Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Globe by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Globe. The dataset can be utilized to understand the population distribution of Globe by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Globe. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Globe.
Key observations
Largest age group (population): Male # 55-59 years (337) | Female # 50-54 years (448). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Globe Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Earth. The dataset can be utilized to understand the population distribution of Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Earth.
Key observations
Largest age group (population): Male # 65-69 years (51) | Female # 10-14 years (76). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Earth Population by Gender. You can refer the same here
As of April 2024, around 16.5 percent of global active Instagram users were men between the ages of 18 and 24 years. More than half of the global Instagram population worldwide was aged 34 years or younger.
Teens and social media
As one of the biggest social networks worldwide, Instagram is especially popular with teenagers. As of fall 2020, the photo-sharing app ranked third in terms of preferred social network among teenagers in the United States, second to Snapchat and TikTok. Instagram was one of the most influential advertising channels among female Gen Z users when making purchasing decisions. Teens report feeling more confident, popular, and better about themselves when using social media, and less lonely, depressed and anxious.
Social media can have negative effects on teens, which is also much more pronounced on those with low emotional well-being. It was found that 35 percent of teenagers with low social-emotional well-being reported to have experienced cyber bullying when using social media, while in comparison only five percent of teenagers with high social-emotional well-being stated the same. As such, social media can have a big impact on already fragile states of mind.
As of January 2024, Instagram was slightly more popular with men than women, with men accounting for 50.6 percent of the platform’s global users. Additionally, the social media app was most popular amongst younger audiences, with almost 32 percent of users aged between 18 and 24 years.
Instagram’s Global Audience
As of January 2024, Instagram was the fourth most popular social media platform globally, reaching two billion monthly active users (MAU). This number is projected to keep growing with no signs of slowing down, which is not a surprise as the global online social penetration rate across all regions is constantly increasing.
As of January 2024, the country with the largest Instagram audience was India with 362.9 million users, followed by the United States with 169.7 million users.
Who is winning over the generations?
Even though Instagram’s audience is almost twice the size of TikTok’s on a global scale, TikTok has shown itself to be a fierce competitor, particularly amongst younger audiences. TikTok was the most downloaded mobile app globally in 2022, generating 672 million downloads. As of 2022, Generation Z in the United States spent more time on TikTok than on Instagram monthly.
As of April 2024, it was found that men between the ages of 25 and 34 years made up Facebook largest audience, accounting for 18.4 percent of global users. Additionally, Facebook's second largest audience base could be found with men aged 18 to 24 years.
Facebook connects the world
Founded in 2004 and going public in 2012, Facebook is one of the biggest internet companies in the world with influence that goes beyond social media. It is widely considered as one of the Big Four tech companies, along with Google, Apple, and Amazon (all together known under the acronym GAFA). Facebook is the most popular social network worldwide and the company also owns three other billion-user properties: mobile messaging apps WhatsApp and Facebook Messenger,
as well as photo-sharing app Instagram. Facebook usersThe vast majority of Facebook users connect to the social network via mobile devices. This is unsurprising, as Facebook has many users in mobile-first online markets. Currently, India ranks first in terms of Facebook audience size with 378 million users. The United States, Brazil, and Indonesia also all have more than 100 million Facebook users each.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Originally, the dataset come from the CDC and is a major part of the Behavioral Risk Factor Surveillance System (BRFSS), which conducts annual telephone surveys to gather data on the health status of U.S. residents. As the CDC describes: "Established in 1984 with 15 states, BRFSS now collects data in all 50 states as well as the District of Columbia and three U.S. territories. BRFSS completes more than 400,000 adult interviews each year, making it the largest continuously conducted health survey system in the world.". The most recent dataset (as of February 15, 2022) includes data from 2020. It consists of 401,958 rows and 279 columns. The vast majority of columns are questions asked to respondents about their health status, such as "Do you have serious difficulty walking or climbing stairs?" or "Have you smoked at least 100 cigarettes in your entire life? [Note: 5 packs = 100 cigarettes]".
To improve the efficiency and relevance of our analysis, we removed certain attributes from the original BRFSS dataset. Many of the 279 original attributes included administrative codes, metadata, or survey-specific variables that do not contribute meaningfully to heart disease prediction—such as respondent IDs, timestamps, state-level identifiers, and detailed lifestyle questions unrelated to cardiovascular health. By focusing on a carefully selected subset of 18 attributes directly linked to medical, behavioral, and demographic factors known to influence heart health, we streamlined the dataset. This not only reduced computational complexity but also improved model interpretability and performance by eliminating noise and irrelevant information. All predicting variables could be divided into 4 broad categories:
Demographic factors: sex, age category (14 levels), race, BMI (Body Mass Index)
Diseases: weather respondent ever had such diseases as asthma, skin cancer, diabetes, stroke or kidney disease (not including kidney stones, bladder infection or incontinence)
Unhealthy habits:
General Health:
Below is a description of the features collected for each patient:
S. No. |
Original Variable/Attribute |
Coded Variable/Attribute |
Interpretation |
1. |
CVDINFR4 |
HeartDisease |
Those who have ever had CHD or myocardial infarction |
2. |
_BMI5CAT |
BMI |
Body Mass Index |
3. |
_SMOKER3 |
Smoking |
Have you ever smoked more than 100 cigarettes in your life? (The answer is either yes or no) |
4. |
_RFDRHV7 |
AlcoholDrinking |
Adult men who drink more than 14 drinks per week and adult women who consume more than 7 drinks per week are considered heavy drinkers |
5. |
CVDSTRK3 |
Stroke |
(Ever told) (you had) a stroke? |
6. |
PHYSHLTH |
PhysicalHealth |
It includes physical illness and injury during the past 30 days |
7. |
MENTHLTH |
MentalHealth |
How many days in the last 30 days have you had poor mental health? |
8. |
DIFFWALK |
DiffWalking |
Are you having trouble walking or climbing stairs? |
9. |
SEXVAR |
Sex |
Are you male or female? |
10. |
_AGE_G |
AgeCategory |
Out of given fourteen age groups, which group do you fall into? |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present the Global Impacts Dataset of Invasive Alien Species (GIDIAS), a global dataset of 22865 records including impacts of invasive alien species on nature, nature’s contributions to people, and good quality of life. Records include positive and negative impacts, neutral impacts (studies were carried out, but no impacts were documented), non-directional impacts (i.e., change without detriments or benefits for native species or people), and finally, some records of alien species where no studies were found that assessed their impacts (indicating data gaps). Records cover 3353 invasive alien species from all major taxa (plants, vertebrates, invertebrates, microorganisms) and all continents and realms (terrestrial, freshwater, marine). The data were compiled to serve as robust evidence for chapter 4 “Impacts of invasive alien species on nature, nature's contributions to people, and good quality of life” of the global assessment report on invasive alien species by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES; available on Zenodo at https://doi.org/10.5281/zenodo.7430731). The dataset is provided in a machine-readable CSV file (file name GIDIAS_20250417_machine_read.csv), with special language characters retained where used (UTF-8 format). The dataset is also provided in Excel format (file name GIDIAS_20250417_Excel.xlsx). Metadata is provided in Excel format, including descriptors for each variable (file name GIDIAS_metadata_20250417.xlsx). Additional explanations for GIDIAS is stored in Microsoft Word format (docx) and contains (1) a short description of the principles of Environmental and Socio-Economic Impact Classification for Alien Taxa (EICAT, SEICAT), (2) a description of the variables included in the Global Impacts Dataset of Invasive Alien Species GIDIAS, and (3) a compilation of the search strategies and datasets included in the Global Impact Dataset of Invasive Alien Species (GIDIAS).
The global number of internet users in was forecast to continuously increase between 2024 and 2029 by in total 1.3 billion users (+23.66 percent). After the fifteenth consecutive increasing year, the number of users is estimated to reach 7 billion users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of internet users in countries like the Americas and Asia.
Live Face Anti-Spoof Dataset
A live face dataset is crucial for advancing computer vision tasks such as face detection, anti-spoofing detection, and face recognition. The Live Face Anti-Spoof Dataset offered by Ainnotate is specifically designed to train algorithms for anti-spoofing purposes, ensuring that AI systems can accurately differentiate between real and fake faces in various scenarios.
Key Features:
Comprehensive Video Collection: The dataset features thousands of videos showcasing a diverse range of individuals, including males and females, with and without glasses. It also includes men with beards, mustaches, and clean-shaven faces. Lighting Conditions: Videos are captured in both indoor and outdoor environments, ensuring that the data covers a wide range of lighting conditions, making it highly applicable for real-world use. Data Collection Method: Our datasets are gathered through a community-driven approach, leveraging our extensive network of over 700k users across various Telegram apps. This method ensures that the data is not only diverse but also ethically sourced with full consent from participants, providing reliable and real-world applicable data for training AI models. Versatility: This dataset is ideal for training models in face detection, anti-spoofing, and face recognition tasks, offering robust support for these essential computer vision applications. In addition to the Live Face Anti-Spoof Dataset, FileMarket provides specialized datasets across various categories to support a wide range of AI and machine learning projects:
Object Detection Data: Perfect for training AI in image and video analysis. Machine Learning (ML) Data: Offers a broad spectrum of applications, from predictive analytics to natural language processing (NLP). Large Language Model (LLM) Data: Designed to support text generation, chatbots, and machine translation models. Deep Learning (DL) Data: Essential for developing complex neural networks and deep learning models. Biometric Data: Includes diverse datasets for facial recognition, fingerprint analysis, and other biometric applications. This live face dataset, alongside our other specialized data categories, empowers your AI projects by providing high-quality, diverse, and comprehensive datasets. Whether your focus is on anti-spoofing detection, face recognition, or other biometric and machine learning tasks, our data offerings are tailored to meet your specific needs.
THIS DATASET WAS LAST UPDATED AT 8:11 PM EASTERN ON JULY 30
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya KE: Condom Use: Population Aged 15-24: Male: % of Males Aged 15-24 data was reported at 56.200 % in 2009. This records an increase from the previous number of 39.400 % for 2003. Kenya KE: Condom Use: Population Aged 15-24: Male: % of Males Aged 15-24 data is updated yearly, averaging 39.400 % from Dec 1998 (Median) to 2009, with 3 observations. The data reached an all-time high of 56.200 % in 2009 and a record low of 39.100 % in 1998. Kenya KE: Condom Use: Population Aged 15-24: Male: % of Males Aged 15-24 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank: Health Statistics. Condom use, male is the percentage of the male population ages 15-24 who used a condom at last intercourse in the last 12 months.; ; Demographic and Health Surveys, and UNAIDS.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Blue Earth County by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Blue Earth County. The dataset can be utilized to understand the population distribution of Blue Earth County by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Blue Earth County. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Blue Earth County.
Key observations
Largest age group (population): Male # 20-24 years (5,400) | Female # 20-24 years (5,130). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Blue Earth County Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for RETIREMENT AGE WOMEN reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
This collection provides data on labor force activity for the week prior to the survey. Comprehensive data are available on the employment status, occupation, and industry of persons 14 years old and over. Also included are personal characteristics such as age, sex, race, marital status, veteran status, household relationship, educational background, and Spanish origin. In addition, data pertaining to marital history and fertility are included in the file. Men who were ever married (currently widowed, divorced, separated, or married) aged 15 and over were asked the number of times married and if the first marriage ended in widowhood or divorce. Ever married women aged 15 and over were asked the number of times married, date of marriage, date of widowhood or divorce, and if divorced the date of separation of the household for as many as three marriages. Questions on fertility were asked of ever married women 15 years and over and never married women 18 years and over. These questions included number of liveborn children, and date of birth, sex, and current residence for as many as five children. In addition, women between the ages of 18 and 39 were asked how many children they expect to have during their remaining childbearing years. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR08899.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.
The data this week comes from Adam Vagnar who also blogged about this dataset. There's a LOT of data here - match-level results, player details, and match-level statistics for some matches. For all this dataset all the matches are played 2 vs 2, so there are columns for 2 winners (1 team) and 2 losers (1 team). The data is relatively ready for analysis and clean, although there are some duplicated columns and the data is wide due to the 2-players per team.
Check out the data dictionary, or Wikipedia for some longer-form details around what the various match statistics mean.
Most of the data is from the international FIVB tournaments but about 1/3 is from the US-centric AVP.
The FIVB Beach Volleyball World Tour (known between 2003 and 2012 as the FIVB Beach Volleyball Swatch World Tour for sponsorship reasons) is the worldwide professional beach volleyball tour for both men and women organized by the Fédération Internationale de Volleyball (FIVB). The World Tour was introduced for men in 1989 while the women first competed in 1992.
Winning the World Tour is considered to be one of the highest honours in international beach volleyball, being surpassed only by the World Championships, and the Beach Volleyball tournament at the Summer Olympic Games.
FiveThirtyEight examined the disadvantage of serving in beach volleyball, although they used Olympic-level data. Again, Adam Vagnar also covered this data on his blog.
TidyTuesday A weekly data project aimed at the R ecosystem. As this project was borne out of the R4DS Online Learning Community
and the R for Data Science textbook
, an emphasis was placed on understanding how to summarize and arrange data to make meaningful charts with ggplot2
, tidyr
, dplyr
, and other tools in the tidyverse
ecosystem. However, any code-based methodology is welcome - just please remember to share the code used to generate the results.
Join the R4DS Online Learning Community in the weekly #TidyTuesday event! Every week we post a raw dataset, a chart or article related to that dataset, and ask you to explore the data. While the dataset will be “tamed”, it will not always be tidy!
We will have many sources of data and want to emphasize that no causation is implied. There are various moderating variables that affect all data, many of which might not have been captured in these datasets. As such, our guidelines are to use the data provided to practice your data tidying and plotting techniques. Participants are invited to consider for themselves what nuancing factors might underlie these relationships.
The intent of Tidy Tuesday is to provide a safe and supportive forum for individuals to practice their wrangling and data visualization skills independent of drawing conclusions. While we understand that the two are related, the focus of this practice is purely on building skills with real-world data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
US: People Using Safely Managed Sanitation Services: Urban: % of Urban Population data was reported at 95.044 % in 2015. This stayed constant from the previous number of 95.044 % for 2014. US: People Using Safely Managed Sanitation Services: Urban: % of Urban Population data is updated yearly, averaging 95.231 % from Dec 2000 (Median) to 2015, with 16 observations. The data reached an all-time high of 95.447 % in 2000 and a record low of 95.044 % in 2015. US: People Using Safely Managed Sanitation Services: Urban: % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. The percentage of people using improved sanitation facilities that are not shared with other households and where excreta are safely disposed of in situ or transported and treated offsite. Improved sanitation facilities include flush/pour flush to piped sewer systems, septic tanks or pit latrines: ventilated improved pit latrines, compositing toilets or pit latrines with slabs.; ; WHO/UNICEF Joint Monitoring Programme (JMP) for Water Supply, Sanitation and Hygiene (washdata.org).; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sector: 01. Ending all forms of poverty in the world
Algorithm: Males aged 6 years and over who use their mobile phones every day out of the total number of males aged 6 years and over * 100
Phenomenon: Stock
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of White Earth by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for White Earth. The dataset can be utilized to understand the population distribution of White Earth by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in White Earth. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for White Earth.
Key observations
Largest age group (population): Male # 10-14 years (17) | Female # 40-44 years (13). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Gender. You can refer the same here