37 datasets found
  1. 2023 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2023.S0101
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The age dependency ratio is derived by dividing the combined under-18 and 65-and-over populations by the 18-to-64 population and multiplying by 100..The old-age dependency ratio is derived by dividing the population 65 and over by the 18-to-64 population and multiplying by 100..The child dependency ratio is derived by dividing the population under 18 by the 18-to-64 population and multiplying by 100..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  2. U.S. adults on law enforcement using personal data 2023, by age

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. adults on law enforcement using personal data 2023, by age [Dataset]. https://www.statista.com/statistics/1424052/data-usage-by-law-enforcement-us-attitudes-by-age/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 15, 2023 - May 21, 2023
    Area covered
    United States
    Description

    According to a May 2023 survey of internet users in the United States, three in four individuals find it very or somewhat acceptable for law enforcement to obtain footage from cameras people install at their residences or the information from cellphone towers to use them in a criminal investigation. Furthermore, the survey found that older generations were more likely to support these actions of law enforcement than younger individuals.

  3. Estimates of population as of July 1st, by marital status or legal marital...

    • www150.statcan.gc.ca
    • datasets.ai
    • +2more
    Updated Nov 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2022). Estimates of population as of July 1st, by marital status or legal marital status, age and sex [Dataset]. http://doi.org/10.25318/1710006001-eng
    Explore at:
    Dataset updated
    Nov 9, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Annual population estimates by marital status or legal marital status, age and sex, Canada, provinces and territories.

  4. d

    Voter Registration by Census Tract

    • catalog.data.gov
    • data.kingcounty.gov
    • +1more
    Updated Jun 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.kingcounty.gov (2025). Voter Registration by Census Tract [Dataset]. https://catalog.data.gov/dataset/voter-registration-by-census-tract
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    data.kingcounty.gov
    Description

    This web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.

  5. Population estimates on July 1, by age and gender

    • www150.statcan.gc.ca
    • open.canada.ca
    Updated Sep 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Population estimates on July 1, by age and gender [Dataset]. http://doi.org/10.25318/1710000501-eng
    Explore at:
    Dataset updated
    Sep 24, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Estimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.

  6. World Statistics dataset from World Bank

    • kaggle.com
    zip
    Updated Nov 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr_statistics (2020). World Statistics dataset from World Bank [Dataset]. https://www.kaggle.com/datasets/mutindafestus/world-statistics-dataset-from-world-bank/code
    Explore at:
    zip(2862682 bytes)Available download formats
    Dataset updated
    Nov 22, 2020
    Authors
    Dr_statistics
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Area covered
    World
    Description

    Context

    There's a story behind every dataset and here's your opportunity to share yours.

    Content

    This Data consists of some world statistics published by the World Bank since 1961

    Variables:

    1) Agriculture and Rural development - 42 indicators published on this website. https://data.worldbank.org/topic/agriculture-and-rural-development

    2) Access to electricity (% of the population) - Access to electricity is the percentage of the population with access to electricity. Electrification data are collected from industry, national surveys, and international sources.

    3) CPIA gender equality rating (1=low to 6=high) - Gender equality assesses the extent to which the country has installed institutions and programs to enforce laws and policies that promote equal access for men and women in education, health, the economy, and protection under law.

    4) Mineral rents (% of GDP) - Mineral rents are the difference between the value of production for a stock of minerals at world prices and their total costs of production. Minerals included in the calculation are tin, gold, lead, zinc, iron, copper, nickel, silver, bauxite, and phosphate.

    5) GDP per capita (current US$) - GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in current U.S. dollars.

    6) Literacy rate, adult total (% of people ages 15 and above)- Adult literacy rate is the percentage of people ages 15 and above who can both read and write with understanding a short simple statement about their everyday life.

    7) Net migration - Net migration is the net total of migrants during the period, that is, the total number of immigrants less the annual number of emigrants, including both citizens and noncitizens. Data are five-year estimates.

    8) Birth rate, crude (per 1,000 people) - Crude birth rate indicates the number of live births occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.

    9) Death rate, crude (per 1,000 people) - Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.

    10) Mortality rate, infant (per 1,000 live births) - Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.

    11) Population, total - Total population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. The values shown are midyear estimates.

    Acknowledgements

    These datasets are publicly available for anyone to use under the following terms provided by the Dataset Source https://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Banner photo by https://population.un.org/wpp/Maps/

    Inspiration

    Subsaharan Africa and east Asia record high population total, actually Subsaharan Africa population bypassed Europe and central Asia population by 2010, has this been influenced by crop and food production, large arable land, high crude birth rates(influx), low mortality rates(exits from the population) or Net migration.

  7. Data from: ANSUR II

    • kaggle.com
    zip
    Updated Feb 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saiful Islam Sagor (2021). ANSUR II [Dataset]. https://www.kaggle.com/saifsagor/ansur-ii
    Explore at:
    zip(1090515 bytes)Available download formats
    Dataset updated
    Feb 1, 2021
    Authors
    Saiful Islam Sagor
    Description

    The Anthropometric Survey of US Army Personnel (ANSUR 2 or ANSUR II) data were published internally in 2012. They were made available publicly in 2017. They have replaced ANSUR I as the most comprehensive publicly available data set on body size and shape. They include 93 measures for over 6,000 adult US military personnel (4,082 men and 1,986 women). In contrast to the ANSUR I data, the new sample includes reservists. Despite the presence of reservists in the sample, it is still not an approximation of the US Civilian population. Consequently, while there is useful information here, designs and standards based on these data will not accommodate most user populations in the intended manner.

    This dataset is collected from internet.

  8. K

    King County jail COVID-19 statistics

    • data.kingcounty.gov
    • datasets.ai
    • +2more
    csv, xlsx, xml
    Updated Mar 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County Department of Adult and Juvenile Detention (2023). King County jail COVID-19 statistics [Dataset]. https://data.kingcounty.gov/Law-Enforcement-Safety/King-County-jail-COVID-19-statistics/qdny-y8ei
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Mar 22, 2023
    Dataset authored and provided by
    King County Department of Adult and Juvenile Detention
    Area covered
    King County
    Description

    The Department of Adult and Juvenile Detention is taking emergency actions to ensure the safety of everyone at King County correctional facilities, based on recommendations from the Centers for Disease Control and Prevention as well as Public Health – Seattle & King County. https://kingcounty.gov/depts/jails/covid-updates.aspx

  9. undefined undefined: undefined | undefined (undefined)

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau, undefined undefined: undefined | undefined (undefined) [Dataset]. https://data.census.gov/table/ACSDT1Y2024.B27023?q=B27023&g=9700000US4815000
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Key Table Information.Table Title.Private Health Insurance by Sex by Enrollment Status for Young Adults Aged 19 to 25.Table ID.ACSDT1Y2024.B27023.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation...

  10. l

    Adults Who Use Alcohol

    • data.lacounty.gov
    • geohub.lacity.org
    • +2more
    Updated Jan 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2024). Adults Who Use Alcohol [Dataset]. https://data.lacounty.gov/datasets/b09b583e4e944b6898a99b913d68feeb
    Explore at:
    Dataset updated
    Jan 8, 2024
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Data for cities, communities, and City of Los Angeles Council Districts were generated using a small area estimation method which combined the survey data with population benchmark data (2022 population estimates for Los Angeles County) and neighborhood characteristics data (e.g., U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates). This indicator is based on self-report and includes adults who had at least one drink of any alcoholic beverage (such as beer, wine, or liquor) in the past month.In the US, alcohol use is legal for those ages 21 years and older and should be avoided or used in moderation (defined as consuming two or less drinks per day for men or one or less drinks per day for women). Excessive alcohol use includes binge drinking, heavy drinking, any underage alcohol use, and any alcohol use by pregnant persons. Alcohol use is associated with numerous health, safety, and social problems, including chronic diseases, unintentional injuries, interpersonal violence, fetal alcohol spectrum disorders, alcohol use disorders, and weakened interpersonal relationships and ability to function at work, school, or home. In general, people with higher socioeconomic status (SES) report drinking more frequently and more heavily than those with lower SES; however, people with lower SES are on average more negatively affected by alcohol-related harms. It is important for cities and communities to build strategies that create environments that reduce excessive alcohol use and prevent underage drinking.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  11. d

    Department for the Aging (NYC Aging) - Senior Center Local Law 140 Provider...

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Sep 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). Department for the Aging (NYC Aging) - Senior Center Local Law 140 Provider Data - FY 2020 [Dataset]. https://catalog.data.gov/dataset/department-for-the-aging-dfta-senior-center-local-law-140-data
    Explore at:
    Dataset updated
    Sep 29, 2023
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    This information is required by Local Law 140 to be provided to the City Council and published on the Department for the Aging (NYC Aging) website and the Open Data portal. It contains the addresses, days of operation, daily participants, as well as the FY 2020 budgeted and actual expenses for NYC Aging funded senior centers (now know as Older Adult Centers).

  12. Share of young adults aged 18-34 living with their parents by self-defined...

    • ec.europa.eu
    Updated Oct 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Share of young adults aged 18-34 living with their parents by self-defined current economic status [Dataset]. http://doi.org/10.2908/ILC_LVPS09
    Explore at:
    application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+csv;version=2.0.0, json, application/vnd.sdmx.data+xml;version=3.0.0, application/vnd.sdmx.data+csv;version=1.0.0, tsvAvailable download formats
    Dataset updated
    Oct 10, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2003 - 2024
    Area covered
    United Kingdom, EU10-1981, EU15-1995, EU27-2007, European Union (EU6-1958, EU25-2004, EU12-1986, EU28-2013, EU9-1973, EU27-2020), Greece, EA19-2015, EA16-2009, EA13-2007, EA15-2008, EA20-2023), Euro area (EA11-1999, EA18-2014, EA12-2001, EA17-2011, Bulgaria, Ireland, Poland, European Union - 27 countries (2007-2013), Euro area – 20 countries (from 2023), Slovenia
    Description

    The European Union Statistics on Income and Living Conditions (EU-SILC) collects timely and comparable multidimensional microdata on income, poverty, social exclusion and living conditions.

    The EU-SILC collection is a key instrument for providing information required by the European Semester ([1]) and the European Pillar of Social Rights, and the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates.

    AROPE remains crucial to monitor European social policies, especially to monitor the EU 2030 target on poverty and social exclusion. For more information, please consult EU social indicators.

    The EU-SILC instrument provides two types of data:

    • Cross-sectional data pertaining to a given time or a certain time period with variables on income, poverty, social exclusion and other living conditions.
    • Longitudinal data pertaining to individual-level changes over time, observed periodically over four‐or more year rotation scheme (Annex III (2) of 2019/1700).

    EU-SILC collects:

    • annual variables,
    • three-yearly modules,
    • six-yearly modules,
    • ad-hoc new policy needs modules,
    • optional variables.

    The variables collected are grouped by topic and detailed topic and transmitted to Eurostat in four main files (D-File, H-File, R-File and P-file).

    The domain ‘Income and Living Conditions’ covers the following topics: persons at risk of poverty or social exclusion, income inequality, income distribution and monetary poverty, living conditions, material deprivation, and EU-SILC ad-hoc modules, which are structured into collections of indicators on specific topics.

    In 2023, in addition to annual data, in EU-SILC were collected: the three yearly module on labour market and housing, the six yearly module on intergenerational transmission of advantages and disadvantages, housing difficulties, and the ad hoc subject on households energy efficiency.

    Starting from 2021 onwards, the EU quality reports use the structure of the Single Integrated Metadata Structure (SIMS).

    ([1]) The European Semester is the European Union’s framework for the coordination and surveillance of economic and social policies.

  13. Selected legal milestones in Michigan reproductive rights.

    • plos.figshare.com
    xls
    Updated Jan 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer Watling Neal; Zachary P. Neal (2024). Selected legal milestones in Michigan reproductive rights. [Dataset]. http://doi.org/10.1371/journal.pone.0294459.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 10, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Jennifer Watling Neal; Zachary P. Neal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan
    Description

    Selected legal milestones in Michigan reproductive rights.

  14. n

    Data from: New Immigrant Survey

    • neuinfo.org
    • scicrunch.org
    • +2more
    Updated Nov 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). New Immigrant Survey [Dataset]. http://identifiers.org/RRID:SCR_008973
    Explore at:
    Dataset updated
    Nov 6, 2024
    Description

    Public use data set on new legal immigrants to the U.S. that can address scientific and policy questions about migration behavior and the impacts of migration. A survey pilot project, the NIS-P, was carried out in 1996 to inform the fielding and design of the full NIS. Baseline interviews were ultimately conducted with 1,127 adult immigrants. Sample members were interviewed at baseline, 6 months, and 12 months, with half of the sample also interviewed at three months. The first full cohort, NIS-2003, is based on a nationally representative sample of the electronic administrative records compiled for new immigrants by the US government. NIS-2003 sampled immigrants in the period May-November 2003. The geographic sampling design takes advantage of the natural clustering of immigrants. It includes all top 85 Metropolitan Statistical Areas (MSAs) and all top 38 counties, plus a random sample of other MSAs and counties. Interviews were conducted in respondents'' preferred languages. The baseline was multi-modal: 60% of adult interviews were administered by telephone; 40% were in-person. The baseline round was in the field from June 2003 to June 2004, and includes in the Adult Sample 8,573 respondents, 4,336 spouses, and 1,072 children aged 8-12. A follow-up was planned for 2007. Several modules of the NIS were designed to replicate sections of the continuing surveys of the US population that provide a natural comparison group. Questionnaire topics include Health (self-reports of conditions, symptoms, functional status, smoking and drinking history) and use/source/costs of health care services, depression, pain; background; (2) Background: Childhood history and living conditions, education, migration history, marital history, military history, fertility history, language skills, employment history in the US and foreign countries, social networks, religion; Family: Rosters of all children; for each, demographic attributes, education, current work status, migration, marital status and children; for some, summary indicators of childhood and current health, language ability; Economic: Sources and amounts of income, including wages, pensions, and government subsidies; type, value of assets and debts, financial assistance given/received to/from respondent from/to relatives, friends, employer, type of housing and ownership of consumable durables. * Dates of Study: 2003-2007 * Study Features: Longitudinal * Sample Size: 13,981

  15. 2023 American Community Survey: B09021 | Living Arrangements of Adults 18...

    • data.census.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B09021 | Living Arrangements of Adults 18 Years and Over by Age (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2023.B09021?q=B09021&g=9700000US4815000
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Householders with no spouse or unmarried partner present, but at least one relative present are included in the 'other relatives' category. When relatives are not present, and the householder is not living alone, the householder is included in the 'other nonrelatives' category..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  16. 2023 American Community Survey: B27023 | Private Health Insurance by Sex by...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B27023 | Private Health Insurance by Sex by Enrollment Status for Young Adults Aged 19 to 25 (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2023.B27023?q=Young+Dreams+Carpentry
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  17. Americans on the legalization of marijuana 2003-2021

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Americans on the legalization of marijuana 2003-2021 [Dataset]. https://www.statista.com/statistics/284172/americans-on-the-legalization-of-marijuana-2003-2015/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Among adult Americans, 68 percent stated to be in favor of the legalization of marijuana in the United States. The share of people who believed that marijuana should be legalized increased considerably over the years. In 2003, only 34 percent of Americans were in favor, whereas in 2021, only 32 percent are against it.

  18. Persons living with their parents or contributing/benefiting from the...

    • ec.europa.eu
    Updated Oct 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Persons living with their parents or contributing/benefiting from the household income (population aged 18 to 34 years) [Dataset]. http://doi.org/10.2908/ILC_LVPS08
    Explore at:
    application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+csv;version=2.0.0, json, application/vnd.sdmx.data+csv;version=1.0.0, application/vnd.sdmx.data+xml;version=3.0.0, tsvAvailable download formats
    Dataset updated
    Oct 10, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2003 - 2024
    Area covered
    Denmark, Cyprus, Croatia, Serbia, Slovakia, Switzerland, Albania, North Macedonia, Latvia, European Union - 28 countries (2013-2020)
    Description

    The European Union Statistics on Income and Living Conditions (EU-SILC) collects timely and comparable multidimensional microdata on income, poverty, social exclusion and living conditions.

    The EU-SILC collection is a key instrument for providing information required by the European Semester ([1]) and the European Pillar of Social Rights, and the main source of data for microsimulation purposes and flash estimates of income distribution and poverty rates.

    AROPE remains crucial to monitor European social policies, especially to monitor the EU 2030 target on poverty and social exclusion. For more information, please consult EU social indicators.

    The EU-SILC instrument provides two types of data:

    • Cross-sectional data pertaining to a given time or a certain time period with variables on income, poverty, social exclusion and other living conditions.
    • Longitudinal data pertaining to individual-level changes over time, observed periodically over four‐or more year rotation scheme (Annex III (2) of 2019/1700).

    EU-SILC collects:

    • annual variables,
    • three-yearly modules,
    • six-yearly modules,
    • ad-hoc new policy needs modules,
    • optional variables.

    The variables collected are grouped by topic and detailed topic and transmitted to Eurostat in four main files (D-File, H-File, R-File and P-file).

    The domain ‘Income and Living Conditions’ covers the following topics: persons at risk of poverty or social exclusion, income inequality, income distribution and monetary poverty, living conditions, material deprivation, and EU-SILC ad-hoc modules, which are structured into collections of indicators on specific topics.

    In 2023, in addition to annual data, in EU-SILC were collected: the three yearly module on labour market and housing, the six yearly module on intergenerational transmission of advantages and disadvantages, housing difficulties, and the ad hoc subject on households energy efficiency.

    Starting from 2021 onwards, the EU quality reports use the structure of the Single Integrated Metadata Structure (SIMS).

    ([1]) The European Semester is the European Union’s framework for the coordination and surveillance of economic and social policies.

  19. K

    Kenya KE: Population: as % of Total: Female: Aged 15-64

    • ceicdata.com
    Updated Feb 15, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Kenya KE: Population: as % of Total: Female: Aged 15-64 [Dataset]. https://www.ceicdata.com/en/kenya/population-and-urbanization-statistics/ke-population-as--of-total-female-aged-1564
    Explore at:
    Dataset updated
    Feb 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Kenya
    Variables measured
    Population
    Description

    Kenya KE: Population: as % of Total: Female: Aged 15-64 data was reported at 57.169 % in 2017. This records an increase from the previous number of 56.815 % for 2016. Kenya KE: Population: as % of Total: Female: Aged 15-64 data is updated yearly, averaging 48.674 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 57.169 % in 2017 and a record low of 47.013 % in 1976. Kenya KE: Population: as % of Total: Female: Aged 15-64 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank.WDI: Population and Urbanization Statistics. Female population between the ages 15 to 64 as a percentage of the total female population. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; Weighted average; Relevance to gender indicator: Knowing how many girls, adolescents and women there are in a population helps a country in determining its provision of services.

  20. The New Immigrant Survey Round 2 (NIS-2003-2), United States, 2007-2009...

    • icpsr.umich.edu
    Updated Nov 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jasso, Guillermina; Massey, Douglas; Rosenzweig, Mark; Smith, James (2023). The New Immigrant Survey Round 2 (NIS-2003-2), United States, 2007-2009 [Restricted-Use Version 2] [Dataset]. http://doi.org/10.3886/ICPSR38064.v1
    Explore at:
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Jasso, Guillermina; Massey, Douglas; Rosenzweig, Mark; Smith, James
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38064/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38064/terms

    Time period covered
    2007 - 2009
    Area covered
    United States
    Description

    The New Immigrant Survey (NIS) was a nationally representative, longitudinal study of new legal immigrants to the United States and their children. The sampling frame was based on the electronic administrative records compiled for new legal permanent residents (LPRs) by the U.S. government (via, formerly, the U.S. Immigration and Naturalization Service (INS) and now its successor agencies, the U.S. Citizenship and Immigration Services (USCIS) and the Office of Immigration Statistics (OIS)). The sample was drawn from new legal immigrants during May through November of 2003. The geographic sampling design took advantage of the natural clustering of immigrants. It included all top 85 Metropolitan Statistical Areas (MSAs) and all top 38 counties, plus a random sample of MSAs and counties. The baseline survey (ICPSR 38031) was conducted from June 2003 to June 2004 and yielded data on: 8,573 Adult Sample respondents, 810 sponsor-parents of the Sampled Child, 4,915 spouses, and 1,072 children aged 8-12. This study contains the follow-up interview, conducted from June 2007 to October 2009, and yielded data on: 3,902 Adult Sample respondents, 351 sponsor-parents of the Sampled Child, 1,771 spouses, and 41 now-adult main child. Interviews were conducted in the respondents' language of choice. Round 2 instruments were designed to track changes from the baseline and also included new questions. As with the Round 1 questionnaire, questions that were used in social-demographic-migration surveys around the world as well as the major U.S. longitudinal surveys were reviewed in order to achieve comparability. The NIS content includes the following information: demographic, health and insurance, migration history, living conditions, transfers, employment history, income, assets, social networks, religion, housing environment, and child assessment tests.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ACS, 2023 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table/ACSST1Y2023.S0101
Organization logo

2023 American Community Survey: S0101 | Age and Sex (ACS 1-Year Estimates Subject Tables)

2023: ACS 1-Year Estimates Subject Tables

Explore at:
Dataset provided by
United States Census Bureauhttp://census.gov/
Authors
ACS
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Time period covered
2023
Description

Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The age dependency ratio is derived by dividing the combined under-18 and 65-and-over populations by the 18-to-64 population and multiplying by 100..The old-age dependency ratio is derived by dividing the population 65 and over by the 18-to-64 population and multiplying by 100..The child dependency ratio is derived by dividing the population under 18 by the 18-to-64 population and multiplying by 100..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

Search
Clear search
Close search
Google apps
Main menu