Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Miles population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Miles across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Miles was 923, a 1.54% increase year-by-year from 2022. Previously, in 2022, Miles population was 909, an increase of 1.56% compared to a population of 895 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Miles increased by 72. In this period, the peak population was 923 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Miles Population by Year. You can refer the same here
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Miles population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Miles across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2022, the population of Miles was 402, a 0.50% decrease year-by-year from 2021. Previously, in 2021, Miles population was 404, a decline of 0.98% compared to a population of 408 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Miles decreased by 60. In this period, the peak population was 462 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Miles Population by Year. You can refer the same here
**This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **
Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.
This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.
Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.
This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.
01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
* Filter for specific state - filters 02_vmt_state.csv
daily data for specific state.
* Filter counties by state - filters 03_vmt_county.csv
daily data for counties in specific state.
* Filter for specific county - filters 03_vmt_county.csv
daily data for specific county.
The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:
@(https://interactives.ap.org/vmt-map/)
This data can help put your county's mobility in context with your state and over time. The data set contains different measures of change - daily comparisons and seven day rolling averages. The rolling average allows for a smoother trend line for comparison across counties and states. To get the full picture, there are also two available baselines - vehicle miles traveled in January 2020 (pre-pandemic) and vehicle miles traveled at each geography's low point during the pandemic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
USHAP (USHighAirPollutants) is one of the series of long-term, full-coverage, high-resolution, and high-quality datasets of ground-level air pollutants for the United States. It is generated from the big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution. This is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) ground-level PM2.5 dataset in the United States from 2000 to 2020. Our daily PM2.5 estimates agree well with ground measurements with an average cross-validation coefficient of determination (CV-R2) of 0.82 and normalized root-mean-square error (NRMSE) of 0.40, respectively. All the data will be made public online once our paper is accepted, and if you want to use the USHighPM2.5 dataset for related scientific research, please contact us (Email: weijing_rs@163.com; weijing@umd.edu).
Wei, J., Wang, J., Li, Z., Kondragunta, S., Anenberg, S., Wang, Y., Zhang, H., Diner, D., Hand, J., Lyapustin, A., Kahn, R., Colarco, P., da Silva, A., and Ichoku, C. Long-term mortality burden trends attributed to black carbon and PM2.5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. The Lancet Planetary Health, 2023, 7, e963–e975. https://doi.org/10.1016/S2542-5196(23)00235-8 More air quality datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Moving 12-Month Total Vehicle Miles Traveled (M12MTVUSM227NFWA) from Dec 1970 to Apr 2025 about miles, travel, vehicles, and USA.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Every year, young women from across the United States compete for the title of Miss America. The competition is open to women between the ages of 17 and 25, and includes a talent portion, an interview, and a swimsuit competition (which was removed in 2018). The winner is crowned by the previous year's titleholder and goes on to tour the nation for about 20,000 miles a month, promoting her particular platform of interest.
The Miss America dataset contains information on all Miss America titleholders from 1921 to 2022. It includes columns for the year of the pageant, the name of the crowned winner, her state or district represented, awards won, talent performed, and notes about her win
This dataset contains information on Miss America titleholders from 1921 to 2022. The data includes the name of the winner, her state or district, the city she represented, her talent, and the year she won
- Miss America could be used to study changes in American culture over time. For example, the decline in the swimsuit competition could be seen as a sign of increasing body positivity in the US.
- The dataset could be used to study the effect of winning Miss America has on a woman's career. Does winning lead to more opportunities?
- The dataset could be used to study geographical patterns inMiss America winners. For example, are there any states that have produced more winners than others?
License
License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original.
File: miss_america_titleholders.csv | Column name | Description | |:----------------------|:-----------------------------------------------------------------------| | year | The year the Miss America pageant was held. (Integer) | | crowned | The name of the Miss America titleholder. (String) | | winner | The name of the Miss America winner. (String) | | state_or_district | The state or district represented by the Miss America winner. (String) | | city | The city represented by the Miss America winner. (String) | | awards | The awards won by the Miss America winner. (String) | | talent | The talent performed by the Miss America winner. (String) | | notes | Notes about the Miss America winner. (String) |
File: eurovision_winners.csv | Column name | Description | |:--------------|:-------------------------------------------------------------------------| | Year | The year the pageant was held. (Integer) | | Date | The date the pageant was held. (Date) | | Host City | The city where the pageant was held. (String) | | Winner | The name of the pageant winner. (String) | | Song | The song performed by the pageant winner. (String) | | Performer | The name of the performer of the pageant winner's song. (String) | | Points | The number of points the pageant winner received. (Integer) | | Margin | The margin of points between the pageant winner and runner-up. (Integer) | | Runner-up | The name of the pageant runner-up. (String) |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Miles township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Miles township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Miles township was 1,984, a 0.40% decrease year-by-year from 2022. Previously, in 2022, Miles township population was 1,992, a decline of 0.15% compared to a population of 1,995 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Miles township increased by 443. In this period, the peak population was 2,033 in the year 2018. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Miles township Population by Year. You can refer the same here
Publicly accessible open spaces provide valuable opportunities for people to exercise, play, socialize, and build community. People are more likely to use public open spaces that are close (ideally within walking distance) to their homes, and larger open spaces often provide more amenities. To assess the spatial distribution of access to open space for recreation in the southeastern United States, we constructed an index of open space access based on the size of the largest publicly accessible open space of at least 10 acres within 10 miles of each point on the landscape, using three distance categories to represent whether people can reach the open spaces by walking (within 0.5 mile), via a short drive (within 3 miles), or via a longer drive (within 10 miles).
NOAA is responsible for depicting on its nautical charts the limits of the 12 nautical mile Territorial Sea, 24 nautical mile Contiguous Zone, and 200 nautical mile Exclusive Economic Zone (EEZ). The outer limit of each of these zones is measured from the U.S. normal baseline, which coincides with the low water line depicted on NOAA charts and includes closing lines across the entrances of legal bays and rivers, consistent with international law. The U.S. baseline and associated maritime limits are reviewed and approved through the interagency U.S. Baseline Committee, which is chaired by the U.S. Department of State. The Committee serves the function of gaining interagency consensus on the proper location of the baseline using the provisions of the 1958 Convention on the Territorial Sea and the Contiguous Zone, to ensure that the seaward extent of U.S. maritime zones do not exceed the breadth that is permitted by international law. In 2002 and in response to mounting requests for digital maritime zones, NOAA launched a project to re-evaluate the U.S. baseline in partnership with other federal agencies via the U.S. Baseline Committee. The focus of the baseline evaluation was NOAA's largest scale, most recent edition nautical charts as well as supplemental source materials for verification of certain charted features. This dataset is a result of the 2002-present initiative and reflects a multi-year iterative project whereby the baseline and associated maritime limits were re-evaluated on a state or regional basis. In addition to the U.S. maritime limits, the U.S. maritime boundaries with opposite or adjacent countries as well as the US/Canada International Boundary (on land and through the Great Lakes) are also included in this dataset.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Point Sur to Point Arguello map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery seafloor-sediment and rock samplesdigital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Point Sur to Point Arguello map area data layers. Data layers are symbolized as shown on the associated map sheets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Groundwater wells are critical infrastructure that enable the monitoring, extraction, and use of groundwater, which has important implications for the environment, water security, and economic development. Despite the importance of wells, a unified database collecting and standardizing information on the characteristics and locations of these wells across the United States has been lacking. To bridge this gap, we have created a comprehensive database of groundwater well records collected from state and federal agencies, which we call the United States Groundwater Well Database (USGWD). Presented in both tabular form and as vector points, the USGWD comprises over 14.2 million well records with attributes such as well purpose, location, depth, and capacity for wells constructed as far back as 1763 to 2023. Rigorous cross-verification steps have been applied to ensure the accuracy of the data. The USGWD stands as a valuable tool for improving our understanding of how groundwater is accessed and managed across various regions and sectors within the United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Urban Land Area data was reported at 802,053.592 sq km in 2010. This stayed constant from the previous number of 802,053.592 sq km for 2000. United States US: Urban Land Area data is updated yearly, averaging 802,053.592 sq km from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 802,053.592 sq km in 2010 and a record low of 802,053.592 sq km in 2010. United States US: Urban Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban land area in square kilometers, based on a combination of population counts (persons), settlement points, and the presence of Nighttime Lights. Areas are defined as urban where contiguous lighted cells from the Nighttime Lights or approximated urban extents based on buffered settlement points for which the total population is greater than 5,000 persons.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Sum;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Vehicle Miles Traveled During Covid-19 Lock-Downs ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/vehicle-miles-travelede on 13 February 2022.
--- Dataset description provided by original source is as follows ---
**This data set was last updated 3:30 PM ET Monday, January 4, 2021. The last date of data in this dataset is December 31, 2020. **
Overview
Data shows that mobility declined nationally since states and localities began shelter-in-place strategies to stem the spread of COVID-19. The numbers began climbing as more people ventured out and traveled further from their homes, but in parallel with the rise of COVID-19 cases in July, travel declined again.
This distribution contains county level data for vehicle miles traveled (VMT) from StreetLight Data, Inc, updated three times a week. This data offers a detailed look at estimates of how much people are moving around in each county.
Data available has a two day lag - the most recent data is from two days prior to the update date. Going forward, this dataset will be updated by AP at 3:30pm ET on Monday, Wednesday and Friday each week.
This data has been made available to members of AP’s Data Distribution Program. To inquire about access for your organization - publishers, researchers, corporations, etc. - please click Request Access in the upper right corner of the page or email kromano@ap.org. Be sure to include your contact information and use case.
Findings
- Nationally, data shows that vehicle travel in the US has doubled compared to the seven-day period ending April 13, which was the lowest VMT since the COVID-19 crisis began. In early December, travel reached a low not seen since May, with a small rise leading up to the Christmas holiday.
- Average vehicle miles traveled continues to be below what would be expected without a pandemic - down 38% compared to January 2020. September 4 reported the largest single day estimate of vehicle miles traveled since March 14.
- New Jersey, Michigan and New York are among the states with the largest relative uptick in travel at this point of the pandemic - they report almost two times the miles traveled compared to their lowest seven-day period. However, travel in New Jersey and New York is still much lower than expected without a pandemic. Other states such as New Mexico, Vermont and West Virginia have rebounded the least.
About This Data
The county level data is provided by StreetLight Data, Inc, a transportation analysis firm that measures travel patterns across the U.S.. The data is from their Vehicle Miles Traveled (VMT) Monitor which uses anonymized and aggregated data from smartphones and other GPS-enabled devices to provide county-by-county VMT metrics for more than 3,100 counties. The VMT Monitor provides an estimate of total vehicle miles travelled by residents of each county, each day since the COVID-19 crisis began (March 1, 2020), as well as a change from the baseline average daily VMT calculated for January 2020. Additional columns are calculations by AP.
Included Data
01_vmt_nation.csv - Data summarized to provide a nationwide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
02_vmt_state.csv - Data summarized to provide a statewide look at vehicle miles traveled. Includes single day VMT across counties, daily percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
03_vmt_county.csv - Data providing a county level look at vehicle miles traveled. Includes VMT estimate, percent change compared to January and seven day rolling averages to smooth out the trend lines over time.
Additional Data Queries
* Filter for specific state - filters
02_vmt_state.csv
daily data for specific state.* Filter counties by state - filters
03_vmt_county.csv
daily data for counties in specific state.* Filter for specific county - filters
03_vmt_county.csv
daily data for specific county.Interactive
The AP has designed an interactive map to show percent change in vehicle miles traveled by county since each counties lowest point during the pandemic:
This dataset was created by Angeliki Kastanis and contains around 0 samples along with Date At Low, Mean7 County Vmt At Low, technical information and other features such as: - County Name - County Fips - and more.
- Analyze State Name in relation to Baseline Jan Vmt
- Study the influence of Date At Low on Mean7 County Vmt At Low
- More datasets
If you use this dataset in your research, please credit Angeliki Kastanis
--- Original source retains full ownership of the source dataset ---
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).
Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Surface area (sq. km) in United States was reported at 9831510 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Surface area (sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
This map shows schools, school districts, and population density throughout the US. Click on the map to learn more about the school districts and schools within an area. A few things you can learn within this map:How many public/private schools fall within the district?What type of population density lives within this district? Socioeconomic factors about the Census Tracts which fall within the district:School enrollment of under 19 by grade Children living below the poverty level Children with no internet at home Children without a working parentRace/ethnicity breakdown of the population within the districtFor more information about the data sources:Socioeconomic factors:The American Community Survey (ACS) helps us understand the population in the US. This app uses the 5-year estimates, and the data is updated annually when the U.S. Census Bureau releases the newest estimates. For detailed metadata, visit the links in the bullet points above. Current School Districts layer:The National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimate (EDGE) program develops annually updated school district boundary composite files that include public elementary, secondary, and unified school district boundaries clipped to the U.S. shoreline. School districts are single-purpose administrative units designed by state and local officials to organize and provide public education for local residents. District boundaries are collected for NCES by the U.S. Census Bureau to support educational research and program administration, and the boundaries are essential for constructing district-level estimates of the number of children in poverty.The Census Bureau’s School District Boundary Review program (SDRP) (https://www.census.gov/programs-surveys/sdrp.html) obtains the boundaries, names, and grade ranges from state officials, and integrates these updates into Census TIGER. Census TIGER boundaries include legal maritime buffers for coastal areas by default, but the NCES composite file removes these buffers to facilitate broader use and cleaner cartographic representation. The NCES EDGE program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to develop the composite school district files. The inputs for this data layer were developed from Census TIGER/Line and represent the most current boundaries available. For more information about NCES school district boundary data, see https://nces.ed.gov/programs/edge/Geographic/DistrictBoundaries.Private Schools layer:This Private Schools feature dataset is composed of private elementary and secondary education facilities in the United States as defined by the Private School Survey (PSS, https://nces.ed.gov/surveys/pss/), National Center for Education Statistics (NCES, https://nces.ed.gov), US Department of Education for the 2017-2018 school year. This includes all prekindergarten through 12th grade schools as tracked by the PSS. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 2675 new records, modifications to the spatial location and/or attribution of 19836 records, the removal of 254 records no longer applicable. Additionally, 10,870 records were removed that previously had a STATUS value of 2 (Unknown; not represented in the most recent PSS data) and duplicate records identified by ORNL.Public Schools layer:This Public Schools feature dataset is composed of all Public elementary and secondary education facilities in the United States as defined by the Common Core of Data (CCD, https://nces.ed.gov/ccd/ ), National Center for Education Statistics (NCES, https://nces.ed.gov ), US Department of Education for the 2017-2018 school year. This includes all Kindergarten through 12th grade schools as tracked by the Common Core of Data. Included in this dataset are military schools in US territories and referenced in the city field with an APO or FPO address. DOD schools represented in the NCES data that are outside of the United States or US territories have been omitted. This feature class contains all MEDS/MEDS+ as approved by NGA. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the Place Keyword section of the metadata. This release includes the addition of 3065 new records, modifications to the spatial location and/or attribution of 99,287 records, and removal of 2996 records not present in the NCES CCD data.WorldPop Populated Foorprint layer:This layer represents an estimate of the footprint of human settlement in 2020. It is intended as a fast-drawing cartographic layer to augment base maps and to focus a map reader's attention on the location of human population. This layer is not intended for analysis.This layer was derived from the 2020 slice of the WorldPop Population Density 2000-2020 100m and 1km layers. WorldPop modeled this population footprint based on imagery datasets and population data from national statistical organizations and the United Nations. Zooming in to very large scales will often show discrepancies between reality and this or any model. Like all data sources imagery and population counts are subject to many types of error, thus this gridded footprint contains errors of omission and commission. The imagery base maps available in ArcGIS Online were not used in WorldPop's model. Imagery only informs the model of characteristics that indicate a potential for settlement, and cannot intrinsically indicate whether any or how many people live in a building.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Integrated Surface (ISD) Dataset (ISD) is composed of worldwide surface weather observations from over 35,000 stations, though the best spatial coverage is evident in North America, Europe, Australia, and parts of Asia. Parameters included are: air quality, atmospheric pressure, atmospheric temperature/dew point, atmospheric winds, clouds, precipitation, ocean waves, tides and more. ISD refers to the data contained within the digital database as well as the format in which the hourly, synoptic (3-hourly), and daily weather observations are stored. The format conforms to Federal Information Processing Standards (FIPS). ISD provides hourly data that can be used in a wide range of climatological applications. For some stations, data may go as far back as 1901, though most data show a substantial increase in volume in the 1940s and again in the early 1970s. Currently, there are over 14,000 "active" stations updated daily in the database.
For user convenience, a subset of just the hourly data is available to users for download. It is referred to as Integrated Surface Global Hourly data, see associated download links for access to this subset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Miles population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Miles across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Miles was 923, a 1.54% increase year-by-year from 2022. Previously, in 2022, Miles population was 909, an increase of 1.56% compared to a population of 895 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Miles increased by 72. In this period, the peak population was 923 in the year 2023. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Miles Population by Year. You can refer the same here