According to an analysis conducted in 2023 of over *** companies targeting children and families in the United States, only ** percent of the businesses had a privacy-protective mindset and did not sell data. Under the California Privacy Rights Act amendment, companies are supposed to disclose if they sell users' personal data. Around ** percent of companies did not disclose whether they engaged in such practices.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Children out of school (% of primary school age) in United States was reported at 3.9822 % in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Children out of school (% of primary school age) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Total Families with Children under 18 Years Old (TTLFMCU) from 1950 to 2024 about 18 years +, family, child, household survey, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data was reported at 0.700 % in 2012. This records an increase from the previous number of 0.500 % for 2009. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data is updated yearly, averaging 0.550 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 0.800 % in 2005 and a record low of 0.100 % in 2001. United States US: Prevalence of Wasting: Weight for Height: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Prevalence of wasting, female, is the proportion of girls under age 5 whose weight for height is more than two standard deviations below the median for the international reference population ages 0-59.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Minor Hill population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Minor Hill. The dataset can be utilized to understand the population distribution of Minor Hill by age. For example, using this dataset, we can identify the largest age group in Minor Hill.
Key observations
The largest age group in Minor Hill, TN was for the group of age 25 to 29 years years with a population of 74 (12.37%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Minor Hill, TN was the 85 years and over years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Minor Hill Population by Age. You can refer the same here
The typical American picture of a family with 2.5 kids might not be as relevant as it once was: In 2023, there was an average of 1.94 children under 18 per family in the United States. This is a decrease from 2.33 children under 18 per family in 1960.
Familial structure in the United States
If there’s one thing the United States is known for, it’s diversity. Whether this is diversity in ethnicity, culture, or family structure, there is something for everyone in the U.S. Two-parent households in the U.S. are declining, and the number of families with no children are increasing. The number of families with children has stayed more or less constant since 2000.
Adoptions in the U.S.
Families in the U.S. don’t necessarily consist of parents and their own biological children. In 2021, around 35,940 children were adopted by married couples, and 13,307 children were adopted by single women.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Underweight: Weight for Age: Female: % of Children Under 5 data was reported at 0.400 % in 2012. This records a decrease from the previous number of 0.700 % for 2009. United States US: Prevalence of Underweight: Weight for Age: Female: % of Children Under 5 data is updated yearly, averaging 0.800 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 1.200 % in 1991 and a record low of 0.400 % in 2012. United States US: Prevalence of Underweight: Weight for Age: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of underweight, female, is the percentage of girls under age 5 whose weight for age is more than two standard deviations below the median for the international reference population ages 0-59 months. The data are based on the WHO's new child growth standards released in 2006.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Undernourished children have lower resistance to infection and are more likely to die from common childhood ailments such as diarrheal diseases and respiratory infections. Frequent illness saps the nutritional status of those who survive, locking them into a vicious cycle of recurring sickness and faltering growth (UNICEF, www.childinfo.org). Estimates of child malnutrition, based on prevalence of underweight and stunting, are from national survey data. The proportion of underweight children is the most common malnutrition indicator. Being even mildly underweight increases the risk of death and inhibits cognitive development in children. And it perpetuates the problem across generations, as malnourished women are more likely to have low-birth-weight babies. Stunting, or being below median height for age, is often used as a proxy for multifaceted deprivation and as an indicator of long-term changes in malnutrition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Adjusted Net Enrollment Rate: Primary: Male: % of Primary School Age Children data was reported at 93.137 % in 2015. This records an increase from the previous number of 92.551 % for 2014. United States US: Adjusted Net Enrollment Rate: Primary: Male: % of Primary School Age Children data is updated yearly, averaging 94.128 % from Dec 1986 (Median) to 2015, with 25 observations. The data reached an all-time high of 98.628 % in 1991 and a record low of 91.823 % in 2004. United States US: Adjusted Net Enrollment Rate: Primary: Male: % of Primary School Age Children data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Education Statistics. Adjusted net enrollment is the number of pupils of the school-age group for primary education, enrolled either in primary or secondary education, expressed as a percentage of the total population in that age group.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Minor Hill, TN population pyramid, which represents the Minor Hill population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Minor Hill Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Minor Hill by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Minor Hill across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 51.51% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Minor Hill Population by Race & Ethnicity. You can refer the same here
Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
🔗 Check out my notebook here: Link
This dataset includes malnutrition indicators and some of the features that might impact malnutrition. The detailed description of the dataset is given below:
Percentage-of-underweight-children-data: Percentage of children aged 5 years or below who are underweight by country.
Prevalence of Underweight among Female Adults (Age Standardized Estimate): Percentage of female adults whos BMI is less than 18.
GDP per capita (constant 2015 US$): GDP per capita is gross domestic product divided by midyear population. GDP is the sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources. Data are in constant 2015 U.S. dollars.
Domestic general government health expenditure (% of GDP): Public expenditure on health from domestic sources as a share of the economy as measured by GDP.
Maternal mortality ratio (modeled estimate, per 100,000 live births): Maternal mortality ratio is the number of women who die from pregnancy-related causes while pregnant or within 42 days of pregnancy termination per 100,000 live births. The data are estimated with a regression model using information on the proportion of maternal deaths among non-AIDS deaths in women ages 15-49, fertility, birth attendants, and GDP measured using purchasing power parities (PPPs).
Mean-age-at-first-birth-of-women-aged-20-50-data: Average age at which women of age 20-50 years have their first child.
School enrollment, secondary, female (% gross): Gross enrollment ratio is the ratio of total enrollment, regardless of age, to the population of the age group that officially corresponds to the level of education shown. Secondary education completes the provision of basic education that began at the primary level, and aims at laying the foundations for lifelong learning and human development, by offering more subject- or skill-oriented instruction using more specialized teachers.
children-stories-dataset
Note: This is an AI-generated dataset, so its content may be inaccurate or false. Source of the data: The dataset was generated using Fastdata library and claude-3-haiku-20240307 with the following input:
System Prompt
You are a helpful assistant.
Prompt Template
Generate Children's Stories with title, content and the corresponding habit on the following topic
Sample Input
{'idx': [0, 1], 'text':… See the full description on the dataset page: https://huggingface.co/datasets/asoria/children-stories-dataset.
This project undertook the systematic collection of first-generation data concerning the nature, extent, and seriousness of child sexual exploitation (CSE) in the United States. The project was organized around the following research objectives: (1) identification of the nature, extent, and underlying causes of CSE and the commercial sexual exploitation of children (CSEC) occurring in the United States, (2) identification of those subgroups of children that were at the greatest risk of being sexually exploited, (3) identification of subgroups of adult perpetrators of sex crimes against children, and (4) identification of the modes of operation and other methods used by organized criminal units to recruit children into sexually exploitative activities. The study involved surveying senior staff members of nongovernment organizations (NGOs) and government organizations (GOs) in the United States known to be dealing with persons involved in the transnational trafficking of children for sexual purposes. Part 1 consists of survey data from nongovernment organizations. These were local child and family agencies serving runaway and homeless youth. Part 2 consists of survey data from government organizations. These organizations were divided into local, state, and federal agencies. Local organizations included municipal law enforcement, county law enforcement, prosecutors, public defenders, and corrections. State organizations included state child welfare directors, prosecutors, and public defenders. Federal organizations included the Federal Bureau of Investigation, Federal Public Defenders, Immigration and Naturalization Service, United States Attorneys, United States Customs, and the United States Postal Service. Variables in Parts 1 and 2 include the organization's city, state, and ZIP code, the type of services provided or type of law enforcement agency, how the agency was funded, the scope of the agency's service area, how much emphasis was placed on CSEC as a policy issue or a service issue, conditions that might influence the number of CSEC cases, how staff were trained to deal with CSEC cases, how victims were identified, the number of children that experienced child abuse, sexual abuse, pornography, or other exploitation in 1999 and 2000 by age and gender, methods of recruitment, family history of victims, gang involvement, and substance abuse history of victims.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Egypt population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Egypt. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 - 64 years with a poulation of 29 (60.42% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Egypt Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Children Out of School: Female: % of Female Primary School Age data was reported at 3.854 % in 1996. This records an increase from the previous number of 2.865 % for 1995. United States US: Children Out of School: Female: % of Female Primary School Age data is updated yearly, averaging 3.460 % from Dec 1986 (Median) to 1996, with 8 observations. The data reached an all-time high of 5.721 % in 1986 and a record low of 1.033 % in 1990. United States US: Children Out of School: Female: % of Female Primary School Age data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Children out of school are the percentage of primary-school-age children who are not enrolled in primary or secondary school. Children in the official primary age group that are in preprimary education should be considered out of school.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: School Enrollment: Primary: % Net data was reported at 92.942 % in 2015. This records an increase from the previous number of 92.197 % for 2014. United States US: School Enrollment: Primary: % Net data is updated yearly, averaging 93.521 % from Dec 1975 (Median) to 2015, with 26 observations. The data reached an all-time high of 98.651 % in 1991 and a record low of 81.582 % in 1975. United States US: School Enrollment: Primary: % Net data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Net enrollment rate is the ratio of children of official school age who are enrolled in school to the population of the corresponding official school age. Primary education provides children with basic reading, writing, and mathematics skills along with an elementary understanding of such subjects as history, geography, natural science, social science, art, and music.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Prevalence of Overweight: Weight for Height: Female: % of Children Under 5 data was reported at 6.900 % in 2012. This records an increase from the previous number of 6.400 % for 2009. United States US: Prevalence of Overweight: Weight for Height: Female: % of Children Under 5 data is updated yearly, averaging 6.900 % from Dec 1991 (Median) to 2012, with 6 observations. The data reached an all-time high of 8.700 % in 2005 and a record low of 5.100 % in 1991. United States US: Prevalence of Overweight: Weight for Height: Female: % of Children Under 5 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Prevalence of overweight, female, is the percentage of girls under age 5 whose weight for height is more than two standard deviations above the median for the international reference population of the corresponding age as established by the WHO's new child growth standards released in 2006.; ; World Health Organization, Global Database on Child Growth and Malnutrition. Country-level data are unadjusted data from national surveys, and thus may not be comparable across countries.; Linear mixed-effect model estimates; Estimates of overweight children are also from national survey data. Once considered only a high-income economy problem, overweight children have become a growing concern in developing countries. Research shows an association between childhood obesity and a high prevalence of diabetes, respiratory disease, high blood pressure, and psychosocial and orthopedic disorders (de Onis and Blössner 2003). Childhood obesity is associated with a higher chance of obesity, premature death, and disability in adulthood. In addition to increased future risks, obese children experience breathing difficulties and increased risk of fractures, hypertension, early markers of cardiovascular disease, insulin resistance, and psychological effects. Children in low- and middle-income countries are more vulnerable to inadequate nutrition before birth and in infancy and early childhood. Many of these children are exposed to high-fat, high-sugar, high-salt, calorie-dense, micronutrient-poor foods, which tend be lower in cost than more nutritious foods. These dietary patterns, in conjunction with low levels of physical activity, result in sharp increases in childhood obesity, while under-nutrition continues
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Age Dependency Ratio: % of Working-Age Population data was reported at 52.268 % in 2017. This records an increase from the previous number of 51.652 % for 2016. United States US: Age Dependency Ratio: % of Working-Age Population data is updated yearly, averaging 52.247 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 66.700 % in 1962 and a record low of 49.442 % in 2009. United States US: Age Dependency Ratio: % of Working-Age Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Population and Urbanization Statistics. Age dependency ratio is the ratio of dependents--people younger than 15 or older than 64--to the working-age population--those ages 15-64. Data are shown as the proportion of dependents per 100 working-age population.; ; World Bank staff estimates based on age distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; Weighted average; Relevance to gender indicator: this indicator implies the dependency burden that the working-age population bears in relation to children and the elderly. Many times single or widowed women who are the sole caregiver of a household have a high dependency ratio.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Children Out of School: % of Primary School Age data was reported at 4.079 % in 1996. This records an increase from the previous number of 2.962 % for 1995. United States US: Children Out of School: % of Primary School Age data is updated yearly, averaging 3.921 % from Dec 1975 (Median) to 1996, with 9 observations. The data reached an all-time high of 18.418 % in 1975 and a record low of 1.349 % in 1991. United States US: Children Out of School: % of Primary School Age data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Education Statistics. Children out of school are the percentage of primary-school-age children who are not enrolled in primary or secondary school. Children in the official primary age group that are in preprimary education should be considered out of school.; ; UNESCO Institute for Statistics; Weighted average; Each economy is classified based on the classification of World Bank Group's fiscal year 2018 (July 1, 2017-June 30, 2018).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Bonita Springs, FL population pyramid, which represents the Bonita Springs population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bonita Springs Population by Age. You can refer the same here
According to an analysis conducted in 2023 of over *** companies targeting children and families in the United States, only ** percent of the businesses had a privacy-protective mindset and did not sell data. Under the California Privacy Rights Act amendment, companies are supposed to disclose if they sell users' personal data. Around ** percent of companies did not disclose whether they engaged in such practices.