Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for World Population Female Percent Of Total
Facebook
TwitterBy Priyanka Dobhal [source]
This dataset contains the rankings of the 2020 Forbes list of 100 most powerful women from around the world. This dataset includes detailed insights on each woman, such as their age, country/territory, category, and designation. This comprehensive ranking celebrates female leaders that are making an impact in their field and around the world while inspiring us to continue striving for gender parity and driving positive social change. Explore this dataset to get an idea of who are some of the top female voices right now at the forefront of progress
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
- Creating personalized stories of each woman to showcase their inspiring accomplishments, achievements and successes.
- Analyzing the age range of female Forbes 100 Power Women list to adjust marketing, staffing, and other outreach initiatives aimed at empowering women globally.
- Developing an interactive map with information about the country/territory of origin for each Forbes Power Woman, with an interactive feature that provides stories from successful women from these countries/territories that can serve as inspiration for other aspiring entrepreneurs
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: Forbes 100 Women List 2020.csv | Column name | Description | |:----------------------|:-------------------------------------------------------------------------------| | Name | Name of the Power Woman. (String) | | Age | Age of the Power Woman. (Integer) | | Country/Territory | Country or territory of origin of the Power Woman. (String) | | Category | Category of the Power Woman's achievements. (String) | | Designation | Designation of the Power Woman. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Priyanka Dobhal.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.
Key observations
Largest age group (population): Male # 20-24 years (347) | Female # 50-54 years (433). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population: Female: Ages 50-54: % of Female Population data was reported at 6.562 % in 2017. This records a decrease from the previous number of 6.714 % for 2016. United States US: Population: Female: Ages 50-54: % of Female Population data is updated yearly, averaging 5.529 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 7.158 % in 2010 and a record low of 4.484 % in 1988. United States US: Population: Female: Ages 50-54: % of Female Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Population and Urbanization Statistics. Female population between the ages 50 to 54 as a percentage of the total female population.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; ;
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This meticulously curated dataset offers a panoramic view of education on a global scale , delivering profound insights into the dynamic landscape of education across diverse countries and regions. Spanning a rich tapestry of educational aspects, it encapsulates crucial metrics including out-of-school rates, completion rates, proficiency levels, literacy rates, birth rates, and primary and tertiary education enrollment statistics. A treasure trove of knowledge, this dataset is an indispensable asset for discerning researchers, dedicated educators, and forward-thinking policymakers, enabling them to embark on a transformative journey of assessing, enhancing, and reshaping education systems worldwide.
Key Features: - Countries and Areas: Name of the countries and areas. - Latitude: Latitude coordinates of the geographical location. - Longitude: Longitude coordinates of the geographical location. - OOSR_Pre0Primary_Age_Male: Out-of-school rate for pre-primary age males. - OOSR_Pre0Primary_Age_Female: Out-of-school rate for pre-primary age females. - OOSR_Primary_Age_Male: Out-of-school rate for primary age males. - OOSR_Primary_Age_Female: Out-of-school rate for primary age females. - OOSR_Lower_Secondary_Age_Male: Out-of-school rate for lower secondary age males. - OOSR_Lower_Secondary_Age_Female: Out-of-school rate for lower secondary age females. - OOSR_Upper_Secondary_Age_Male: Out-of-school rate for upper secondary age males. - OOSR_Upper_Secondary_Age_Female: Out-of-school rate for upper secondary age females. - Completion_Rate_Primary_Male: Completion rate for primary education among males. - Completion_Rate_Primary_Female: Completion rate for primary education among females. - Completion_Rate_Lower_Secondary_Male: Completion rate for lower secondary education among males. - Completion_Rate_Lower_Secondary_Female: Completion rate for lower secondary education among females. - Completion_Rate_Upper_Secondary_Male: Completion rate for upper secondary education among males. - Completion_Rate_Upper_Secondary_Female: Completion rate for upper secondary education among females. - Grade_2_3_Proficiency_Reading: Proficiency in reading for grade 2-3 students. - Grade_2_3_Proficiency_Math: Proficiency in math for grade 2-3 students. - Primary_End_Proficiency_Reading: Proficiency in reading at the end of primary education. - Primary_End_Proficiency_Math: Proficiency in math at the end of primary education. - Lower_Secondary_End_Proficiency_Reading: Proficiency in reading at the end of lower secondary education. - Lower_Secondary_End_Proficiency_Math: Proficiency in math at the end of lower secondary education. - Youth_15_24_Literacy_Rate_Male: Literacy rate among male youths aged 15-24. - Youth_15_24_Literacy_Rate_Female: Literacy rate among female youths aged 15-24. - Birth_Rate: Birth rate in the respective countries/areas. - Gross_Primary_Education_Enrollment: Gross enrollment in primary education. - Gross_Tertiary_Education_Enrollment: Gross enrollment in tertiary education. - Unemployment_Rate: Unemployment rate in the respective countries/areas.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset provides information on annual victimization rates, including those related to harassment and other crimes against women, in the United States. The NCVS is conducted by the Bureau of Justice Statistics and is considered one of the most reliable sources of crime data.
This dataset contains information about online harassment, specifically related to trolling and online abuse. It includes data about the victims, types of harassment, and online platforms where the incidents occurred.
This database, available through the United Nations Office on Drugs and Crime (UNODC), provides comprehensive information about gender-based violence from various countries around the world. It includes data on different forms of violence, including harassment.
This compiled dataset combines various sources of information related to sexual assaults, including reporting rates, demographic information, and types of assaults. It can provide insights into the prevalence of sexual harassment cases.
It is important to note that these datasets may have specific limitations and biases, and caution should be taken when interpreting the results. Additionally, you might need to apply for access or permissions to use some of these datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (21) | Female # 40-44 years (15). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Demographic and Health Surveys (DHS) Program exists to advance the global understanding of health and population trends in developing countries.
The UN describes violence against women and girls (VAWG) as: “One of the most widespread, persistent, and devastating human rights violations in our world today. It remains largely unreported due to the impunity, silence, stigma, and shame surrounding it.”
In general terms, it manifests itself in physical, sexual, and psychological forms, encompassing: • intimate partner violence (battering, psychological abuse, marital rape, femicide) • sexual violence and harassment (rape, forced sexual acts, unwanted sexual advances, child sexual abuse, forced marriage, street harassment, stalking, cyber-harassment), human trafficking (slavery, sexual exploitation) • female genital mutilation • child marriage
The data was taken from a survey of men and women in African, Asian, and South American countries, exploring the attitudes and perceived justifications given for committing acts of violence against women. The data also explores different sociodemographic groups that the respondents belong to, including: Education Level, Marital status, Employment, and Age group.
It is, therefore, critical that the countries where these views are widespread, prioritize public awareness campaigns, and access to education for women and girls, to communicate that violence against women and girls is never acceptable or justifiable.
| Field | Definition |
|---|---|
| Record ID | Numeric value unique to each question by country |
| Country | Country in which the survey was conducted |
| Gender | Whether the respondents were Male or Female |
| Demographics Question | Refers to the different types of demographic groupings used to segment respondents – marital status, education level, employment status, residence type, or age |
| Demographics Response | Refers to demographic segment into which the respondent falls (e.g. the age groupings are split into 15-24, 25-34, and 35-49) |
| Survey Year | Year in which the Demographic and Health Survey (DHS) took place. “DHS surveys are nationally-representative household surveys that provide data for a wide range of monitoring and impact evaluation indicators in the areas of population, health and nutrition. Standard DHS Surveys have large sample sizes (usually between 5,000 and 30,000 households) and typically are conducted around every 5 years, to allow comparisons over time.” |
| Value | % of people surveyed in the relevant group who agree with the question (e.g. the percentage of women aged 15-24 in Afghanistan who agree that a husband is justified in hitting or beating his wife if she burns the food) |
Question | Respondents were asked if they agreed with the following statements: - A husband is justified in hitting or beating his wife if she burns the food - A husband is justified in hitting or beating his wife if she argues with him - A husband is justified in hitting or beating his wife if she goes out without telling him - A husband is justified in hitting or beating his wife if she neglects the children - A husband is justified in hitting or beating his wife if she refuses to have sex with him - A husband is justified in hitting or beating his wife for at least one specific reason
More - Find More Exciting🙀 Datasets Here - An Upvote👍 A Dayᕙ(`▿´)ᕗ , Keeps Aman Hurray Hurray..... ٩(˘◡˘)۶Haha
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/27857https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/27857
The 2014 Global Nutrition Report Dataset contains data for all the indicators that were used in Global Nutrition Report 2014: Actions and Accountability to Accelerate the World's Progress on Nutrition . The data are compiled from secondary sources including United Nations Children's Fund (UNICEF), World Health Organization (WHO), and the World Bank among many others. The dataset broadly contains information on adult and child nutrition, economic demography, nutrition intervention coverage, and policy legislation in the nutrition sector. The data visualization based on a subset of this dataset can be accessed here.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Population: as % of Total: Female: Aged 65 and Above data was reported at 16.925 % in 2017. This records an increase from the previous number of 16.550 % for 2016. United States US: Population: as % of Total: Female: Aged 65 and Above data is updated yearly, averaging 14.035 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 16.925 % in 2017 and a record low of 10.023 % in 1960. United States US: Population: as % of Total: Female: Aged 65 and Above data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Population and Urbanization Statistics. Female population 65 years of age or older as a percentage of the total female population. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; Weighted average; Relevance to gender indicator: Knowing how many girls, adolescents and women there are in a population helps a country in determining its provision of services.
Facebook
TwitterBy Carolee Mitchell [source]
This dataset explores the impact of gender on box office success. It looks at data from films released between 1970 and 2013, including their budgets, domestic and international gross earnings, and their pass/fail status on the Bechdel Test - a benchmark measuring gender biases in movies.
The dataset gives us an opportunity to investigate how men and women are portrayed in films over time, explore gendered earning gaps in Hollywood, answer questions about movie trends through the decades such as whether or not films with strong female roles outgross those without them when adjusted for inflation. We can also uncover correlations between movie ratings on IMDB and whether or not they pass the Bechdel Test as well as look at patterns based on MPAA ratings classification systems around film content that could influence box office performance. So dive into this set to discover what stories gender representation tells us about film success!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information about the box office performance of over 2000 movies released between 1970 and 2013. The data includes budget, gross domestic and international earnings, IMDB ratings, Bechdel Test pass/fail status, and release period. This dataset is a great resource for anyone interested in exploring the impact of gender on box office performance or studying trends within the movie industry over time.
Here is how to use this dataset: - Start by exploring the data yourself to get a sense of what is in here. Look for any questions that come up or interesting patterns you notice. - Take a look at different columns in the dataset such as budget, gross domestic/international earnings, IMDB rating, etc., to get an idea of how these factors might be related to each other and if there are any correlations between them. - Filter out any data entries that don’t fit your needs - remember that this dataset contains movies released between 1970 and 2013 so make sure you adjust your filters accordingly if you need more recent films! - Once you are happy with your selection criteria then do some additional digging by sorting through other relevant columns like “period code” or “decade code” which can give you insight into larger trends within the movie industry over time (such as when certain genres became popular). This can also help you focus your results on an even more specific selection of films than before! - Now it’s time to start making conclusions from all this data - look for relationships between different variables like genders roles being portrayed in films and its impact to overall financial success (budget vs money made). Also try comparing statistics from before/after particular periods where large leaps have been made regarding female representation on screen (1990s feminism for example). With all these pieces together it should become clear what type of stories these numbers are telling us about gender roles throughout Hollywood history!
- Analyzing the impact of female-led movies on box office success over time.
- Comparing the average budget, domestic, and international gross of movies that pass the Bechdel Test versus those that do not.
- Examining how budget and other film industry factors (IMDb ratings, MPAA rating) are related to box office performance for movies with different levels of gender representation
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: movies.csv | Column name | Description | |:-------------------|:-----------------------------------------------------------...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for United States Population Female Percent Of Total
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Waukesha by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Waukesha across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 51.34% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Waukesha Population by Race & Ethnicity. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany DE: Population: as % of Total: Female: Aged 15-64 data was reported at 61.528 % in 2023. This records a decrease from the previous number of 61.854 % for 2022. Germany DE: Population: as % of Total: Female: Aged 15-64 data is updated yearly, averaging 64.197 % from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 67.752 % in 1960 and a record low of 61.528 % in 2023. Germany DE: Population: as % of Total: Female: Aged 15-64 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Germany – Table DE.World Bank.WDI: Population and Urbanization Statistics. Female population between the ages 15 to 64 as a percentage of the total female population. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.;United Nations Population Division. World Population Prospects: 2024 Revision.;Weighted average;Relevance to gender indicator: Knowing how many girls, adolescents and women there are in a population helps a country in determining its provision of services.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, female (% of total population) in Turkey was reported at 50.09 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. Turkey - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on October of 2025.
Facebook
TwitterUsers can access data related to international women’s health as well as data on population and families, education, work, power and decision making, violence against women, poverty, and environment. Background World’s Women Reports are prepared by the Statistics Division of the United Nations Department for Economic and Social Affairs (UNDESA). Reports are produced in five year intervals and began in 1990. A major theme of the reports is comparing women’s situation globally to that of men in a variety of fields. Health data is available related to life expectancy, cause of death, chronic disease, HIV/AIDS, prenatal care, maternal morbidity, reproductive health, contraceptive use, induced abortion, mortality of children under 5, and immunization. User functionality Users can download full text or specific chapter versions of the reports in color and black and white. A limited number of graphs are available for download directly from the website. Topics include obesity and underweight children. Data Notes The report and data tables are available for download in PDF format. The next report is scheduled to be released in 2015. The most recent report was released in 2010.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, female (% of total population) in Yemen was reported at 49.34 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. Yemen - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on November of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population, female (% of total population) in Brazil was reported at 50.8 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. Brazil - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on October of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Blue Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Blue Earth. The dataset can be utilized to understand the population distribution of Blue Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Blue Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Blue Earth.
Key observations
Largest age group (population): Male # 40-44 years (125) | Female # 85+ years (156). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth Population by Gender. You can refer the same here
Facebook
TwitterOver the past 24 years, there were constantly more men than women living on the planet. Of the 8.06 billion people living on the Earth in 2024, 4.09 billion were men and 4.05 billion were women. One-quarter of the world's total population in 2024 was below 15 years.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Actual value and historical data chart for World Population Female Percent Of Total