataset 2023 is a large e-commerce dataset that summarizes various product information in a tabular format, including product name, price, rating, discount information, images, and links by 142 major categories collected from Amazon's website.

    2) Data Utilization (1) Amazon Products Sales Dataset 2023 has characteristics that: • Each row contains 10 key attributes, including product name, main/subcategory, image, Amazon link, rating, number of ratings, discount price, and actual price. • The data encompasses a wide range of products and is structured to enable multi-faceted analysis such as price policy, customer evaluation, and trend by category. (2) Amazon Products Sales Dataset 2023 can be used to: • Product Recommendation and Marketing Strategy: Use rating, price, and category data to develop a customized recommendation system, analyze popular products, and establish a category-specific marketing strategy. • Price and Discount Policy Analysis—Based on discounted prices and actual prices, ratings, reviews, etc., it can be applied to effective pricing policies, promotion strategies, market competitiveness analyses, and more.

  6. Amazon Products Database contains data on keywords and product listings...

    • datarade.ai
    .json
    Updated Sep 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataForSEO (2023). Amazon Products Database contains data on keywords and product listings ranking for them [Dataset]. https://datarade.ai/data-products/amazon-products-database-contains-data-on-keywords-and-produc-dataforseo
    Explore at:
    .jsonAvailable download formats
    Dataset updated
    Sep 27, 2023
    Dataset provided by
    Authors
    DataForSEO
    Area covered
    United Arab Emirates, Saudi Arabia, United States of America, Egypt
    Description

    First of all, Amazon product datasets are indispensable for reverse engineering your rivals. For example, you can collect a list of keywords you already rank for or want to, and go through DataForSEO Amazon Products Database to find other sellers appearing as the top results for these terms.

    Next, you can narrow down the scope of your contenders to those performing the best. To do so, you can filter out sellers who won the “Amazon’s Choice” and those whose products got listed multiple times on the first page.

    Once you’ve compiled the final list of your challengers, Amazon Products Database will help you to quickly examine product titles, descriptions, prices, images, and other details that will let you grasp the main contributors to your competitors’ success. Once you’ve figured that out, you can start optimizing your product listings and pricing strategies to increase conversions.

    However, the number of use cases for Amazon product data isn’t limited to competitor analysis. It can be applied to monitoring product rankings, running price comparisons, and more.

  7. Amazon Product Reviews

    • kaggle.com
    Updated Nov 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Amazon Product Reviews [Dataset]. https://www.kaggle.com/datasets/thedevastator/amazon-product-reviews/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 26, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Amazon Product Reviews

    18 Years of Customer Ratings and Experiences

    By Huggingface Hub [source]

    About this dataset

    The Amazon Reviews Polarity Dataset discloses eighteen years of customers' ratings and reviews from Amazon.com, offering an unparalleled trove of insight and knowledge. Drawing from the immense pool of over 35 million customer reviews, this dataset presents a broad spectrum of customer opinions on products they have bought or used. This invaluable data is a gold mine for improving products and services as it contains comprehensive information regarding customers' experiences with a product including ratings, titles, and plaintext content. At the same time, this dataset contains both customer-specific data along with product information which encourages deep analytics that could lead to great advances in providing tailored solutions for customers. Has your product been favored by the majority? Are there any aspects that need extra care? Use Amazon Reviews Polarity to gain deeper insights into what your customers want - explore now!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    • Analyze customer ratings to identify trends: Take a look at how many customers have rated the same product or service with the same score (e.g., 4 stars). You can use this information to identify what customers like or don’t like about it by examining common sentiment throughout the reviews. Identifying these patterns can help you make decisions on which features of your products or services to emphasize in order to boost sales and satisfaction rates.

    2 Review content analysis: Analyzing review content is one of the best ways to gauge customer sentiment toward specific features or aspects of a product/service. Using natural language processing tools such as Word2Vec, Latent Dirichlet Allocation (LDA), or even simple keyword search algorithms can quickly reveal general topics that are discussed in relation to your product/service across multiple reviews - allowing you quickly pinpoint areas that may need improvement for particular items within your lines of business.

    3 Track associated scores over time: By tracking customer ratings overtime, you may be able to better understand when there has been an issue with something specific related to your product/service - such as negative response toward a feature that was introduced but didn’t seem popular among customers and was removed shortly after introduction.. This can save time and money by identifying issues before they become widespread concerns with larger sets of consumers who invest their money in using your company's item(s).

    4 Visualize sentiment data over time graphs : Utilizing visualizations such as bar graphs can help identify trends across different categories quicker than raw numbers alone; combining both numeric values along with color differences associated between different scores allows you spot anomalies easier - allowing faster resolution times when trying figure out why certain spikes occurred where other stayed stable (or vice-versa) when comparing similar data points through time-series based visualization models

    Research Ideas

    • Developing a customer sentiment analysis system that can be used to quickly analyze the sentiment of reviews and identify any potential areas of improvement.
    • Building a product recommendation service that takes into account the ratings and reviews of customers when recommending similar products they may be interested in purchasing.
    • Training a machine learning model to accurately predict customers’ ratings on new products they have not yet tried and leverage this for further product development optimization initiatives

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: train.csv | Column name | Description | |:--------------|:-------------------------------------------------------------------| | label | The sentiment of the review, either positive or negative. (String) | | title | The title of the review. (String) ...

  8. d

    Amazon Seller Directory 2025 | Amazon Seller Database USA, FR, Germany, ESP,...

    • datarade.ai
    .csv, .xls
    Updated Feb 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lead for Business (2022). Amazon Seller Directory 2025 | Amazon Seller Database USA, FR, Germany, ESP, UK, Italy, CA | List of Amazon Sellers | 200K+ Amazon Seller Leads| [Dataset]. https://datarade.ai/data-products/amazon-seller-directory-amazon-fba-seller-database-with-sto-lead-for-business
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Feb 21, 2022
    Dataset authored and provided by
    Lead for Business
    Area covered
    United Kingdom, Italy, Germany, United States
    Description

    • 500K+ Active Amazon Stores • 200K+ Seller Leads • Platforms USA, Germany, UK, Italy, France, Spain, CA • C-Suite/Marketing/Sales Contacts • FBA/Non-FBA Sellers • 15+ data points available for each prospect • Filter your leads by store size, niche, location, and many more • 100% manually researched and verified.

    For over a decade, we have been manually collecting Amazon seller data from various data sources such as Amazon, Linkedin, Google, and others. We are specialized to get valid, and potential data so you may conduct ads and begin selling without hesitation.

    We designed our data packages for all types of organizations, thus they are reasonably priced. We are always trying to reduce our prices to better suit all of your requirements.

    So, if you’re looking to reach out to your targeted Amazon sellers, now is the greatest time to do so and offer your goods, services, and promotions. You can get your targeted Amazon Sellers List with seller contact information.

    Alternatively, if you provide Amazon Seller Names or IDs, we will conduct Custom Research and deliver the customized list to you.

    Data Points Available:

    Full Name Linkedin URL Direct Email Generic Phone Number Business Name and Address Company Website Seller IDs and URLs Revenue Seller Review Count Niche FBA/Non-FBA Country and More

  9. u

    Amazon review data 2018

    • mcauleylab.ucsd.edu
    • nijianmo.github.io
    • +1more
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project (2023). Amazon review data 2018 [Dataset]. https://mcauleylab.ucsd.edu:8443/public_datasets/data/amazon_v2/
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    Context

    This Dataset is an updated version of the Amazon review dataset released in 2014. As in the previous version, this dataset includes reviews (ratings, text, helpfulness votes), product metadata (descriptions, category information, price, brand, and image features), and links (also viewed/also bought graphs). In addition, this version provides the following features:

    • More reviews:

      • The total number of reviews is 233.1 million (142.8 million in 2014).
    • New reviews:

      • Current data includes reviews in the range May 1996 - Oct 2018.
    • Metadata: - We have added transaction metadata for each review shown on the review page.

      • Added more detailed metadata of the product landing page.

    Acknowledgements

    If you publish articles based on this dataset, please cite the following paper:

    • Jianmo Ni, Jiacheng Li, Julian McAuley. Justifying recommendations using distantly-labeled reviews and fined-grained aspects. EMNLP, 2019.
  10. d

    Amazon Sellers & Non Amazon Sellers Data | 1M+ Contacts | (Verified E-mail,...

    • datarade.ai
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Exellius Systems (2024). Amazon Sellers & Non Amazon Sellers Data | 1M+ Contacts | (Verified E-mail, Direct Dails) | Decision Makers Contact Details | 20+ Attributes [Dataset]. https://datarade.ai/data-products/amazon-sellers-non-amazon-sellers-data-70m-contacts-v-exellius-systems
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Mar 8, 2024
    Dataset authored and provided by
    Exellius Systems
    Area covered
    Guadeloupe, Spain, Sint Eustatius and Saba, Lebanon, Belgium, Antarctica, France, Vietnam, Indonesia, Syrian Arab Republic
    Description

    Unlock a wealth of business insights with our expansive dataset, meticulously tailored for both Amazon and non-Amazon sellers. Boasting over 1 million contacts, this comprehensive resource is characterized by unparalleled verification precision, ensuring the inclusion of verified emails and direct dials for decision-makers across the spectrum.

    Unique Features: - Unrivaled Scale: 1M+ Contacts: A vast reservoir of contacts, offering a rich tapestry of data for comprehensive analysis. - Verification Precision: Rigorous validation processes guarantee accurate and up-to-date information, with a focus on verified emails and direct dials.

    Data Sourcing: - Multi-Faceted Approach: We employ an advanced methodology, combining cutting-edge web scraping techniques, access to public records, and strategic partnerships with trusted data providers. This multi-faceted approach ensures a robust and diverse dataset. - Reliability Assurance: Regular updates and continuous monitoring practices are in place to maintain the highest standards of data quality, providing users with a dependable foundation for their strategic initiatives.

    Primary Use-Cases: - Market Research: Gain deep insights into market trends, customer behavior, and competitive landscapes. - Lead Generation: Target decision-makers with precision, enhancing conversion rates. - Marketing Campaigns: Craft tailored strategies based on comprehensive data, ensuring maximum impact. - Competitive Analysis: Evaluate market positioning and identify strategic opportunities through detailed competitor insights.

    Integration with Broader Offering: - Diverse Data Portfolio: Seamlessly integrates into our comprehensive data catalog, enhancing our commitment to providing a diverse, accurate, and scalable range of datasets. - Complementary Advantages: This dataset synergizes with our broader offering, providing users with a holistic solution for their data needs.

    Coverage: - Global Reach: Encompassing multiple industries and countries, our dataset offers a global perspective for businesses seeking to expand their reach and explore new markets. - Strategic Expansion: Equip your business with the tools needed to navigate global markets confidently, with insights tailored to your expansion strategies.

    Scale and Quality Indicators: - Superior Data Quality: Rigorous validation processes ensure the highest standards of precision and reliability. - Scalability: Adaptable to diverse business needs, accommodating various use cases and scenarios.

    Target Audience: - E-commerce Players: Elevate your market presence and competitiveness in the dynamic e-commerce landscape. - Marketing Agencies: Craft targeted campaigns with confidence, backed by comprehensive and reliable data. - Business Intelligence Professionals: Gain deep market insights to inform strategic planning and decision-making.

    Unveiling Opportunities: - Catalyst for Growth: Discover new markets and unearth business prospects. - Competitive Edge: Outpace competition by utilizing insights from our curated dataset.

  11. g

    Amazon Product Dataset

    • gts.ai
    json
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GTS (2024). Amazon Product Dataset [Dataset]. https://gts.ai/dataset-download/amazon-product-dataset/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    GLOBOSE TECHNOLOGY SOLUTIONS PRIVATE LIMITED
    Authors
    GTS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Explore our extensive Amazon Product Dataset, featuring detailed information on prices, ratings, sales volume, and more.

  12. Amazon Product Performance

    • kaggle.com
    Updated Oct 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ronaldo Nyamari (2022). Amazon Product Performance [Dataset]. https://www.kaggle.com/datasets/ronaldonyamari/amazon-product-performance/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 31, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ronaldo Nyamari
    Description

    Dataset

    This dataset was created by Ronaldo Nyamari

    Contents

  13. c

    Amazon UK shoes products dataset

    • crawlfeeds.com
    json, zip
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Amazon UK shoes products dataset [Dataset]. https://crawlfeeds.com/datasets/amazon-uk-shoes-products-dataset
    Explore at:
    json, zipAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Access a comprehensive dataset of over 240,000 shoe product listings directly from Amazon UK. This dataset is ideal for researchers, e-commerce analysts, and AI developers looking to explore pricing trends, brand performance, product features, or build training data for retail-focused models.

    All data is neatly packaged in a downloadable ZIP archive containing files in JSON format, making it easy to integrate with your preferred analytics or database tools.

    🔎 Use Cases:

    • Price and discount trend analysis

    • Competitor benchmarking

    • Product attribute extraction and modeling

    • AI/ML training datasets (e.g., shoe recommendation systems)

    • Retail assortment planning

    🔄 Updates & Delivery:

    This dataset is available as a static snapshot, but you can request weekly or monthly updates through the Crawl Feeds dashboard. Upon purchase, the data will be bundled and delivered via a direct download link.

  14. b

    Amazon reviews Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Mar 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2023). Amazon reviews Dataset [Dataset]. https://brightdata.com/products/datasets/amazon/reviews
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Mar 21, 2023
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our Amazon reviews dataset for diverse applications to enrich business strategies and market insights. Analyzing this dataset can aid in understanding customer behavior, product performance, and market trends, empowering organizations to refine their product and marketing strategies. Access the entire dataset or tailor a subset to fit your requirements. Popular use cases include: Product Performance Analysis: Analyze Amazon reviews to assess product performance, uncovering customer satisfaction levels, common issues, and highly praised features to inform product improvements and marketing messages. Customer Behavior Insights: Gain insights into customer behavior, purchasing patterns, and preferences, enabling more personalized marketing and product recommendations. Demand Forecasting: Leverage Amazon reviews to predict future product demand by analyzing historical review data and identifying trends, helping to optimize inventory management and sales strategies. Accessing and analyzing the Amazon reviews dataset supports market strategy optimization by leveraging insights to analyze key market trends and customer preferences, enhancing overall business decision-making.

  15. Global net revenue of Amazon 2014-2024, by product group

    • statista.com
    • ai-chatbox.pro
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global net revenue of Amazon 2014-2024, by product group [Dataset]. https://www.statista.com/statistics/672747/amazons-consolidated-net-revenue-by-segment/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In 2024, Amazon's net revenue from subscription services segment amounted to 44.37 billion U.S. dollars. Subscription services include Amazon Prime, for which Amazon reported 200 million paying members worldwide at the end of 2020. The AWS category generated 107.56 billion U.S. dollars in annual sales. During the most recently reported fiscal year, the company’s net revenue amounted to 638 billion U.S. dollars. Amazon revenue segments Amazon is one of the biggest online companies worldwide. In 2019, the company’s revenue increased by 21 percent, compared to Google’s revenue growth during the same fiscal period, which was just 18 percent. The majority of Amazon’s net sales are generated through its North American business segment, which accounted for 236.3 billion U.S. dollars in 2020. The United States are the company’s leading market, followed by Germany and the United Kingdom. Business segment: Amazon Web Services Amazon Web Services, commonly referred to as AWS, is one of the strongest-growing business segments of Amazon. AWS is a cloud computing service that provides individuals, companies and governments with a wide range of computing, networking, storage, database, analytics and application services, among many others. As of the third quarter of 2020, AWS accounted for approximately 32 percent of the global cloud infrastructure services vendor market.

  16. u

    Pinterest Fashion Compatibility

    • cseweb.ucsd.edu
    • beta.data.urbandatacentre.ca
    json
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UCSD CSE Research Project, Pinterest Fashion Compatibility [Dataset]. https://cseweb.ucsd.edu/~jmcauley/datasets.html
    Explore at:
    jsonAvailable download formats
    Dataset authored and provided by
    UCSD CSE Research Project
    Description

    This dataset contains images (scenes) containing fashion products, which are labeled with bounding boxes and links to the corresponding products.

    Metadata includes

    • product IDs

    • bounding boxes

    Basic Statistics:

    • Scenes: 47,739

    • Products: 38,111

    • Scene-Product Pairs: 93,274

  17. h

    amazon_us_reviews

    • huggingface.co
    • tensorflow.org
    Updated Jun 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Polina Kazakova (2023). amazon_us_reviews [Dataset]. https://huggingface.co/datasets/polinaeterna/amazon_us_reviews
    Explore at:
    Dataset updated
    Jun 30, 2023
    Authors
    Polina Kazakova
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Amazon Customer Reviews (a.k.a. Product Reviews) is one of Amazons iconic products. In a period of over two decades since the first review in 1995, millions of Amazon customers have contributed over a hundred million reviews to express opinions and describe their experiences regarding products on the Amazon.com website. This makes Amazon Customer Reviews a rich source of information for academic researchers in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and Machine Learning (ML), amongst others. Accordingly, we are releasing this data to further research in multiple disciplines related to understanding customer product experiences. Specifically, this dataset was constructed to represent a sample of customer evaluations and opinions, variation in the perception of a product across geographical regions, and promotional intent or bias in reviews.

    Over 130+ million customer reviews are available to researchers as part of this release. The data is available in TSV files in the amazon-reviews-pds S3 bucket in AWS US East Region. Each line in the data files corresponds to an individual review (tab delimited, with no quote and escape characters).

    Each Dataset contains the following columns:

    • marketplace: 2 letter country code of the marketplace where the review was written.
    • customer_id: Random identifier that can be used to aggregate reviews written by a single author.
    • review_id: The unique ID of the review.
    • product_id: The unique Product ID the review pertains to. In the multilingual dataset the reviews for the same product in different countries can be grouped by the same product_id.
    • product_parent: Random identifier that can be used to aggregate reviews for the same product.
    • product_title: Title of the product.
    • product_category: Broad product category that can be used to group reviews (also used to group the dataset into coherent parts).
    • star_rating: The 1-5 star rating of the review.
    • helpful_votes: Number of helpful votes.
    • total_votes: Number of total votes the review received.
    • vine: Review was written as part of the Vine program.
    • verified_purchase: The review is on a verified purchase.
    • review_headline: The title of the review.
    • review_body: The review text.
    • review_date: The date the review was written.
  18. o

    Amazon Food Product Reviews & Ratings

    • opendatabay.com
    .undefined
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vdt. Data (2025). Amazon Food Product Reviews & Ratings [Dataset]. https://www.opendatabay.com/data/consumer/fd13df3c-b1af-410c-8596-7e11961381ed
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    Vdt. Data
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    E-commerce & Online Transactions
    Description

    The Amazon Food Products Dataset is a large-scale collection of product listings, reviews, and metadata sourced from Amazon. This dataset is valuable for understanding consumer behaviour, analyzing product trends, and training machine learning models for recommendation systems and sentiment analysis. It includes various categories, providing insights into customer preferences, product ratings, and review sentiments.

    Dataset Features

    Each record in the dataset contains the following key fields:

    • ProductId: Unique identifier for each product.
    • UserId: Unique identifier for the reviewer.
    • ProfileName: Display the name of the reviewer.
    • HelpfulnessNumerator: Number of users who found the review helpful.
    • HelpfulnessDenominator: Total number of users who rated the review’s helpfulness.
    • Score: Product rating (1 to 5 stars).
    • Time: Unix timestamp of the review.
    • Summary: Short summary of the review.
    • Text: Full text of the review.

    Distribution

    • Data Volume: 568454 rows and 9 columns.
    • Format: CSV.
    • Structure: Tabular format with numerical, categorical, and text data.

    Usage

    This dataset is ideal for a variety of applications:

    • Sentiment Analysis: Training NLP models to predict sentiment based on reviews.
    • Product Recommendation Systems: Building collaborative filtering models.
    • Trend Analysis: Identifying popular products and customer preferences.
    • Fake Review Detection: Detecting anomalous patterns in review behaviours.

    Coverage

    • Geographic Coverage: Global.
    • Time Range: Multi-year dataset (over 10 years of reviews).
    • Demographics: General Amazon shoppers; includes various age groups and customer segments.

    License

    CC0

    Who Can Use It

    • Data Scientists: For building machine learning models.
    • Researchers: For academic analysis of customer behaviour.
    • Businesses: For market insights and customer sentiment analysis.
  19. Amazon revenue 2004-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Amazon revenue 2004-2024 [Dataset]. https://www.statista.com/statistics/266282/annual-net-revenue-of-amazoncom/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States, Worldwide
    Description

    From 2004 to 2024, the net revenue of Amazon e-commerce and service sales has increased tremendously. In the fiscal year ending December 31, the multinational e-commerce company's net revenue was almost *** billion U.S. dollars, up from *** billion U.S. dollars in 2023.Amazon.com, a U.S. e-commerce company originally founded in 1994, is the world’s largest online retailer of books, clothing, electronics, music, and many more goods. As of 2024, the company generates the majority of it's net revenues through online retail product sales, followed by third-party retail seller services, cloud computing services, and retail subscription services including Amazon Prime. From seller to digital environment Through Amazon, consumers are able to purchase goods at a rather discounted price from both small and large companies as well as from other users. Both new and used goods are sold on the website. Due to the wide variety of goods available at prices which often undercut local brick-and-mortar retail offerings, Amazon has dominated the retailer market. As of 2024, Amazon’s brand worth amounts to over *** billion U.S. dollars, topping the likes of companies such as Walmart, Ikea, as well as digital competitors Alibaba and eBay. One of Amazon's first forays into the world of hardware was its e-reader Kindle, one of the most popular e-book readers worldwide. More recently, Amazon has also released several series of own-branded products and a voice-controlled virtual assistant, Alexa. Headquartered in North America Due to its location, Amazon offers more services in North America than worldwide. As a result, the majority of the company’s net revenue in 2023 was actually earned in the United States, Canada, and Mexico. In 2023, approximately *** billion U.S. dollars was earned in North America compared to only roughly *** billion U.S. dollars internationally.

  20. 5-core Amazon Electronics Reviews

    • kaggle.com
    Updated Sep 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Niall Walsh (2018). 5-core Amazon Electronics Reviews [Dataset]. https://www.kaggle.com/deniall/5core-amazon-electronics-reviews/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 26, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Niall Walsh
    Description

    Dataset

    This dataset was created by Niall Walsh

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2025). Amazon Products [Dataset]. https://www.opendatabay.com/data/premium/2f7668e7-009e-4c7d-9822-78955a22a20a

Amazon Products

Explore at:
.undefinedAvailable download formats
Dataset updated
Jun 19, 2025
Dataset authored and provided by
Bright Data
Area covered
Retail & Consumer Behavior
Description

Amazon Products dataset to explore detailed product listings, pricing, reviews, and sales data. Popular use cases include competitive analysis, market trend forecasting, and e-commerce strategy optimization.

Use our Amazon Products dataset to explore detailed information on products across various categories, including pricing, reviews, ratings, and sales data. This dataset is ideal for e-commerce professionals, market analysts, and product managers looking to analyze market trends, optimize product listings, and refine competitive strategies.

Leverage this dataset to track pricing trends, assess customer feedback, and uncover popular product categories. Whether you're conducting competitive analysis, performing market research, or optimizing product strategies, the Amazon Products dataset provides key insights to stay ahead in the e-commerce landscape.

Dataset Features

  • Title: The name or title of the product.
  • seller_name: The name of the seller offering the product.
  • Brand: The brand associated with the product.
  • Description: A detailed description of the product, including key features.
  • initial_price: The original price of the product before any discounts.
  • final_price: The current price of the product after discounts.
  • Currency: The currency in which the product is priced (e.g., GBP, USD).
  • Availability: The stock status (e.g., in stock, out of stock).
  • reviews_count: The total number of customer reviews.
  • Categories: The specific category the product belongs to.
  • asin: Amazon Standard Identification Number.
  • buybox_seller: The seller currently winning the Amazon Buy Box.
  • number_of_sellers: The number of sellers offering this product.
  • root_bs_rank: The overall ranking of the product in the Amazon best-sellers list.
  • answered_questions: The number of questions answered in the product Q&A section.
  • domain: The website domain where the product is being sold.
  • images_count: The number of images available for the product.
  • URL: The link to the product page on Amazon.
  • video_count: The number of videos available for the product.
  • image_url: The URL of the primary image associated with the product.
  • item_weight: The weight of the product.
  • Rating: The average rating of the product based on customer reviews.
  • product_dimensions: The dimensions of the product (e.g., length, width, height) and weight.
  • seller_id: The unique identifier for the seller.
  • date_first_available: The date when the product was first made available on Amazon.
  • discount: Any discount applied to the product.
  • model_number: The model number of the product.
  • manufacturer: The company that manufactures the product.
  • department: The department under which the product is categorized (e.g., Health & Household).
  • plus_content: A flag indicating if the product has Amazon’s “Plus Content” (additional marketing content).
  • upc: The Universal Product Code (UPC) associated with the product.
  • video: URL(s) of any video content associated with the product.
  • top_review: A summary or excerpt from the top customer review.
  • variations: Different product variations (e.g., different sizes or flavors).
  • delivery: Information on the delivery options (e.g., free delivery or Prime delivery).
  • features: Key features or highlights of the product.
  • format: The format of the product (e.g., powder, liquid).
  • buybox_prices: Pricing details for the product, including the base and tiered prices.
  • parent_asin: The ASIN of the parent product (if the product is part of a larger group of similar products).
  • input_asin: The ASIN of the product as input for Amazon searches.
  • ingredients: List of ingredients in the product (if applicable).
  • origin_url: The source URL for product-related information or ingredients.
  • bought_past_month: A flag indicating if the product was bought in the past month.
  • is_available: Availability status of the product (True/False).
  • root_bs_category: The broad product category (e.g., Health & Household).
  • bs_category: The specific subcategory the product belongs to.
  • bs_rank: The rank of the product in its specific subcategory.
  • badge: Any badge or label the product has earned (e.g., Amazon's Choice).
  • subcategory_rank: The rank of the product within its subcategory.
  • amazon_choice: A flag indicating if the product has been selected as Amazon’s Choice.
  • images: A list of URLs for additional product images.
  • product_details: Detailed product specifications and features.
  • prices_breakdown: A breakdown of the price, including any discounts or promotions.
  • country_of_origin: The country where the product is made.
  • from_the_brand: Information from the brand or manufact
Search
Clear search
Close search
Google apps
Main menu