65 datasets found
  1. Effect of suicide rates on life expectancy dataset

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
    Explore at:
    csvAvailable download formats
    Dataset updated
    Apr 16, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Filip Zoubek; Filip Zoubek
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Effect of suicide rates on life expectancy dataset

    Abstract
    In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
    The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

    Data

    The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

    LICENSE

    THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

    [1] https://www.kaggle.com/szamil/who-suicide-statistics

    [2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

  2. Suicides in England and Wales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Suicides in England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/suicidesintheunitedkingdomreferencetables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 29, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Number of suicides and suicide rates, by sex and age, in England and Wales. Information on conclusion type is provided, along with the proportion of suicides by method and the median registration delay.

  3. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(4689434), csv(16301), csv(5034), csv(463460), csv(2026589), csv(5401561), csv(164006), csv(200270), csv(419332), zip, csv(385695)Available download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  4. Worldwide COVID-19 Data from WHO (2025 Edition)

    • kaggle.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). Worldwide COVID-19 Data from WHO (2025 Edition) [Dataset]. https://www.kaggle.com/datasets/adilshamim8/worldwide-covid-19-data-from-who
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 3, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    Description

    Dataset Overview

    This dataset contains global COVID-19 case and death data by country, collected directly from the official World Health Organization (WHO) COVID-19 Dashboard. It provides a comprehensive view of the pandemic’s impact worldwide, covering the period up to 2025. The dataset is intended for researchers, analysts, and anyone interested in understanding the progression and global effects of COVID-19 through reliable, up-to-date information.

    Source Information

    • Website: WHO COVID-19 Dashboard
    • Organization: World Health Organization (WHO)
    • Data Coverage: Global (by country/territory)
    • Time Period: Up to 2025

    The World Health Organization is the United Nations agency responsible for international public health. The WHO COVID-19 Dashboard is a trusted source that aggregates official reports from countries and territories around the world, providing daily updates on cases, deaths, and other key metrics related to COVID-19.

    Dataset Contents

    • Country/Region: The name of the country or territory.
    • Date: Reporting date.
    • New Cases: Number of new confirmed COVID-19 cases.
    • Cumulative Cases: Total confirmed COVID-19 cases to date.
    • New Deaths: Number of new confirmed deaths due to COVID-19.
    • Cumulative Deaths: Total deaths reported to date.
    • Additional fields may include population, rates per 100,000, and more (see data files for details).

    How to Use

    This dataset can be used for: - Tracking the spread and trends of COVID-19 globally and by country - Modeling and forecasting pandemic progression - Comparative analysis of the pandemic’s impact across countries and regions - Visualization and reporting

    Data Reliability

    The data is sourced from the WHO, widely regarded as the most authoritative source for global health statistics. However, reporting practices and data completeness may vary by country and may be subject to revision as new information becomes available.

    Acknowledgements

    Special thanks to the WHO for making this data publicly available and to all those working to collect, verify, and report COVID-19 statistics.

  5. India IN: Suicide Mortality Rate: Male

    • ceicdata.com
    Updated Dec 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2019). India IN: Suicide Mortality Rate: Male [Dataset]. https://www.ceicdata.com/en/india/health-statistics/in-suicide-mortality-rate-male
    Explore at:
    Dataset updated
    Dec 15, 2019
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2000 - Dec 1, 2016
    Area covered
    India
    Description

    India IN: Suicide Mortality Rate: Male data was reported at 17.800 NA in 2016. This records a decrease from the previous number of 18.000 NA for 2015. India IN: Suicide Mortality Rate: Male data is updated yearly, averaging 18.000 NA from Dec 2000 (Median) to 2016, with 5 observations. The data reached an all-time high of 18.600 NA in 2000 and a record low of 17.700 NA in 2010. India IN: Suicide Mortality Rate: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s India – Table IN.World Bank.WDI: Health Statistics. Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).; ; World Health Organization, Global Health Observatory Data Repository (http://apps.who.int/ghodata/).; Weighted average;

  6. m

    Suicide data & reports

    • mass.gov
    Updated Dec 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2021). Suicide data & reports [Dataset]. https://www.mass.gov/info-details/suicide-data-reports
    Explore at:
    Dataset updated
    Dec 8, 2021
    Dataset provided by
    Bureau of Community Health and Prevention
    Division of Violence and Injury Prevention
    Department of Public Health
    Area covered
    Massachusetts
    Description

    Download data on suicides in Massachusetts by demographics and year. This page also includes reporting on military & veteran suicide, and suicides during COVID-19.

  7. WHO Male and Female Suicides

    • kaggle.com
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emanuel Simionato (2024). WHO Male and Female Suicides [Dataset]. https://www.kaggle.com/datasets/emanuelsimionato/who-male-and-female-suicides/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 2, 2024
    Dataset provided by
    Kaggle
    Authors
    Emanuel Simionato
    Description

    Dataset

    This dataset was created by Emanuel Simionato

    Contents

  8. m

    Suicide mortality rate, male (per 100,000 male population) - Djibouti

    • macro-rankings.com
    csv, excel
    Updated Dec 31, 2000
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2000). Suicide mortality rate, male (per 100,000 male population) - Djibouti [Dataset]. https://www.macro-rankings.com/djibouti/suicide-mortality-rate-male-(per-100-000-male-population)
    Explore at:
    csv, excelAvailable download formats
    Dataset updated
    Dec 31, 2000
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Djibouti
    Description

    Time series data for the statistic Suicide mortality rate, male (per 100,000 male population) and country Djibouti. Indicator Definition:Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).The indicator "Suicide mortality rate, male (per 100,000 male population)" stands at 9.56 as of 12/31/2021, the highest value at least since 12/31/2001, the period currently displayed. Regarding the One-Year-Change of the series, the current value constitutes an increase of 1.16 percent compared to the value the year prior.The 1 year change in percent is 1.16.The 3 year change in percent is 0.0.The 5 year change in percent is 6.58.The 10 year change in percent is 39.97.The Serie's long term average value is 7.52. It's latest available value, on 12/31/2021, is 27.07 percent higher, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/2000, to it's latest available value, on 12/31/2021, is +61.49%.The Serie's change in percent from it's maximum value, on 12/31/2018, to it's latest available value, on 12/31/2021, is 0.0%.

  9. Deaths from Suicide - Datasets - Lincolnshire Open Data

    • lincolnshire.ckan.io
    Updated May 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lincolnshire.ckan.io (2017). Deaths from Suicide - Datasets - Lincolnshire Open Data [Dataset]. https://lincolnshire.ckan.io/dataset/deaths-from-suicide
    Explore at:
    Dataset updated
    May 18, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.

  10. Z

    Global suicide mortality rates (2000-2019) and bibliographic data

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pranckeviciene, Erinija (2024). Global suicide mortality rates (2000-2019) and bibliographic data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_12267301
    Explore at:
    Dataset updated
    Jun 22, 2024
    Dataset authored and provided by
    Pranckeviciene, Erinija
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset contains World Bank Suicide mortality rate WDI (world development indicator) (2000-2019) world-wide data in original and processed form. In addition to the statistical data this dataset also contains bibliographic records of articles published on the topic of suicide in relation to individual countries during (2000-2019) in original and processed form.

    The data consists of six archives:

    World development indicator suicide mortality rate SH.STA.SUIC.P5. This archive contains suicide mortality rate of 159 countries during the period of 2000-2019 per 100,000 population including males and females as of November, 2023.

    Web of science records country and suicide. This archive contains bibliographic records organized by country on the topic of suicide related to that country published during 2000-2019 as of November, 2023.

    Suicide mortality rate statistics and keywords. This archive contains processed data of 1 and 2 archives in three files. The 'Countries suicide rates and WOS records' contains organized temporal suicide mortality rate data for each country and each year for males and females including counts of articles on suicide related in that country. The 'words and countries matrix' file contains information about how many times author and paper keywords from suicide related publications were seen in articles associated with each country. This data is organized as matrix in which rows are keywords, columns are countries and cells are counts of the keyword. The 'words and countries pairs' file contains same information only organized as keyword country pairs.

    Suicide mortality rate clusters countries keywords titles. This archive contains bibliographic data organized by country clusters. These clusters group countries with similar suicide mortality rate dynamics in males and females shown in two included figures. Each folder of the cluster contains a section with bibliographic records; a section with keywords associated with each country; and a section in which each publication associated with the country has a separate filecontaining its title and keywords.

    Suicide keywords embedding data. This archive contains word embedding vectors and metadata learned by recurrent neural network trained to classify countries from suicide related keywords of articles associated with those countries. Folder 'trained with keywords' contains embeddings learned in classifying countries in which training samples are keyword strings of publications. Folder 'trained with titles' contains embeddings learned in classifying countries in which training samples are strings containing titles of publication plus keywords.

    Suicide keywords association rule mining. This archive contains files of subsets of keywords frequently mentioned together in suicide related publications. Folder 'Mining in clusters' has frequent keyword itemsets in country clusters. Folder 'Mining in individual countries' has frequent keyword itemsets in countries. Examples of keyword networks connecting clusters and networks connecting countries in individual clusters are included which helps to identify specific and shared keywords by country clusters and by countries in the individual clusters.

    These datasets support a data availability statements for upcoming articles.

  11. Deaths; suicide (residents), various themes

    • cbs.nl
    • data.overheid.nl
    • +2more
    xml
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centraal Bureau voor de Statistiek (2025). Deaths; suicide (residents), various themes [Dataset]. https://www.cbs.nl/en-gb/figures/detail/7022eng
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset provided by
    Statistics Netherlands
    Authors
    Centraal Bureau voor de Statistiek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1950 - 2023
    Area covered
    The Netherlands
    Description

    This table contains the number of victims of suicide arranged by marital status, method, motives, age and sex. They represent the number deaths by suicide in the resident population of the Netherlands.

    The figures in this table are equal to the suicide figures in the causes of death statistics, because they are based on the same files. The causes of death statistics do not contain information on the motive of suicide. For the years 1950-1995, this information is obtained from a historical data file on suicides. For the years 1996-now the motive is taken from the external causes of death (Niet-Natuurlijke dood) file. Before the 9th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD), i.e. for the years 1950-1978, it was not possible to code "jumping in front of train/metro". For these years 1950-1978 "jumping in front of train/metro" has been left empty, and it has been counted in the group "other method".

    Relative figures have been calculated per 100 000 of the corresponding population group. The figures are calculated based on the average population of the corresponding year.

    Data available from: 1950

    Status of the figures: The figures up to and including 2023 are final.

    Changes as of January 23rd 2025: The figures for 2023 are made final.

    When will new figures be published: In the third quarter of 2025 the provisional figures for 2024 will be published.

  12. m

    Suicide mortality rate, male (per 100,000 male population) - Lesotho

    • macro-rankings.com
    csv, excel
    Updated Dec 31, 2000
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings (2000). Suicide mortality rate, male (per 100,000 male population) - Lesotho [Dataset]. https://www.macro-rankings.com/lesotho/suicide-mortality-rate-male-(per-100-000-male-population)
    Explore at:
    excel, csvAvailable download formats
    Dataset updated
    Dec 31, 2000
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Lesotho
    Description

    Time series data for the statistic Suicide mortality rate, male (per 100,000 male population) and country Lesotho. Indicator Definition:Suicide mortality rate is the number of suicide deaths in a year per 100,000 population. Crude suicide rate (not age-adjusted).The indicator "Suicide mortality rate, male (per 100,000 male population)" stands at 41.35 as of 12/31/2021. Regarding the One-Year-Change of the series, the current value constitutes a decrease of -16.30 percent compared to the value the year prior.The 1 year change in percent is -16.30.The 3 year change in percent is 2.99.The 5 year change in percent is 9.19.The 10 year change in percent is 5.62.The Serie's long term average value is 30.74. It's latest available value, on 12/31/2021, is 34.53 percent higher, compared to it's long term average value.The Serie's change in percent from it's minimum value, on 12/31/2009, to it's latest available value, on 12/31/2021, is +126.20%.The Serie's change in percent from it's maximum value, on 12/31/2020, to it's latest available value, on 12/31/2021, is -16.30%.

  13. What Are Reasons for the Large Gender Differences in the Lethality of...

    • plos.figshare.com
    doc
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roland Mergl; Nicole Koburger; Katherina Heinrichs; András Székely; Mónika Ditta Tóth; James Coyne; Sónia Quintão; Ella Arensman; Claire Coffey; Margaret Maxwell; Airi Värnik; Chantal van Audenhove; David McDaid; Marco Sarchiapone; Armin Schmidtke; Axel Genz; Ricardo Gusmão; Ulrich Hegerl (2023). What Are Reasons for the Large Gender Differences in the Lethality of Suicidal Acts? An Epidemiological Analysis in Four European Countries [Dataset]. http://doi.org/10.1371/journal.pone.0129062
    Explore at:
    docAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Roland Mergl; Nicole Koburger; Katherina Heinrichs; András Székely; Mónika Ditta Tóth; James Coyne; Sónia Quintão; Ella Arensman; Claire Coffey; Margaret Maxwell; Airi Värnik; Chantal van Audenhove; David McDaid; Marco Sarchiapone; Armin Schmidtke; Axel Genz; Ricardo Gusmão; Ulrich Hegerl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Europe
    Description

    BackgroundIn Europe, men have lower rates of attempted suicide compared to women and at the same time a higher rate of completed suicides, indicating major gender differences in lethality of suicidal behaviour. The aim of this study was to analyse the extent to which these gender differences in lethality can be explained by factors such as choice of more lethal methods or lethality differences within the same suicide method or age. In addition, we explored gender differences in the intentionality of suicide attempts.Methods and FindingsMethods. Design: Epidemiological study using a combination of self-report and official data. Setting: Mental health care services in four European countries: Germany, Hungary, Ireland, and Portugal. Data basis: Completed suicides derived from official statistics for each country (767 acts, 74.4% male) and assessed suicide attempts excluding habitual intentional self-harm (8,175 acts, 43.2% male).Main Outcome Measures and Data Analysis. We collected data on suicidal acts in eight regions of four European countries participating in the EU-funded “OSPI-Europe”-project (www.ospi-europe.com). We calculated method-specific lethality using the number of completed suicides per method * 100 / (number of completed suicides per method + number of attempted suicides per method). We tested gender differences in the distribution of suicidal acts for significance by using the χ2-test for two-by-two tables. We assessed the effect sizes with phi coefficients (φ). We identified predictors of lethality with a binary logistic regression analysis. Poisson regression analysis examined the contribution of choice of methods and method-specific lethality to gender differences in the lethality of suicidal acts.Findings Main ResultsSuicidal acts (fatal and non-fatal) were 3.4 times more lethal in men than in women (lethality 13.91% (regarding 4106 suicidal acts) versus 4.05% (regarding 4836 suicidal acts)), the difference being significant for the methods hanging, jumping, moving objects, sharp objects and poisoning by substances other than drugs. Median age at time of suicidal behaviour (35–44 years) did not differ between males and females. The overall gender difference in lethality of suicidal behaviour was explained by males choosing more lethal suicide methods (odds ratio (OR) = 2.03; 95% CI = 1.65 to 2.50; p < 0.000001) and additionally, but to a lesser degree, by a higher lethality of suicidal acts for males even within the same method (OR = 1.64; 95% CI = 1.32 to 2.02; p = 0.000005). Results of a regression analysis revealed neither age nor country differences were significant predictors for gender differences in the lethality of suicidal acts. The proportion of serious suicide attempts among all non-fatal suicidal acts with known intentionality (NFSAi) was significantly higher in men (57.1%; 1,207 of 2,115 NFSAi) than in women (48.6%; 1,508 of 3,100 NFSAi) (χ2 = 35.74; p < 0.000001).Main limitations of the studyDue to restrictive data security regulations to ensure anonymity in Ireland, specific ages could not be provided because of the relatively low absolute numbers of suicide in the Irish intervention and control region. Therefore, analyses of the interaction between gender and age could only be conducted for three of the four countries. Attempted suicides were assessed for patients presenting to emergency departments or treated in hospitals. An unknown rate of attempted suicides remained undetected. This may have caused an overestimation of the lethality of certain methods. Moreover, the detection of attempted suicides and the registration of completed suicides might have differed across the four countries. Some suicides might be hidden and misclassified as undetermined deaths.ConclusionsMen more often used highly lethal methods in suicidal behaviour, but there was also a higher method-specific lethality which together explained the large gender differences in the lethality of suicidal acts. Gender differences in the lethality of suicidal acts were fairly consistent across all four European countries examined. Males and females did not differ in age at time of suicidal behaviour. Suicide attempts by males were rated as being more serious independent of the method used, with the exceptions of attempted hanging, suggesting gender differences in intentionality associated with suicidal behaviour. These findings contribute to understanding of the spectrum of reasons for gender differences in the lethality of suicidal behaviour and should inform the development of gender specific strategies for suicide prevention.

  14. Suicides in India during 2015

    • kaggle.com
    Updated Aug 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vidya Pb (2020). Suicides in India during 2015 [Dataset]. https://www.kaggle.com/vidyapb/suicides-in-india-during-2015/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 22, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Vidya Pb
    Area covered
    India
    Description

    Context

    This dataset contains information on suicides which happened in India during 2015.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F4208638%2Ffab2e99b439f9780daf358511060f514%2FWorld-Suicide-Prevention-Day.jpg?generation=1598114750200382&alt=media" alt="">

    The singular age-old social precept of 'Lok Kya Kahenge?' (loosely translated: "What will people say?") suppresses the much-needed psychological care in India. It's high time that we understand why suicides happen and what are the reasons behind it. This dataset aims to spread awareness about suicides in India.

    Content

    I acquired this dataset from here. Have a look at the website.

    This dataset contains 9 files in .csv format. You can find a description for each column. Let me summarize it here as well.

    1. Cause-wise distribution of suicides in Central Armed Police Force (CAPF) during 2015.
    2. Economic Status-wise distribution of suicides during 2015.
    3. Educational Status-wise distribution of suicides during 2015.
    4. Farmer or Cultivators distribution of suicides during 2015.
    5. Profession-wise distribution of suicides during 2015.
    6. Social status-wise distribution of suicides during 2015.
    7. Cause-wise distribution of suicides during 2015.
    8. Suicides by Agricultural labourers during 2015.
    9. Suicides by means adopted during 2015.

    Inspiration

    We now have plenty of data to explore to draw some conclusions about suicides which happened in India during 2015. Let's start by answering these questions: - What are the top 5 states where Farmers' suicides occurred the most? - What's the top reason that agricultural labourers committed suicide? - Which Profession has the most suicides? What could be the reason? - How many Transgender suicides have occurred in different categories?

    I hope these questions interest you in starting to explore this dataset.

    Acknowledgements

    I thank the Indian Government for making it public under their Open Government Data (OGD) Platform India. Please use this dataset strictly for educational purposes. Thank you.

  15. Suicides

    • data-sccphd.opendata.arcgis.com
    • hub.arcgis.com
    Updated Feb 7, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Santa Clara County Public Health (2018). Suicides [Dataset]. https://data-sccphd.opendata.arcgis.com/datasets/suicides/api
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    Santa Clara County Public Health
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Age-adjusted rate of suicide deaths by sex, race/ethnicity, age; trends if available. Source: Santa Clara County Public Health Department, VRBIS, 2007-2016. Data as of 05/26/2017; U.S. Census Bureau; 2010 Census, Tables PCT12, PCT12H, PCT12I, PCT12J, PCT12K, PCT12L, PCT12M; generated by Baath M.; using American FactFinder; Accessed June 20, 2017. METADATA:Notes (String): Lists table title, notes and sourcesYear (String): Year of data; presented as pooled years (2007 to 2016)Category (String): Lists the category representing the data: Santa Clara County is for total population, age categories as follows: <18, 18 to 44, 45 to 64, 65+; 10 to 19, 20 to 24; 10 to 24; <1, 1 to 4, 5 to 14, 15 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65 to 74, 75 to 84, 85+; United States and Healthy People 2020 targetRate per 100,000 people (Numeric): Suicide rate. Rates for age groups are reported as age-specific rates per 100,000 people. All other rates are age-adjusted rates per 100,000 people.

  16. G

    Crude Canadian Armed Forces (CAF) Regular Force Male Suicide Rates

    • open.canada.ca
    csv
    Updated Dec 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Defence (2024). Crude Canadian Armed Forces (CAF) Regular Force Male Suicide Rates [Dataset]. https://open.canada.ca/data/en/dataset/c19f1fbb-b74d-4902-831d-40cd00b0003d
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset provided by
    National Defence
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 1995 - Dec 31, 2020
    Area covered
    Canada
    Description

    This dataset shows the Canadian Armed Forces (CAF) rate for suicide per 100,000 for Regular Force males. As the number of events was less than 20 in most years, rates were not calculated annually as these would not have been statistically reliable. Regular Force female rates were not calculated because female suicides were uncommon. This dataset is taken from the yearly Report on Suicide Mortality in the Canadian Armed Forces released on the Canada.ca platform at the homepage link provided down below.

  17. Suicide Rates in Mexico by State (1990-2023)

    • figshare.com
    csv
    Updated Dec 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Montserrat Mora (2024). Suicide Rates in Mexico by State (1990-2023) [Dataset]. http://doi.org/10.6084/m9.figshare.28067891.v3
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 30, 2024
    Dataset provided by
    figshare
    Authors
    Montserrat Mora
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Mexico
    Description

    This dataset provides comprehensive information on the total number of suicides in Mexico from 1990 to 2023, categorized by sex and state.The dataset adheres to the government methodology by using the year of registration and the state of residence of the deceased as key variables. It includes the following data points:The total male and female populations.Suicide counts for males and females.Suicide rates for each sex.Data SourcesSuicide Data: Extracted from the INEGI database of registered deaths.Source: INEGI - Microdata on DeathsPopulation Data: Sourced from Mexican government population projections for 2020-2070.Source: Gob.mx - Population ProjectionsThis dataset is a valuable resource for understanding trends in suicide across Mexico and offers insights into differences by sex and state-level demographics.

  18. w

    Dataset of death rate and male population of countries per year in Hungary...

    • workwithdata.com
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of death rate and male population of countries per year in Hungary (Historical) [Dataset]. https://www.workwithdata.com/datasets/countries-yearly?col=country%2Cdate%2Cdeath_rate%2Cpopulation_male&f=1&fcol0=country&fop0=%3D&fval0=Hungary
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hungary
    Description

    This dataset is about countries per year in Hungary. It has 64 rows. It features 4 columns: country, death rate, and male population.

  19. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  20. w

    Dataset of death rate and male population of countries per year in Serbia...

    • workwithdata.com
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of death rate and male population of countries per year in Serbia (Historical) [Dataset]. https://www.workwithdata.com/datasets/countries-yearly?col=country%2Cdate%2Cdeath_rate%2Cpopulation_male&f=1&fcol0=country&fop0=%3D&fval0=Serbia
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Serbia
    Description

    This dataset is about countries per year in Serbia. It has 64 rows. It features 4 columns: country, death rate, and male population.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Filip Zoubek; Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. http://doi.org/10.5281/zenodo.4694270
Organization logo

Effect of suicide rates on life expectancy dataset

Explore at:
csvAvailable download formats
Dataset updated
Apr 16, 2021
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Filip Zoubek; Filip Zoubek
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

Effect of suicide rates on life expectancy dataset

Abstract
In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

Data

The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

LICENSE

THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

[1] https://www.kaggle.com/szamil/who-suicide-statistics

[2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

Search
Clear search
Close search
Google apps
Main menu