100+ datasets found
  1. N

    Miles, IA Population Dataset: Yearly Figures, Population Change, and Percent...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Miles, IA Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6ee9dc86-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, Miles
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Miles population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Miles across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Miles was 402, a 0.50% decrease year-by-year from 2021. Previously, in 2021, Miles population was 404, a decline of 0.98% compared to a population of 408 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Miles decreased by 60. In this period, the peak population was 462 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Miles is shown in this column.
    • Year on Year Change: This column displays the change in Miles population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Miles Population by Year. You can refer the same here

  2. g

    Dataset Long term performance of six air sensors across the United States |...

    • gimi9.com
    Updated Feb 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dataset Long term performance of six air sensors across the United States | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_dataset-long-term-performance-of-six-air-sensors-across-the-united-states
    Explore at:
    Dataset updated
    Feb 16, 2025
    Area covered
    United States
    Description

    From July 2019 until January 2021, six models of air sensors were operated at seven air quality monitoring sites across the U.S. in Phoenix, Arizona, Denver, Colorado, Wilmington, Delaware, Decatur, Georgia, Research Triangle Park, North Carolina, Oklahoma City, Oklahoma, and Milwaukee, Wisconsin. Sensors testing included the Aeroqual AQY, Clarity Node, Clarity Node-S, Applied Particle Technology Maxima, PurpleAir PA-II-SD, Sensit RAPM, and Aerodyne Arisense. This dataset includes the processed data from the paper "Long term performance of six PM2.5 sensors across the United States" loaded here in sciencehub and also the raw datasets from the sensors loaded into Zenodo.

  3. d

    CONUS404: Four-kilometer long-term regional hydroclimate reanalysis over the...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). CONUS404: Four-kilometer long-term regional hydroclimate reanalysis over the conterminous United States (ver. 2.0, December 2023) [Dataset]. https://catalog.data.gov/dataset/four-kilometer-long-term-regional-hydroclimate-reanalysis-over-the-conterminous-unite-1979
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    This metadata record serves as documentation for the authoritative version of the CONUS404 atmospheric forcing dataset. CONUS404 is an abbreviated description for the original 40-year dataset: CONtiguous United States for 40 years at 4-kilometer grid spacing; however, the dataset has been revised to now include 43 years of data. This is a dataset of historical conditions (water years 1980-2022, October 1, 1979-September 30, 2022) and has sufficient temporal and spatial detail to resolve mesoscale atmospheric processes, making it appropriate for forcing hydrological models and conducting meteorological analyses. The dataset is the output of the Weather Research and Forecasting (WRF) v 3.9.1.1 model (Skamarock and others, 2008), forced with ERA5 reanalysis data (Hersbach and others, 2020), and consists of time series of nearly 200 2-dimensional variables and a wide range of 3-dimensional variables. Three sets of files were produced at different temporal resolutions: (1) 376,944 hourly files with all model outputs (files contained in wrfout directory), (2) 15,706 daily files containing data at 15-minute increments for precipitation and 2-meter temperature (files contained in auxhist24 directory), and (3) 15,706 daily files with minimum, maximum, and average values of a selection of surface variables (files contained in wrfxtrm directory). The Entity and Attribute element of the metadata record documents data dictionaries for all the variables in each of the three types of output files. These data dictionaries are attached to this data release. The output files are approximately one petabyte (1 PB) in volume and are being archived on the U.S. Geological Survey's Black Pearl tape drive system. The data can be accessed through a Globus access portal here: https://app.globus.org/file-manager?origin_id=39161d64-419d-4cc4-853f-f6e737644eb4&origin_path=%2F. Please refer to the Supplemental Information element of this metadata record for further information on CONUS404.

  4. N

    Miles Township, Pennsylvania Annual Population and Growth Analysis Dataset:...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Miles Township, Pennsylvania Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Miles township from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/miles-township-pa-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania, Miles Township
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Miles township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Miles township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Miles township was 1,984, a 0.40% decrease year-by-year from 2022. Previously, in 2022, Miles township population was 1,992, a decline of 0.15% compared to a population of 1,995 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Miles township increased by 443. In this period, the peak population was 2,033 in the year 2018. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Miles township is shown in this column.
    • Year on Year Change: This column displays the change in Miles township population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Miles township Population by Year. You can refer the same here

  5. d

    North American Breeding Bird Survey Dataset - Archival Releases of Datasets...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). North American Breeding Bird Survey Dataset - Archival Releases of Datasets Ending With Years 2000 Through 2015 [Dataset]. https://catalog.data.gov/dataset/north-american-breeding-bird-survey-dataset-archival-releases-of-datasets-ending-with-year
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This page includes legacy releases of North American Breeding Bird Survey (BBS) data for the periods beginning in 1966 and ending with the years 2000 through 2015. These releases have been superseded by a more current release but are included here for archival purposes. The North American Breeding Bird Survey dataset contains avian point count data since 1966 for more than 700 North American bird taxa (species, races, and unidentified species groupings). These data are collected annually during the breeding season, primarily in June, along thousands of randomly established roadside survey routes in the United States and Canada. Routes are roughly 24.5 miles (39.2 km) long with counting locations placed at approximately half-mile (800-m) intervals, for a total of 50 stops. At each stop, a citizen scientist highly skilled in avian identification conducts a 3-minute point count, recording every bird seen or heard within a quarter-mile (400-m) radius. Surveys begin 30 minutes before local sunrise and take approximately 5 hours to complete. Routes are sampled once per year, with the total number of routes sampled per year growing over time; just over 500 routes were sampled in 1966, while in recent decades approximately 3000 routes have been sampled annually. In addition to avian count data, this dataset also contains survey date, survey start and end times, start and end weather conditions, a unique observer identification number, route identification information, and route location information including country, state, and BCR, as well as geographic coordinates of the route start points, and an indicator of run data quality.

  6. u

    Data from: USHAP: Big Data Seamless 1 km Ground-level PM2.5 Dataset for the...

    • iro.uiowa.edu
    • data.niaid.nih.gov
    Updated May 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jing Wei; Jun Wang; Zhanqing Li (2023). USHAP: Big Data Seamless 1 km Ground-level PM2.5 Dataset for the United States [Dataset]. https://iro.uiowa.edu/esploro/outputs/dataset/USHAP-Big-Data-Seamless-1-km/9984702835302771
    Explore at:
    Dataset updated
    May 1, 2023
    Dataset provided by
    Zenodo
    Authors
    Jing Wei; Jun Wang; Zhanqing Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2023
    Area covered
    United States
    Description

    USHAP (USHighAirPollutants) is one of the series of long-term, full-coverage, high-resolution, and high-quality datasets of ground-level air pollutants for the United States. It is generated from the big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution. This is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) ground-level PM2.5 dataset in the United States from 2000 to 2020. Our daily PM2.5 estimates agree well with ground measurements with an average cross-validation coefficient of determination (CV-R2) of 0.82 and normalized root-mean-square error (NRMSE) of 0.40, respectively. All the data will be made public online once our paper is accepted, and if you want to use the USHighPM2.5 dataset for related scientific research, please contact us (Email: weijing_rs@163.com; weijing@umd.edu). Wei, J., Wang, J., Li, Z., Kondragunta, S., Anenberg, S., Wang, Y., Zhang, H., Diner, D., Hand, J., Lyapustin, A., Kahn, R., Colarco, P., da Silva, A., and Ichoku, C. Long-term mortality burden trends attributed to black carbon and PM2.5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. The Lancet Planetary Health, 2023, 7, e963–e975. https://doi.org/10.1016/S2542-5196(23)00235-8 More air quality datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html

  7. N

    Long Lake, New York Population Dataset: Yearly Figures, Population Change,...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Long Lake, New York Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6ecf0776-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Long Lake, New York
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Long Lake town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Long Lake town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Long Lake town was 792, a 0.38% increase year-by-year from 2021. Previously, in 2021, Long Lake town population was 789, an increase of 0.77% compared to a population of 783 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Long Lake town decreased by 58. In this period, the peak population was 850 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Long Lake town is shown in this column.
    • Year on Year Change: This column displays the change in Long Lake town population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Long Lake town Population by Year. You can refer the same here

  8. T

    United States Unemployment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Jun 30, 2025
    Area covered
    United States
    Description

    Unemployment Rate in the United States decreased to 4.10 percent in June from 4.20 percent in May of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  9. NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid)

    • ncei.noaa.gov
    html
    Updated Jun 12, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Russell Vose; Scott Applequist; Mike Squires; Imke Durre; Matthew J. Menne; Claude N. Williams Jr.; Chris Fenimore; Karin Gleason; Derek Arndt (2015). NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) [Dataset]. http://doi.org/10.7289/v5sx6b56
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jun 12, 2015
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    Russell Vose; Scott Applequist; Mike Squires; Imke Durre; Matthew J. Menne; Claude N. Williams Jr.; Chris Fenimore; Karin Gleason; Derek Arndt
    Time period covered
    Jan 1, 1895 - Present
    Area covered
    Description

    The NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature, minimum temperature, average temperature and precipitation. Each file provides monthly values in a 5x5 lat/lon grid for the Continental United States. Data is available from 1895 to the present. In March 2015, new Alaska data was included in the nClimDiv dataset. The Alaska nClimDiv data were created and updated using similar methodology as that for the CONUS. It includes maximum temperature, minimum temperature, average temperature and precipitation. In January 2025, the National Centers for Environmental Information (NCEI) began summarizing the State of the Climate for Hawaii. This was made possible through a collaboration between NCEI and the University of Hawaii/Hawaii Climate Data Portal and completes a long-standing gap in NCEI's ability to characterize the State of the Climate for all 50 states. NCEI maintains monthly statewide, divisional, and gridded average temperature, maximum temperatures (highs), minimum temperature (lows) and precipitation data for Hawaii over the period 1991-2025.

  10. U

    Dataset for plant production responses to climate across water-limited...

    • data.usgs.gov
    • catalog.data.gov
    Updated Nov 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erin Bunting; Seth Munson; John Bradford (2021). Dataset for plant production responses to climate across water-limited regions [Dataset]. http://doi.org/10.5066/P98ZCJBI
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Erin Bunting; Seth Munson; John Bradford
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    1989 - 2014
    Description

    This dataset was constructed from readily available open source climate and vegetation data, like Landsat. This dataset represents the vegetation and climate conditions for a large number of points across the major deserts of the SW USA. The dataset was constructed in order to use the climate pivot point approach (Munson et al. 2013) at the landscape level. Originally this dataset was much larger but we were looking to study a pure vegetation signal and therefore developed a detailed masking procedure to remove fire, slope, human, and floodplain effects. The vegetation classification originally came from SW regap, though we have refined / regrouped the data. The vegetation classification for each point is representative of the dominant vegetation in the 30m area, but by no means is it the only vegetation there. In the pivot point methodology we look to understand how the vegetation production in a single year relates to long term mean production, these columns are included in the ...

  11. Estimated stand-off distance between ADS-B equipped aircraft and obstacles

    • zenodo.org
    • data.niaid.nih.gov
    jpeg, zip
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Weinert; Andrew Weinert (2024). Estimated stand-off distance between ADS-B equipped aircraft and obstacles [Dataset]. http://doi.org/10.5281/zenodo.7741273
    Explore at:
    zip, jpegAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrew Weinert; Andrew Weinert
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Summary:

    Estimated stand-off distance between ADS-B equipped aircraft and obstacles. Obstacle information was sourced from the FAA Digital Obstacle File and the FHWA National Bridge Inventory. Aircraft tracks were sourced from processed data curated from the OpenSky Network. Results are presented as histograms organized by aircraft type and distance away from runways.

    Description:

    For many aviation safety studies, aircraft behavior is represented using encounter models, which are statistical models of how aircraft behave during close encounters. They are used to provide a realistic representation of the range of encounter flight dynamics where an aircraft collision avoidance system would be likely to alert. These models currently and have historically have been limited to interactions between aircraft; they have not represented the specific interactions between obstacles and aircraft equipped transponders. In response, we calculated the standoff distance between obstacles and ADS-B equipped manned aircraft.

    For robustness, this assessment considered two different datasets of manned aircraft tracks and two datasets of obstacles. For robustness, MIT LL calculated the standoff distance using two different datasets of aircraft tracks and two datasets of obstacles. This approach aligned with the foundational research used to support the ASTM F3442/F3442M-20 well clear criteria of 2000 feet laterally and 250 feet AGL vertically.

    The two datasets of processed tracks of ADS-B equipped aircraft curated from the OpenSky Network. It is likely that rotorcraft were underrepresented in these datasets. There were also no considerations for aircraft equipped only with Mode C or not equipped with any transponders. The first dataset was used to train the v1.3 uncorrelated encounter models and referred to as the “Monday” dataset. The second dataset is referred to as the “aerodrome” dataset and was used to train the v2.0 and v3.x terminal encounter model. The Monday dataset consisted of 104 Mondays across North America. The other dataset was based on observations at least 8 nautical miles within Class B, C, D aerodromes in the United States for the first 14 days of each month from January 2019 through February 2020. Prior to any processing, the datasets required 714 and 847 Gigabytes of storage. For more details on these datasets, please refer to "Correlated Bayesian Model of Aircraft Encounters in the Terminal Area Given a Straight Takeoff or Landing" and “Benchmarking the Processing of Aircraft Tracks with Triples Mode and Self-Scheduling.”

    Two different datasets of obstacles were also considered. First was point obstacles defined by the FAA digital obstacle file (DOF) and consisted of point obstacle structures of antenna, lighthouse, meteorological tower (met), monument, sign, silo, spire (steeple), stack (chimney; industrial smokestack), transmission line tower (t-l tower), tank (water; fuel), tramway, utility pole (telephone pole, or pole of similar height, supporting wires), windmill (wind turbine), and windsock. Each obstacle was represented by a cylinder with the height reported by the DOF and a radius based on the report horizontal accuracy. We did not consider the actual width and height of the structure itself. Additionally, we only considered obstacles at least 50 feet tall and marked as verified in the DOF.

    The other obstacle dataset, termed as “bridges,” was based on the identified bridges in the FAA DOF and additional information provided by the National Bridge Inventory. Due to the potential size and extent of bridges, it would not be appropriate to model them as point obstacles; however, the FAA DOF only provides a point location and no information about the size of the bridge. In response, we correlated the FAA DOF with the National Bridge Inventory, which provides information about the length of many bridges. Instead of sizing the simulated bridge based on horizontal accuracy, like with the point obstacles, the bridges were represented as circles with a radius of the longest, nearest bridge from the NBI. A circle representation was required because neither the FAA DOF or NBI provided sufficient information about orientation to represent bridges as rectangular cuboid. Similar to the point obstacles, the height of the obstacle was based on the height reported by the FAA DOF. Accordingly, the analysis using the bridge dataset should be viewed as risk averse and conservative. It is possible that a manned aircraft was hundreds of feet away from an obstacle in actuality but the estimated standoff distance could be significantly less. Additionally, all obstacles are represented with a fixed height, the potentially flat and low level entrances of the bridge are assumed to have the same height as the tall bridge towers. The attached figure illustrates an example simulated bridge.

    It would had been extremely computational inefficient to calculate the standoff distance for all possible track points. Instead, we define an encounter between an aircraft and obstacle as when an aircraft flying 3069 feet AGL or less comes within 3000 feet laterally of any obstacle in a 60 second time interval. If the criteria were satisfied, then for that 60 second track segment we calculate the standoff distance to all nearby obstacles. Vertical separation was based on the MSL altitude of the track and the maximum MSL height of an obstacle.

    For each combination of aircraft track and obstacle datasets, the results were organized seven different ways. Filtering criteria were based on aircraft type and distance away from runways. Runway data was sourced from the FAA runways of the United States, Puerto Rico, and Virgin Islands open dataset. Aircraft type was identified as part of the em-processing-opensky workflow.

    • All: No filter, all observations that satisfied encounter conditions
    • nearRunway: Aircraft within or at 2 nautical miles of a runway
    • awayRunway: Observations more than 2 nautical miles from a runway
    • glider: Observations when aircraft type is a glider
    • fwme: Observations when aircraft type is a fixed-wing multi-engine
    • fwse: Observations when aircraft type is a fixed-wing single engine
    • rotorcraft: Observations when aircraft type is a rotorcraft

    License

    This dataset is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0).

    This license requires that reusers give credit to the creator. It allows reusers to copy and distribute the material in any medium or format in unadapted form and for noncommercial purposes only. Only noncommercial use of your work is permitted. Noncommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. Exceptions are given for the not for profit standards organizations of ASTM International and RTCA.

    MIT is releasing this dataset in good faith to promote open and transparent research of the low altitude airspace. Given the limitations of the dataset and a need for more research, a more restrictive license was warranted. Namely it is based only on only observations of ADS-B equipped aircraft, which not all aircraft in the airspace are required to employ; and observations were source from a crowdsourced network whose surveillance coverage has not been robustly characterized.

    As more research is conducted and the low altitude airspace is further characterized or regulated, it is expected that a future version of this dataset may have a more permissive license.

    Distribution Statement

    DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

    © 2021 Massachusetts Institute of Technology.

    Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

    This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

    This document is derived from work done for the FAA (and possibly others); it is not the direct product of work done for the FAA. The information provided herein may include content supplied by third parties. Although the data and information contained herein has been produced or processed from sources believed to be reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding the accuracy, adequacy, completeness, legality, reliability or usefulness of any information, conclusions or recommendations provided herein. Distribution of the information contained herein does not constitute an endorsement or warranty of the data or information provided herein by the Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal Aviation Administration nor the U.S. Department of

  12. T

    United States GDP Annual Growth Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States GDP Annual Growth Rate [Dataset]. https://tradingeconomics.com/united-states/gdp-growth-annual
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1948 - Mar 31, 2025
    Area covered
    United States
    Description

    The Gross Domestic Product (GDP) in the United States expanded 2 percent in the first quarter of 2025 over the same quarter of the previous year. This dataset provides the latest reported value for - United States GDP Annual Growth Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  13. High Resolution Ocean Surface Wave Hindcast (US Wave) Data

    • mhkdr.openei.org
    • datasets.ai
    • +3more
    code, data
    Updated Jul 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    High Resolution Ocean Surface Wave Hindcast (US Wave) Data [Dataset]. https://mhkdr.openei.org/submissions/326
    Explore at:
    data, codeAvailable download formats
    Dataset updated
    Jul 1, 2020
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Marine and Hydrokinetic Data Repository
    National Renewable Energy Laboratory
    Authors
    Zhaoqing Yang; Vince Neary; Levi Kilcher; Mike Lawson; Zhaoqing Yang; Vince Neary; Levi Kilcher; Mike Lawson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The development of this dataset was funded by the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Water Power Technologies Office to improve our understanding of the U.S. wave energy resource and to provide critical information for wave energy project development and wave energy converter design. This high resolution publicly available long-term wave hindcast dataset will - when complete - cover the entire U.S. Exclusive Economic Zone (EEZ). Available data includes the Hawaiian Islands, West and Atlantic coasts, Atlantic coasts, and Gulf of Mexico/Puerto Rico with future additions including the Freely associated States. The data can be used to investigate the historical record of wave statistics at any U.S. site. As such, the dataset could also be of value to any entity with marine operations inside the U.S. EEZ.

    These data are available for download without login credentials through the free and publicly accessible Open Energy Data Initiative (OEDI) data viewer which allows users to browse and download individual or groups of files.

  14. National Hydrography Dataset Plus Version 2.1

    • hub.arcgis.com
    • resilience.climate.gov
    • +5more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://hub.arcgis.com/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  15. U

    USGS National Transportation Dataset (NTD) Downloadable Data Collection

    • data.usgs.gov
    • catalog.data.gov
    Updated Dec 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey, National Geospatial Technical Operations Center (2024). USGS National Transportation Dataset (NTD) Downloadable Data Collection [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:ad3d631d-f51f-4b6a-91a3-e617d6a58b4e
    Explore at:
    Dataset updated
    Dec 25, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey, National Geospatial Technical Operations Center
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The USGS Transportation downloadable data from The National Map (TNM) is based on TIGER/Line data provided through U.S. Census Bureau and supplemented with HERE road data to create tile cache base maps. Some of the TIGER/Line data includes limited corrections done by USGS. Transportation data consists of roads, railroads, trails, airports, and other features associated with the transport of people or commerce. The data include the name or route designator, classification, and location. Transportation data support general mapping and geographic information system technology analysis for applications such as traffic safety, congestion mitigation, disaster planning, and emergency response. The National Map transportation data is commonly combined with other data themes, such as boundaries, elevation, hydrography, and structure ...

  16. A

    Integrated Surface Dataset (Global)

    • data.amerigeoss.org
    • data.cnra.ca.gov
    • +1more
    html, kml, pdf, text
    Updated Jul 27, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). Integrated Surface Dataset (Global) [Dataset]. https://data.amerigeoss.org/no/dataset/integrated-surface-global-hourly-data
    Explore at:
    kml, text, html, pdfAvailable download formats
    Dataset updated
    Jul 27, 2019
    Dataset provided by
    United States
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The Integrated Surface (ISD) Dataset (ISD) is composed of worldwide surface weather observations from over 35,000 stations, though the best spatial coverage is evident in North America, Europe, Australia, and parts of Asia. Parameters included are: air quality, atmospheric pressure, atmospheric temperature/dew point, atmospheric winds, clouds, precipitation, ocean waves, tides and more. ISD refers to the data contained within the digital database as well as the format in which the hourly, synoptic (3-hourly), and daily weather observations are stored. The format conforms to Federal Information Processing Standards (FIPS). ISD provides hourly data that can be used in a wide range of climatological applications. For some stations, data may go as far back as 1901, though most data show a substantial increase in volume in the 1940s and again in the early 1970s. Currently, there are over 14,000 "active" stations updated daily in the database.

    For user convenience, a subset of just the hourly data is available to users for download. It is referred to as Integrated Surface Global Hourly data, see associated download links for access to this subset.

  17. Climate Change: Earth Surface Temperature Data

    • kaggle.com
    • redivis.com
    zip
    Updated May 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Berkeley Earth (2017). Climate Change: Earth Surface Temperature Data [Dataset]. https://www.kaggle.com/datasets/berkeleyearth/climate-change-earth-surface-temperature-data
    Explore at:
    zip(88843537 bytes)Available download formats
    Dataset updated
    May 1, 2017
    Dataset authored and provided by
    Berkeley Earthhttp://berkeleyearth.org/
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.

    us-climate-change

    Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.

    Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.

    We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.

    In this dataset, we have include several files:

    Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):

    • Date: starts in 1750 for average land temperature and 1850 for max and min land temperatures and global ocean and land temperatures
    • LandAverageTemperature: global average land temperature in celsius
    • LandAverageTemperatureUncertainty: the 95% confidence interval around the average
    • LandMaxTemperature: global average maximum land temperature in celsius
    • LandMaxTemperatureUncertainty: the 95% confidence interval around the maximum land temperature
    • LandMinTemperature: global average minimum land temperature in celsius
    • LandMinTemperatureUncertainty: the 95% confidence interval around the minimum land temperature
    • LandAndOceanAverageTemperature: global average land and ocean temperature in celsius
    • LandAndOceanAverageTemperatureUncertainty: the 95% confidence interval around the global average land and ocean temperature

    Other files include:

    • Global Average Land Temperature by Country (GlobalLandTemperaturesByCountry.csv)
    • Global Average Land Temperature by State (GlobalLandTemperaturesByState.csv)
    • Global Land Temperatures By Major City (GlobalLandTemperaturesByMajorCity.csv)
    • Global Land Temperatures By City (GlobalLandTemperaturesByCity.csv)

    The raw data comes from the Berkeley Earth data page.

  18. Hourly Dynamic Line Ratings for Existing Transmission Across the Contiguous...

    • data.openei.org
    • s.cnmilf.com
    • +2more
    code, data +3
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kodi Obika; Sophie Bredenkamp; Le Helen Lu; Kodi Obika; Sophie Bredenkamp; Le Helen Lu (2024). Hourly Dynamic Line Ratings for Existing Transmission Across the Contiguous United States (Preliminary) [Dataset]. https://data.openei.org/submissions/6231
    Explore at:
    data, website, presentation, text_document, codeAvailable download formats
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Open Energy Data Initiative (OEDI)
    National Renewable Energy Laboratory
    Authors
    Kodi Obika; Sophie Bredenkamp; Le Helen Lu; Kodi Obika; Sophie Bredenkamp; Le Helen Lu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States, Contiguous United States
    Description

    This dataset provides estimated hourly dynamic line ratings for ~84,000 transmission lines across the contiguous United States from 2007-2013. The calculation methods are described in the presentation linked below, and the associated open-source Python code repository is linked in the Resources section below.

    Abbreviations used in filenames and descriptions are: - SLR: static line ratings - ALR: ambient-temperature-adjusted line ratings - NLR: ambient-temperature- and day/night-irradiance-adjusted line ratings - CLR: ambient-temperature- and clear-sky-irradiance-adjusted line ratings - ILR: ambient-temperature- and measured-irradiance-adjusted line ratings - DLR: full dynamic line ratings (including air temperature/pressure, wind speed/direction, and measured irradiance)

    Transmission lines are referenced by their ID in the Homeland Infrastructure Foundation-Level Data (HIFLD) on Transmission Lines (linked in Resources section). Time indices are in UTC. The data files contain ratios between modeled hourly ratings and modeled static ratings. Columns are indexed by HIFLD ID; rows are indexed by hourly timestamps from 2007-2013 (UTC). A data directory is also included in the Resources section.

    The SLR files contain modeled static ratings (the denominator of the ratios in the files described above) in amps. As described in the presentation linked in the Resources section below, SLR calculations assume an ambient air temperature of 40 C, air pressure of 101 kPa, wind speed of 2 feet per second (0.61 m/s) perpendicular to the conductor, global horizontal irradiance of 1000 W/m^2, and conductor absorptivity and emissivity of 0.8. Conductor assumptions are Linnet for ~69 kV and below, Condor for ~115 kV, Martin for ~230 kV, and Cardinal for ~345 kV and above.

    Caveats and Limitations

    Results are sensitive to the weather data used. Validation studies on the WIND Toolkit and NSRDB are available at: - King, J. et al. "Validation of Power Output for the WIND Toolkit", 2014 (https://www.nrel.gov/docs/fy14osti/61714.pdf) - Draxl, C. et al. "Overview and Meteorological Validation of the Wind Integration National Dataset Toolkit", 2015 (https://www.nrel.gov/docs/fy15osti/61740.pdf) - Sengupta, M. et al. "Validation of the National Solar Radiation Database (NSRDB) (2005-2012)", 2015 (https://www.nrel.gov/docs/fy15osti/64981.pdf) - Habte, A. et al. "Evaluation of the National Solar Radiation Database (NSRDB Version 2): 1998-2015", 2017 (https://www.nrel.gov/docs/fy17osti/67722.pdf)

    More work is required to determine how well ratings calculated from NSRDB and WIND Toolkit data reflect the actual ratings observed by installed sensors (such as sag or tension monitors). In general, ratings calculated from modeled weather data are not a substitute for direct sensor data.

    Assuming a single representative conductor type (ACSR of a single diameter) for each voltage level is an important simplification; reported line ratings at a given voltage level can vary widely.

    HIFLD line routes are primarily based on imagery instead of exact construction data and may have errors.

    We use historical weather data directly; calculated line ratings are thus more indicative of real-time ratings than forecasted ratings

  19. c

    California Overlapping Cities and Counties and Identifiers

    • gis.data.ca.gov
    • data.ca.gov
    • +1more
    Updated Sep 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). California Overlapping Cities and Counties and Identifiers [Dataset]. https://gis.data.ca.gov/datasets/california-overlapping-cities-and-counties-and-identifiers/about
    Explore at:
    Dataset updated
    Sep 16, 2024
    Dataset authored and provided by
    California Department of Technology
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:Metadata is missing or incomplete for some layers at this time and will be continuously improved.We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.PurposeCounty and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, coastal buffers are removed, leaving the land-based portions of jurisdictions. This feature layer is for public use.Related LayersThis dataset is part of a grouping of many datasets:Cities: Only the city boundaries and attributes, without any unincorporated areasWith Coastal BuffersWithout Coastal BuffersCounties: Full county boundaries and attributes, including all cities within as a single polygonWith Coastal BuffersWithout Coastal BuffersCities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.With Coastal BuffersWithout Coastal Buffers (this dataset)Place AbbreviationsUnincorporated Areas (Coming Soon)Census Designated Places (Coming Soon)Cartographic CoastlinePolygonLine source (Coming Soon)Working with Coastal BuffersThe dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.Point of ContactCalifornia Department of Technology, Office of Digital Services, odsdataservices@state.ca.govField and Abbreviation DefinitionsCOPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering systemPlace Name: CDTFA incorporated (city) or county nameCounty: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information SystemGNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information SystemPlace Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area namesCNTY Abbr: CalTrans Division of Local Assistance abbreviations of county namesArea_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.AccuracyCDTFA"s source data notes the following about accuracy:City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated territory; COPRI = county number followed by the 3-digit city primary number used in the California State Board of Equalization"s 6-digit tax rate area numbering system (for the purpose of this map, unincorporated areas are assigned 000 to indicate that the area is not within a city).Boundary ProcessingThese data make a structural change from the source data. While the full boundaries provided by CDTFA include coastal buffers of varying sizes, many users need boundaries to end at the shoreline of the ocean or a bay. As a result, after examining existing city and county boundary layers, these datasets provide a coastline cut generally along the ocean facing coastline. For county boundaries in northern California, the cut runs near the Golden Gate Bridge, while for cities, we cut along the bay shoreline and into the edge of the Delta at the boundaries of Solano, Contra Costa, and Sacramento counties.In the services linked above, the versions that include the coastal buffers contain them as a second (or third) polygon for the city or county, with the value in the COASTAL field set to whether it"s a bay or ocean polygon. These can be processed back into a single polygon by dissolving on all the fields you wish to keep, since the attributes, other than the COASTAL field and geometry attributes (like areas) remain the same between the polygons for this purpose.SliversIn cases where a city or county"s boundary ends near a coastline, our coastline data may cross back and forth many times while roughly paralleling the jurisdiction"s boundary, resulting in many polygon slivers. We post-process the data to remove these slivers using a city/county boundary priority algorithm. That is, when the data run parallel to each other, we discard the coastline cut and keep the CDTFA-provided boundary, even if it extends into the ocean a small amount. This processing supports consistent boundaries for Fort Bragg, Point Arena, San Francisco, Pacifica, Half Moon Bay, and Capitola, in addition to others. More information on this algorithm will be provided soon.Coastline CaveatsSome cities have buffers extending into water bodies that we do not cut at the shoreline. These include South Lake Tahoe and Folsom, which extend into neighboring lakes, and San Diego and surrounding cities that extend into San Diego Bay, which our shoreline encloses. If you have feedback on the exclusion of these items, or others, from the shoreline cuts, please reach out using the contact information above.Offline UseThis service is fully enabled for sync and export using Esri Field Maps or other similar tools. Importantly, the GlobalID field exists only to support that use case and should not be used for any other purpose (see note in field descriptions).Updates and Date of ProcessingConcurrent with CDTFA updates, approximately every two weeks, Last Processed: 12/17/2024 by Nick Santos using code path at https://github.com/CDT-ODS-DevSecOps/cdt-ods-gis-city-county/ at commit 0bf269d24464c14c9cf4f7dea876aa562984db63. It incorporates updates from CDTFA as of 12/12/2024. Future updates will include improvements to metadata and update frequency.

  20. N

    West Long Branch, NJ Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). West Long Branch, NJ Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in West Long Branch from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/west-long-branch-nj-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Jersey, West Long Branch
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the West Long Branch population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of West Long Branch across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of West Long Branch was 8,555, a 0.22% decrease year-by-year from 2022. Previously, in 2022, West Long Branch population was 8,574, a decline of 0.36% compared to a population of 8,605 in 2021. Over the last 20 plus years, between 2000 and 2023, population of West Long Branch increased by 277. In this period, the peak population was 8,605 in the year 2021. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the West Long Branch is shown in this column.
    • Year on Year Change: This column displays the change in West Long Branch population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for West Long Branch Population by Year. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2023). Miles, IA Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6ee9dc86-3d85-11ee-9abe-0aa64bf2eeb2/

Miles, IA Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis

Explore at:
csv, jsonAvailable download formats
Dataset updated
Sep 18, 2023
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Iowa, Miles
Variables measured
Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
Measurement technique
The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the Miles population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Miles across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

Key observations

In 2022, the population of Miles was 402, a 0.50% decrease year-by-year from 2021. Previously, in 2021, Miles population was 404, a decline of 0.98% compared to a population of 408 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Miles decreased by 60. In this period, the peak population was 462 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

Content

When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

Data Coverage:

  • From 2000 to 2022

Variables / Data Columns

  • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
  • Population: The population for the specific year for the Miles is shown in this column.
  • Year on Year Change: This column displays the change in Miles population for each year compared to the previous year.
  • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Miles Population by Year. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu