18 datasets found
  1. Religious Populations Worldwide

    • kaggle.com
    zip
    Updated Dec 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Religious Populations Worldwide [Dataset]. https://www.kaggle.com/datasets/thedevastator/religious-populations-worldwide
    Explore at:
    zip(481071 bytes)Available download formats
    Dataset updated
    Dec 8, 2023
    Authors
    The Devastator
    Description

    Religious Populations Worldwide

    Religious Populations Worldwide by Year and Category

    By Throwback Thursday [source]

    About this dataset

    The dataset includes data on Christianity, Islam, Judaism, Buddhism, Hinduism, Sikhism, Shintoism, Baha'i Faith, Taoism, Confucianism, Jainism and various other syncretic and animist religions. For each religion or denomination category, it provides both the total population count and the percentage representation in relation to the overall population.

    Additionally, - Columns labeled with Population provide numeric values representing the total number of individuals belonging to a particular religion or denomination. - Columns labeled with Percent represent numerical values indicating the percentage of individuals belonging to a specific religion or denomination within a given population. - Columns that begin with ** indicate primary categories (e.g., Christianity), while columns that do not have this prefix refer to subcategories (e.g., Christianity - Roman Catholics).

    In addition to providing precise data about specific religions or denominations globally throughout multiple years,this dataset also records information about geographical locations by including state or country names under StateNme.

    This comprehensive dataset is valuable for researchers seeking information on global religious trends and can be used for analysis in fields such as sociology, anthropology studies cultural studies among others

    How to use the dataset

    Introduction:

    • Understanding the Columns:

    • Year: Represents the year in which the data was recorded.

    • StateNme: Represents the name of the state or country for which data is recorded.

    • Population: Represents the total population of individuals.

    • Total Religious: Represents the total percentage and population of individuals who identify as religious, regardless of specific religion.

    • Non Religious: Represents the percentage and population of individuals who identify as non-religious or atheists.

    • Identifying Specific Religions: The dataset includes columns for different religions such as Christianity, Judaism, Islam, Buddhism, Hinduism, etc. Each religion is further categorized into specific denominations or types within that religion (e.g., Roman Catholics within Christianity). You can find relevant information about these religions by focusing on specific columns related to each one.

    • Analyzing Percentages vs. Population: Some columns provide percentages while others provide actual population numbers for each category. Depending on your analysis requirement, you can choose either column type for your calculations and comparisons.

    • Accessing Historical Data: The dataset includes records from multiple years allowing you to analyze trends in religious populations over time. You can filter data based on specific years using Excel filters or programming languages like Python.

    • Filtering Data by State/Country: If you are interested in understanding religious populations in a particular state or country, use filters to focus on that region's data only.

    Example - Extracting Information:

    Let's say you want to analyze Hinduism's growth globally from 2000 onwards:

    • Identify Relevant Columns:
    • Year: to filter data from 2000 onwards.
    • Hindu - Total (Percent): to analyze the percentage of individuals identifying as Hindus globally.

    • Filter Data:

    • Set a filter on the Year column and select values greater than or equal to 2000.

    • Look for rows where Hindu - Total (Percent) has values.

    • Analyze Results: You can now visualize and calculate the growth of Hinduism worldwide after filtering out irrelevant data. Use statistical methods or graphical representations like line charts to understand trends over time.

    Conclusion: This guide has provided you with an overview of how to use the Rel

    Research Ideas

    • Comparing religious populations across different countries: With data available for different states and countries, this dataset allows for comparisons of religious populations across regions. Researchers can analyze how different religions are distributed geographically and compare their percentages or total populations across various locations.
    • Studying the impact of historical events on religious demographics: Since the dataset includes records categorized by year, it can be used to study how historical events such as wars, migration, or political changes have influenced religious demographics over time. By comparing population numbers before and after specific events, resea...
  2. World's Muslims Data Set, 2012

    • thearda.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James Bell, World's Muslims Data Set, 2012 [Dataset]. http://doi.org/10.17605/OSF.IO/C2VE5
    Explore at:
    Dataset provided by
    Association of Religion Data Archives
    Authors
    James Bell
    Dataset funded by
    The John Templeton Foundation
    The Pew Charitable Trusts
    Description

    "Between October 2011 and November 2012, Pew Research Center, with generous funding from The Pew Charitable Trusts and the John Templeton Foundation, conducted a public opinion survey involving more than 30,000 face-to-face interviews in 26 countries in Africa, Asia, the Middle East and Europe. The survey asked people to describe their religious beliefs and practices, and sought to gauge respondents; knowledge of and attitudes toward other faiths. It aimed to assess levels of political and economic satisfaction, concerns about crime, corruption and extremism, positions on issues such as abortion and polygamy, and views of democracy, religious law and the place of women in society.

    "Although the surveys were nationally representative in most countries, the primary goal of the survey was to gauge and compare beliefs and attitudes of Muslims. The findings for Muslim respondents are summarized in the Religion & Public Life Project's reports The World's Muslims: Unity and Diversity and The World's Muslims: Religion, Politics and Society, which are available at www.pewresearch.org. [...] This dataset only contains data for Muslim respondents in the countries surveyed. Please note that this codebook is meant as a guide to the dataset, and is not the survey questionnaire." (2012 Pew Religion Worlds Muslims Codebook)

  3. Data set: 50 Muslim-majority countries and 50 richest non-Muslim countries...

    • figshare.com
    txt
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ponn P Mahayosnand; Gloria Gheno (2023). Data set: 50 Muslim-majority countries and 50 richest non-Muslim countries based on GDP: Total number of COVID-19 cases and deaths on September 18, 2020 [Dataset]. http://doi.org/10.6084/m9.figshare.14034938.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Ponn P Mahayosnand; Gloria Gheno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Associated with manuscript titled: Fifty Muslim-majority countries have fewer COVID-19 cases and deaths than the 50 richest non-Muslim countriesThe objective of this research was to determine the difference in the total number of COVID-19 cases and deaths between Muslim-majority and non-Muslim countries, and investigate reasons for the disparities. Methods: The 50 Muslim-majority countries had more than 50.0% Muslims with an average of 87.5%. The non-Muslim country sample consisted of 50 countries with the highest GDP while omitting any Muslim-majority countries listed. The non-Muslim countries’ average percentage of Muslims was 4.7%. Data pulled on September 18, 2020 included the percentage of Muslim population per country by World Population Review15 and GDP per country, population count, and total number of COVID-19 cases and deaths by Worldometers.16 The data set was transferred via an Excel spreadsheet on September 23, 2020 and analyzed. To measure COVID-19’s incidence in the countries, three different Average Treatment Methods (ATE) were used to validate the results. Results published as a preprint at https://doi.org/10.31235/osf.io/84zq5(15) Muslim Majority Countries 2020 [Internet]. Walnut (CA): World Population Review. 2020- [Cited 2020 Sept 28]. Available from: http://worldpopulationreview.com/country-rankings/muslim-majority-countries (16) Worldometers.info. Worldometer. Dover (DE): Worldometer; 2020 [cited 2020 Sept 28]. Available from: http://worldometers.info

  4. Global Religious Demographics

    • kaggle.com
    zip
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Global Religious Demographics [Dataset]. https://www.kaggle.com/datasets/thedevastator/global-religious-demographics
    Explore at:
    zip(481071 bytes)Available download formats
    Dataset updated
    Dec 19, 2023
    Authors
    The Devastator
    Description

    Global Religious Demographics

    Global religious demographics over time

    By Throwback Thursday [source]

    About this dataset

    The dataset contains information on a wide range of religions, including Christianity, Judaism, Islam, Buddhism, Hinduism, Sikhism, Shintoism, Baha'i Faith, Taoism, Confucianism, Jainism, Zoroastrianism, Syncretic Religions (religious practices that blend elements from multiple faiths), Animism (belief in spiritual beings in nature), Non-Religious individuals or those without any religious affiliation.

    For each religion and region/country combination recorded in the dataset we have the following information:

    • Total population: The total population of the region or country.
    • Religious affiliation percentages: The percentages of the population that identify with specific religious affiliations.
    • Subgroup populations/percentages: The populations or percentages within specific denominations or sects of each religion.

    The dataset also provides additional variables like Year and State Name (for regional data) for further analysis.

    How to use the dataset

    • Understanding the Columns

      The dataset contains several columns with different categories of information. Here's a brief explanation of some important columns:

      • Year: The year in which the data was recorded.
      • Total Population: The total population of a country or region.
      • State Name (StateNme): The name of the state or region.

      Each religion has specific columns associated with it, such as Christianity, Buddhism, Islam, Hinduism, Judaism, Taoism, Shintoism etc., representing its percentage and population for each category/denomination within that religion.

    • Selecting Specific Data

      If you are interested in exploring data related to a particular religion or geographic location:

      • To filter data by Religion: Identify relevant columns associated with that religion such as 'Christianity', 'Buddhism', 'Islam', etc., and extract their respective percentage and population values for analysis.

        Example: If you want to analyze Christianity specifically, extract columns related to Christianity like 'Christianity (Percent)', 'Christianity (Population)', etc.

        Note: There might be multiple columns related to a specific religion indicating different categories or denominations within that religion.

      • To filter data by Geographic Location: Utilize the 'State Name' column ('StateNme') to segregate data corresponding to different states/regions.

        Example: If you want to analyze religious demographics for a particular state/region like California or India:

        i) Filter out rows where State Name is equal to California or India.

        ii) Extract relevant columns associated with your selected religion as mentioned above.

    • Finding Trends and Insights

      Once you have selected the specific data you are interested in, examine patterns and trends over time or across different regions.

      • Plotting data using visualizations: Use graphical tools such as line charts, bar charts, or pie charts to visualize how religious demographics have changed over the years or vary across different regions.

      • Analyzing population proportions: By comparing the percentage values of different religions for a given region or over time, you can gather insights into changes in religious diversity.

    • Comparing Religions

      If you wish to compare multiple religions:

    Research Ideas

    • Comparing religious affiliations across different countries or regions: With data on various religions such as Christianity, Islam, Buddhism, Judaism, Hinduism, etc., researchers can compare the religious affiliations of different countries or regions. This can help in understanding the cultural and religious diversity within different parts of the world.
    • Exploring the growth or decline of specific religions: By examining population numbers for specific religions such as Jainism, Taoism, Zoroastrianism, etc., this dataset can be used to investigate the growth or decline of these religious groups over time. Researchers can analyze factors contributing to their popularity or decline in particular regions or countries

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: ThrowbackDataThursday 201912 - Religion.csv | Column name...

  5. Dataset of Global Religious Composition Estimates for 2010 and 2020

    • pewresearch.org
    Updated 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Conrad Hackett; Marcin Stonawski; Yunping Tong; Stephanie Kramer; Anne Fengyan Shi (2025). Dataset of Global Religious Composition Estimates for 2010 and 2020 [Dataset]. http://doi.org/10.58094/vhrw-k516
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    Pew Research Centerhttp://pewresearch.org/
    datacite
    Authors
    Conrad Hackett; Marcin Stonawski; Yunping Tong; Stephanie Kramer; Anne Fengyan Shi
    License

    https://www.pewresearch.org/about/terms-and-conditions/https://www.pewresearch.org/about/terms-and-conditions/

    Dataset funded by
    John Templeton Foundationhttp://templeton.org/
    Pew Charitable Trusts
    Description

    This dataset describes the world’s religious makeup in 2020 and 2010. We focus on seven categories: Christians, Muslims, Hindus, Buddhists, Jews, people who belong to other religions, and those who are religiously unaffiliated. This analysis is based on more than 2,700 sources of data, including national censuses, large-scale demographic surveys, general population surveys and population registers. For more information about this data, see the associated Pew Research Center report "How the Global Religious Landscape Changed From 2010 to 2020."

  6. D

    Data Collected During the Digital Humanities Project 'Dhimmis & Muslims -...

    • darus.uni-stuttgart.de
    Updated Mar 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dorothea Weltecke; Steffen Koch; Ralph Barczok; Max Franke; Bernd Andreas Vest (2022). Data Collected During the Digital Humanities Project 'Dhimmis & Muslims - Analysing Multireligious Spaces in the Medieval Muslim World' [Dataset]. http://doi.org/10.18419/DARUS-2318
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 16, 2022
    Dataset provided by
    DaRUS
    Authors
    Dorothea Weltecke; Steffen Koch; Ralph Barczok; Max Franke; Bernd Andreas Vest
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 600 - Dec 31, 1400
    Dataset funded by
    VolkswagenFoundation
    Description

    This repository contains historical data collected in the digital humanities project Dhimmis & Muslims – Analysing Multireligious Spaces in the Medieval Muslim World. The project was funded by the VolkswagenFoundation within the scope of the Mixed Methods initiative. The project was a collaboration between the Institute for Medieval History II of the Goethe University in Frankfurt/Main, Germany, and the Institute for Visualization and Interactive Systems at the University of Stuttgart, and took place there from 2018 to 2021. The objective of this joint project was to develop a novel visualization approach in order to gain new insights on the multi-religious landscapes of the Middle East under Muslim rule during the Middle Ages (7th to 14th century). In particular, information on multi-religious communities were researched and made available in a database accessible through interactive visualization as well as through a pilot web-based geo-temporal multi-view system to analyze and compare information from multiple sources. The code for this visualization system is publicly available on GitHub under the MIT license. The data in this repository is a curated database dump containing data collected from a predetermined set of primary historical sources and literature. The core objective of the data entry was to record historical evidence for religious groups in cities of the Medieval Middle East. In the project, data was collected in a relational PostgreSQL database, the structure of which can be reconstructed from the file schema.sql. An entire database dump including both the database schema and the table contents is located in database.sql. The PDF file database-structure.pdf describes the relationship between tables in a graphical schematic. In the database.json file, the contents of the individual tables are stored in JSON format. At the top level, the JSON file is an object. Each table is stored as a key-value pair, where the key is the database name, and the value is an array of table records. Each table record is itself an object of key-value pairs, where the keys are the table columns, and the values are the corresponding values in the record. The dataset is centered around the evidence, which represents one piece of historical evidence as extracted from one or more sources. An evidence must contain a reference to a place and a religion, and may reference a person and one or more time spans. Instances are used to connect evidences to places, persons, and religions; and additional metadata are stored individually in the instances. Time instances are connected to the evidence via a time group to allow for more than one time span per evidence. An evidence is connected via one or more source instances to one or more sources. Evidences can also be tagged with one or more tags via the tag_evidence table. Places and persons have a type, which are defined in the place type and person type tables. Alternative names for places are stored in the name_var table with a reference to the respective language. For places and persons, references to URIs in other data collections (such as Syriaca.org or the Digital Atlas of the Roman Empire) are also stored, in the external_place_uri and external_person_uri tables. Rules for how to construct the URIs from the fragments stored in the last-mentioned tables are controlled via the uri_namespace and external_database tables. Part of the project was to extract historical evidence from digitized texts, via annotations. Annotations are placed in a document, which is a digital version of a source. An annotation can be one of the four instance types, thereby referencing a place, person, religion, or time group. A reference to the annotation is stored in the instance, and evidences are constructed from annotations by connecting the respective instances in an evidence tuple.

  7. Data from: Re-assembling the past: The RePAIR dataset and benchmark for real...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    txt, zip
    Updated Nov 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Theodore Tsesmelis; Theodore Tsesmelis; Luca Palmieri; Luca Palmieri; Marina Khoroshiltseva; Marina Khoroshiltseva; Adeela Islam; Gur Elkin; Ofir Shahar Itzhak; Gianluca Scarpellini; Stefano Fiorini; Yaniv Ohayon; Nadav Alali; Sinem Aslan; Pietro Morerio; Sebastiano Vascon; Elena Gravina; Maria Christina Napolitano; Giuseppe Scarpati; Gabriel Zuchtriegel; Alexandra Spühler; Michel E. Fuchs; Stuart James; Ohad Ben-Shahar; Marcello Pelillo; Alessio Del Bue; Adeela Islam; Gur Elkin; Ofir Shahar Itzhak; Gianluca Scarpellini; Stefano Fiorini; Yaniv Ohayon; Nadav Alali; Sinem Aslan; Pietro Morerio; Sebastiano Vascon; Elena Gravina; Maria Christina Napolitano; Giuseppe Scarpati; Gabriel Zuchtriegel; Alexandra Spühler; Michel E. Fuchs; Stuart James; Ohad Ben-Shahar; Marcello Pelillo; Alessio Del Bue (2024). Re-assembling the past: The RePAIR dataset and benchmark for real world 2D and 3D puzzle solving [Dataset]. http://doi.org/10.5281/zenodo.13993089
    Explore at:
    zip, txtAvailable download formats
    Dataset updated
    Nov 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Theodore Tsesmelis; Theodore Tsesmelis; Luca Palmieri; Luca Palmieri; Marina Khoroshiltseva; Marina Khoroshiltseva; Adeela Islam; Gur Elkin; Ofir Shahar Itzhak; Gianluca Scarpellini; Stefano Fiorini; Yaniv Ohayon; Nadav Alali; Sinem Aslan; Pietro Morerio; Sebastiano Vascon; Elena Gravina; Maria Christina Napolitano; Giuseppe Scarpati; Gabriel Zuchtriegel; Alexandra Spühler; Michel E. Fuchs; Stuart James; Ohad Ben-Shahar; Marcello Pelillo; Alessio Del Bue; Adeela Islam; Gur Elkin; Ofir Shahar Itzhak; Gianluca Scarpellini; Stefano Fiorini; Yaniv Ohayon; Nadav Alali; Sinem Aslan; Pietro Morerio; Sebastiano Vascon; Elena Gravina; Maria Christina Napolitano; Giuseppe Scarpati; Gabriel Zuchtriegel; Alexandra Spühler; Michel E. Fuchs; Stuart James; Ohad Ben-Shahar; Marcello Pelillo; Alessio Del Bue
    Description

    Accepted by NeurIPS 2024 Datasets and Benchmarks Track

    We introduce the RePair puzzle-solving dataset, a large-scale real world dataset of fractured frescoes from the archaelogical campus of Pompeii. Our dataset consists of over 1000 fractured frescoes. The RePAIR stands as a realistic computational challenge for methods for 2D and 3D puzzle solving, and serves as a benchmark that enables the study of fractured object reassembly and presents new challenges for geometric shape understanding. Please visit our website for more dataset information, access to source code scripts and for an interactive gallery viewing of the dataset samples.

    Access the entire dataset

    We provide a compressed version of our dataset in two seperate files. One for the 2D version and one for the 3D version.

    Our full dataset contains over one thousand individual fractured fragments divided into groups with its corresponding folder and all compressed into their individual sub-set format regarding whether they are 2D or 3D. Regarding the 2D dataset, each fragment is saved as a .PNG image and each group has the corresponding ground truth transformation to solve the puzzle as a .TXT file. Considering the 3D dataset, each fragment is saved as a mesh using the widely .OBJ format with the corresponding material (.MTL) and texture (.PNG) file. The meshes are already in the assembled position and orientation, so that no additional information is needed. All additional metadata information are given as .JSON files.

    Important Note

    Please be advised that downloading and reusing this dataset is permitted only upon acceptance of the following license terms.

    The Istituto Italiano di Tecnologia (IIT) declares, and the user (“User”) acknowledges, that the "RePAIR puzzle-solving dataset" contains 3D scans, texture maps, rendered images and meta-data of fresco fragments acquired at the Archaeological Site of Pompeii. IIT is authorised to publish the RePAIR puzzle-solving dataset herein only for scientific and cultural purposes and in connection with an academic publication referenced as Tsemelis et al., "Re-assembling the past: The RePAIR dataset and benchmark for real world 2D and 3D puzzle solving", NeurIPS 2024. Use of the RePAIR puzzle-solving dataset by User is limited to downloading, viewing such images; comparing these with data or content in other datasets. User is not authorised to use, in particular explicitly excluding any commercial use nor in conjunction with the promotion of a commercial enterprise and/or its product(s) or service(s), reproduce, copy, distribute the RePAIR puzzle-solving dataset. User will not use the RePAIR puzzle-solving dataset in any way prohibited by applicable laws. RePAIR puzzle-solving dataset therein is being provided to User without warranty of any kind, either expressed or implied. User will be solely responsible for their use of such RePAIR puzzle-solving dataset. In no event shall IIT be liable for any damages arising from such use.

  8. D

    Arab West Report 2004, Weeks 01-52: Insights into Muslim-Christian Relations...

    • ssh.datastations.nl
    pdf, zip
    Updated Jan 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    C. Hulsman; C. Hulsman (2017). Arab West Report 2004, Weeks 01-52: Insights into Muslim-Christian Relations and Interfaith Dialogue [Dataset]. http://doi.org/10.17026/DANS-Z45-MRUZ
    Explore at:
    pdf(159043), pdf(4956), pdf(143497), pdf(195047), pdf(71236), pdf(154014), pdf(141406), pdf(186031), pdf(125028), pdf(69241), pdf(73973), pdf(10674), pdf(117441), pdf(85068), pdf(110014), pdf(74867), pdf(87546), pdf(8919), pdf(133845), pdf(81638), pdf(139130), pdf(92908), pdf(75489), pdf(167343), pdf(260113), pdf(161149), pdf(144667), pdf(154353), pdf(108532), pdf(90795), pdf(215962), pdf(69065), pdf(129687), pdf(153102), pdf(141511), pdf(146346), zip(104687), pdf(132767), pdf(133815), pdf(17761), pdf(70850), pdf(85244), pdf(154558), pdf(64951), pdf(125732), pdf(89462), pdf(90945), pdf(86837), pdf(370623), pdf(118044), pdf(91190), pdf(105135), pdf(148669), pdf(83533), pdf(76428), pdf(82756), pdf(75522), pdf(80243), pdf(95429), pdf(87591), pdf(86999), pdf(7037), pdf(89276), pdf(77732), pdf(224327), pdf(84230), pdf(143559), pdf(7815), pdf(102487), pdf(82038), pdf(99911)Available download formats
    Dataset updated
    Jan 16, 2017
    Dataset provided by
    DANS Data Station Social Sciences and Humanities
    Authors
    C. Hulsman; C. Hulsman
    License

    https://doi.org/10.17026/fp39-0x58https://doi.org/10.17026/fp39-0x58

    Description

    This dataset contains the Arab-West Report special reports that were published in 2004.This dataset mainly contains the writings of Cornelis Hulsman ,Drs., among other authors on topics related to Muslim- Christian relations and interfaith dialogue between the West and Islamic world. Additionally this dataset contains reports pertaining to certain Muslim –Christian incidents and reports about allegations of forced conversions of Coptic girls. Some of the articles addressed the issue of missionaries.Further reports address monastic life and recommendations of Arab-West Report's work by other social figures.Furthermore, the dataset included commentary on published material from other sources (reviews/critique of articles from other media).Some of the themes that characterized this dataset:-A description of the history of the conflicts around the development of the convent of Patmos on the Cairo-Suez road.-An overview of a book titled “Christians versus Muslims in Modern Egypt: The Century-Long Struggle for Coptic Equality” by S. S. Hasan.- Rumors of forced conversions Of Coptic girls: A report by Hulsman stated that the US Copts Association published a press release on March 25, 2004 with the title “Coptic Pope Denounces Forced Conversion of Coptic Girls.” He criticized that the US Copts Association for not making much of an effort, if any, to check the veracity of the rumors.- A Glimpse into Monastic Life in Egypt: A Visit to St. Maqarius Monastery:- Another report covered the incident in which a priest and two members of the church board of Taha al-ʿAmeda died after an accident with a speeding car driven by a police officer.- A critique of Al-Usbuʿa newspapers: the author accused the newspaper of cherry-picking statements by Coptic extremists, who are much disliked in the US Coptic community and who have no following. He considered that quoting statements from such isolated radicals gives readers the impression that they represent much more than a few individuals. It has all appearance that al-Usbuʿa has highlighted these radicals to create fear and harm the reputation of US Copts in Egypt.- A number of reports highlighted a visit and the speech delivered by the Archbishop of Canterbury, Dr George Carey (Lord Carey) at the Azhar entitled “Muslims/Christian Relationships: A New Age Of Hope?”- A report covered the first visit made by Archbishop Rowan Williams to the Diocese of Egypt since he became the Archbishop of Canterbury. The archbishop met with President Mubarak, Dr. Muhammad Sayyed Tantawi, the Grand Imam of the Azhar, Pope Shenouda and also laid the foundation stone of Harpur Community Health Centre in Sadat City.- Updates on the developments of AWR’s work to create an electronic archive of information pertaining to relations between Muslims and Christians in the Arab-World in general and Egypt in particular.Additionally, this dataset also provides updates of the then-under construction - Center for Arab-West Understanding (CAWU) web-based Electronic Documentation Center (EDC) for contemporary information covering Arab-West and Muslim-Christian relations.- A report discussed the misconceptions of Christians in Islam.- An editorial commenting on the assassination of Theo van Gogh resulted in a debate in Dutch media about the limits of the freedom of expression.- An article calling on the western readers to be careful with Christian persecution stories from Egypt, they may be true but also may be rumours.-The Muslim World And The West; What Can Be Done To Reduce Tensions?-Text of a lecture for students and professors of different faculties at the University of Copenhagen, , about plans to establish the Center for Arab-West Understanding in Cairo, Egypt.- Escalations following the alleged conversion of A priest’s wife to IslamThe list of authors’ featurd in this dataset goes as follows:Cornelis Hulsman, Drs. , Wolfram Reiss, Rev. Dr. , John H. Watson, Kim Kwang-Chan, Dr. , Kamal Abu al-Majd, Fiona McCallum, Mary Picard , Jeff Adams, Dr., Rev., Jennie Marshall , Marcos Emil Mikhael, Usamah W. al-Ahwani, Sawsan Jabrah and Nirmin Fawzi, Hānī Labīb, George Carey (Lord), Rowan Williams, Lambeth Palace Press Office, H.G. Bishop Munir Hanna Anis Armanius, Eildert Mulder, Rīhām Saʿīd, Tharwat al-Kharabāwī, Geir Valle, Janique Blattman, Iqbal Barakah , Munā ʿUmar, Dieter Tewes, ʿAmr Asʿad Khalīl, Dr., Janique Blattmann, Vera Milackova, Tamir Shukri, and Christiane Paulus All reports are written in English, though some reports feature Arabic text or cite Arabic sources.

  9. I

    India Census: Population: by Religion: Muslim: Urban

    • ceicdata.com
    Updated Apr 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). India Census: Population: by Religion: Muslim: Urban [Dataset]. https://www.ceicdata.com/en/india/census-population-by-religion/census-population-by-religion-muslim-urban
    Explore at:
    Dataset updated
    Apr 7, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2001 - Mar 1, 2011
    Area covered
    India
    Variables measured
    Population
    Description

    India Census: Population: by Religion: Muslim: Urban data was reported at 68,740,419.000 Person in 2011. This records an increase from the previous number of 49,393,496.000 Person for 2001. India Census: Population: by Religion: Muslim: Urban data is updated yearly, averaging 59,066,957.500 Person from Mar 2001 (Median) to 2011, with 2 observations. The data reached an all-time high of 68,740,419.000 Person in 2011 and a record low of 49,393,496.000 Person in 2001. India Census: Population: by Religion: Muslim: Urban data remains active status in CEIC and is reported by Census of India. The data is categorized under India Premium Database’s Demographic – Table IN.GAE001: Census: Population: by Religion.

  10. D

    Arab West Report 2007, Weeks 04-51: Media Critique, The Question of...

    • ssh.datastations.nl
    pdf, zip
    Updated Nov 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    C. Hulsman; C. Hulsman (2016). Arab West Report 2007, Weeks 04-51: Media Critique, The Question of Conversion, and Muslim-Christian Relations [Dataset]. http://doi.org/10.17026/DANS-X68-U8KB
    Explore at:
    pdf(138039), pdf(153470), pdf(84315), pdf(152776), pdf(93729), pdf(117224), pdf(97726), zip(71724), pdf(123118), pdf(297914), pdf(102302), pdf(133447), pdf(79545), pdf(80536), pdf(162162), pdf(159188), pdf(124555), pdf(88603), pdf(212088), pdf(365500), pdf(165159), pdf(143577), pdf(275992), pdf(138991), pdf(115317), pdf(77410), pdf(264202), pdf(268973), pdf(206390), pdf(117390), pdf(76825)Available download formats
    Dataset updated
    Nov 23, 2016
    Dataset provided by
    DANS Data Station Social Sciences and Humanities
    Authors
    C. Hulsman; C. Hulsman
    License

    https://doi.org/10.17026/fp39-0x58https://doi.org/10.17026/fp39-0x58

    Description

    This dataset contains the Arab-West Report special reports that were published in 2007. This dataset mainly contains the writings of Cornelis Hulsman, Drs., among other authors on topics related to Muslim- Christian relations and interfaith dialogue. Additionally, this dataset features certain reports related to the Christian faith in Egypt, Monastic life and Coptic traditions.Some of the articles address the media coverage of Muslim-Christian incidents and sectarian tensions, and how biased media reporting can often exacerbate existing tensions between groups. These articles feature a number of interviews conducted by Arab West Report with prominent social figures and scholars.Additionally, reports from this dataset discuss conversion cases and interfaith meetings that were held at the time. This dataset also contains media critique from Arab West Report Editor-in-Chief Cornelis Hulsman, Drs.Some of the themes that characterize this dataset include:- Authors report on their trip to see the celebration of the Holy Family crossing the Nile River in a village in Upper Egypt. They reflect on their experiences and the need to improve dialogue between Muslims and Christians in Egypt.- An overview of a forum organized by the Center for Civilizational Studies and Dialogue between Cultures at Cairo University to introduce a book written by Father Christian van Nispen, sj, entitled, ‘Christians and Muslims: Brothers before God.’ van Nispen’s principle argument is that both Muslims and Christians worship one and the same God, but according to different understandings.- Another report highlighted the second conference on bias, entitled: ‘The International Conference for Dialogue between Civilizations and the Different Tracks of Knowledge.’ The 4-day conference, was sponsored by the Program for Civilizational Studies and Dialogue between Cultures at Cairo University, and the International Institute of Islamic Thought.- The Arab West Report annual report: The Center for Arab-West Understanding presents its annual report for 2006.Media critique:- “Minister Of Awqaf Dr. Hamdi Zakzouk Falsely Accused Of Calling For The Death Penalty For Apostates From Islam”: Arab-West Report responds to media claims that Dr. Hamdi Zakzouk called for the death penalty for apostates from Islam.-In another report, the authors stress that misguided media reporting often only serves to further tensions, particularly in cases of sectarian strife. Another article presents the transcript of a lecture for the Arab Thought Forum. It considers media distortions and mis-representation in the media that only serve to further antagonize Muslim-Christian relations and the perception of Islam / the Arab world in the West. Cornelis Hulsman, Drs., explains the role of the Center for Arab West Understanding, and the importance of constructive, unbiased, and fully researched journalism.-Hulsman stressed in one of his articles that media frequently manipulate headlines in an effort to present stories in the context they desire. Headlines are also frequently sensationalized in an effort to attract a larger number of readers, but if this also distorts a story this should be questioned. Cornelis Hulsman, Drs., stresses the danger of ignorant media reporting, and the damage that inaccurate fact-checking can cause. He provides a number of examples from various intellectuals, commenting on stories that have been sensationalized in the media, and the negative effects this reporting had on Arab-West relations and on furthering dialogue between the Islamic and Arab world and the West.Interviews:-“An interview With Father Basilius About Father Matta Al-Maskin”: Father Basilius discusses the history and theological philosophies of Father Mattá al-Maskīn. The interview is mainly focused on theology and the practices of clergymen.- An interview with Tarek Heggy at CIDT where Drs. Cornelis Hulsman and staff members discuss sensitive issues throughout the Arab world.- An interview by AWR/ CIDT interns with Dr. Hala Mustafa, where she comments on her role in the National Democratic Party’s Policies Committee, her opinions on reform in Egypt, critiques the role of Egyptian security, and outlines the necessary steps needed for reform to take effect.- “Saad Eddin Ibrahim Meets With CIDT Interns To Discuss How Islamists Have Changed”: Saad Eddin Ibrahim, is one of the most outspoken critics of the Egyptian government, who was imprisoned from 2000-2003 for his critique. Saad Eddin Ibrahim is a liberal secularist, but as a result of his strong democratic stance, he defends the rights of all groups in society, including Islamists, to participate in the politics of the country. CIDT-interns met with him for a talk about his life and his views.-A review of the Annual Anglican-Al Azhar Interfaith Meeting Dialogue held in All-Saints Cathedral which implicitly dealt with dialogue and means of furthering it.-A report on church response to poverty in Egypt and specifically how this...

  11. India Survey Dataset

    • pewresearch.org
    Updated Dec 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neha Sahgal; Jonathan Evans (2021). India Survey Dataset [Dataset]. http://doi.org/10.58094/rfte-a185
    Explore at:
    Dataset updated
    Dec 7, 2021
    Dataset provided by
    Pew Research Centerhttp://pewresearch.org/
    datacite
    Authors
    Neha Sahgal; Jonathan Evans
    License

    https://www.pewresearch.org/about/terms-and-conditions/https://www.pewresearch.org/about/terms-and-conditions/

    Dataset funded by
    The Pew Charitable Trustshttps://www.pew.org/
    John Templeton Foundation
    Description

    Pew Research Center conducted face-to-face surveys among 29,999 adults (ages 18 and older) across 26 Indian states and three union territories in 17 languages. The sample includes interviews with 22,975 Hindus, 3,336 Muslims, 1,782 Sikhs, 1,011 Christians, 719 Buddhists and 109 Jains. An additional 67 respondents belong to other religions or are religiously unaffiliated. Six groups were targeted for oversampling as part of the survey design: Muslims, Christians, Sikhs, Buddhists, Jains and those living in the Northeast region. Interviews were conducted under the direction of RTI International from November 17, 2019, to March 23, 2020. Data collection used computer-assisted personal interviews (CAPI) after random selection of households.

    This project was produced by Pew Research Center as part of the Pew-Templeton Global Religious Futures project, which analyzes religious change and its impact on societies around the world. Funding for the Global Religious Futures project comes from The Pew Charitable Trusts and the John Templeton Foundation.

    Two reports focused on the findings from this data: •Religion in India: Tolerance and Segregation: https://www.pewresearch.org/religion/2021/06/29/religion-in-india-tolerance-and-segregation/ •How Indians View Gender Roles in Families and Society: https://www.pewresearch.org/religion/2022/03/02/how-indians-view-gender-roles-in-families-and-society/

  12. Radical Islamic Terrorism Attacks 2015-2019

    • kaggle.com
    zip
    Updated Aug 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ma7555 (2019). Radical Islamic Terrorism Attacks 2015-2019 [Dataset]. https://www.kaggle.com/ma7555/radical-islamic-terrorism-attacks-20152019
    Explore at:
    zip(306073 bytes)Available download formats
    Dataset updated
    Aug 26, 2019
    Authors
    ma7555
    Description

    Context

    This is believed to be an unbiased fact-based dataset to get a better understanding of how much damage that the Islamic extremists are doing to the world.

    Content

    These are not incidents of ordinary crime involving nominal Muslims killing for money or vendetta. Incidents of deadly violence that are reasonably determined to have been committed out of religious duty - as interpreted by the perpetrator - are only included. Islam needs to be a motive, but it need not be the only factor.

    For example, the Munich mall shooting in July, 2016 was by a Muslim, but it is not on the list, because it was not inspired by a sense of religious duty.

    The incidents were collected each day from public news sources. There is no rumor or word-of-mouth involved. Although every attempt is made to be accurate and consistent, we are not making the claim that this is a scientific product.

    Acknowledgements

    This dataset is available here on Kaggle, thanks to TheReligionofPeace.com

    Inspiration

    The point of this dataset is not to convince anyone that they are in mortal danger or that Muslims are innately dangerous people (they are not, of course). Rather it is to point out the sort of terrorism that some of "Religion of Peace" believers produce. It should be acceptable to question and critique the teachings and phrases interpretation particularly those that are supremacist in nature.

  13. Iran (Islamic Republic of) - Food Prices

    • data.amerigeoss.org
    csv
    Updated Feb 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2023). Iran (Islamic Republic of) - Food Prices [Dataset]. https://data.amerigeoss.org/sq/dataset/6df76343-1bd9-488a-af3c-1e5aec3fc78c
    Explore at:
    csv(7784), csv(103366)Available download formats
    Dataset updated
    Feb 14, 2023
    Dataset provided by
    United Nationshttp://un.org/
    Area covered
    Iran
    Description

    This dataset contains Food Prices data for Iran (Islamic Republic of), sourced from the World Food Programme Price Database. The World Food Programme Price Database covers foods such as maize, rice, beans, fish, and sugar for 98 countries and some 3000 markets. It is updated weekly but contains to a large extent monthly data. The data goes back as far as 1992 for a few countries, although many countries started reporting from 2003 or thereafter.

  14. f

    Data from: A modest proposal for conducting future research on media...

    • figshare.com
    • data.niaid.nih.gov
    • +2more
    pdf
    Updated Dec 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harits Masduqi (2021). A modest proposal for conducting future research on media portrayals of Islam and Muslims in Indonesia [Dataset]. http://doi.org/10.6084/m9.figshare.16681825.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Dec 28, 2021
    Dataset provided by
    figshare
    Authors
    Harits Masduqi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    Recent issues on politics have been dominant in Indonesia that people are divided and become more intolerant of each other. Indonesia has the biggest Muslim population in the world and the role of Islam in Indonesian politics is significant. The current Indonesian government claim that moderate Muslims are loyal to the present political system while the opposing rivals who are often labelled’intolerant and radical Muslims’ by Indonesian mass media often disagree with the central interpretation of democracy in Indonesia. Studies on contributing factors and discourse strategies used in news and articles in secular and Islamic mass media which play a vital role in the construction of Muslim and Islamic identities in Indonesia are, therefore, recommended.

  15. h

    sdfc

    • huggingface.co
    Updated Sep 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kibods (2025). sdfc [Dataset]. https://huggingface.co/datasets/kibods/sdfc
    Explore at:
    Dataset updated
    Sep 20, 2025
    Authors
    kibods
    Description

    Learning Quran recitation online has become one of the most effective and convenient ways for Muslims around the world to connect with the Holy Book. With the advancement of technology, students can now access qualified Quran teachers from different countries without leaving their homes. Online platforms provide interactive classes that focus on Tajweed rules, correct pronunciation, and fluency in recitation. This method is especially helpful for beginners, children, and busy adults who may… See the full description on the dataset page: https://huggingface.co/datasets/kibods/sdfc.

  16. The Holy Quran - English Translation Dataset

    • kaggle.com
    zip
    Updated Oct 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ridho Pandhu (2023). The Holy Quran - English Translation Dataset [Dataset]. https://www.kaggle.com/datasets/ridhopandhu/the-holy-quran-english-translation-dataset/versions/1
    Explore at:
    zip(358348 bytes)Available download formats
    Dataset updated
    Oct 29, 2023
    Authors
    Ridho Pandhu
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15070006%2Fda30b3bab0ba1ad16529f6b0be33f2c3%2Fxian.jpg?generation=1698558286455813&alt=media" alt=""> Great Mosque of Xi'an - China



    Context & Inspiration

    Seize this invaluable opportunity to immerse yourself in the sacred verses of the Quran, a source of profound wisdom, spiritual guidance, and cultural significance in the Islamic world. Whether you're a dedicated researcher, a passionate data enthusiast, or simply an individual with a thirst for knowledge and a desire to connect with diverse cultures, this dataset opens doors to a treasure trove of information.

    By exploring '**The Holy Quran - English Translation Dataset**' sourced from online Quranic resources, you not only gain access to a comprehensive English translation but also a deeper understanding of the Islamic faith, its historical context, and the values it embodies. This endeavor goes beyond data analysis; it's an invitation to engage with a rich cultural heritage that spans centuries, fostering cross-cultural appreciation, and illuminating the shared human experience.

    Unearth the profound beauty and timeless depth of the Quran's verses, and embark on a transformative journey of enlightenment through the power of data analysis and exploration. Let your exploration of this dataset inspire a greater appreciation for the wisdom and teachings contained within, ultimately enriching your understanding of Islam and its global impact.


    Disclaimer

    Please use 'The Holy Quran - English Translation Dataset' responsibly and with utmost sensitivity. This dataset contains sacred and religious text, and its contents should be handled with the highest level of respect and consideration. It is important to note that the dataset provides the original English translation sourced from online Quranic resources, and it is not intended for any form of misuse, misrepresentation, or disrespectful usage.

    We urge all users to approach this dataset with a deep understanding of the religious and cultural significance of the Quran. Any analysis, research, or exploration should be conducted in a manner that respects the sanctity of the text and the beliefs of those who hold it dear.

    Furthermore, it is crucial to recognize that this dataset serves as a reference tool and does not endorse any particular interpretation or religious viewpoint. The dataset's purpose is to facilitate the study and understanding of the Quran's English translation, its historical context, and its cultural relevance.

    We kindly request all users to exercise discretion, empathy, and cultural sensitivity when using this dataset. Please be aware of the potential impact your work may have and take every precaution to ensure that it promotes understanding and goodwill among all individuals, regardless of their beliefs or backgrounds.

  17. w

    Global Financial Inclusion (Global Findex) Database 2021 - Iran, Islamic...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Dec 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Research Group, Finance and Private Sector Development Unit (2022). Global Financial Inclusion (Global Findex) Database 2021 - Iran, Islamic Rep. [Dataset]. https://microdata.worldbank.org/index.php/catalog/4655
    Explore at:
    Dataset updated
    Dec 16, 2022
    Dataset authored and provided by
    Development Research Group, Finance and Private Sector Development Unit
    Time period covered
    2021
    Area covered
    Iran
    Description

    Abstract

    The fourth edition of the Global Findex offers a lens into how people accessed and used financial services during the COVID-19 pandemic, when mobility restrictions and health policies drove increased demand for digital services of all kinds.

    The Global Findex is the world's most comprehensive database on financial inclusion. It is also the only global demand-side data source allowing for global and regional cross-country analysis to provide a rigorous and multidimensional picture of how adults save, borrow, make payments, and manage financial risks. Global Findex 2021 data were collected from national representative surveys of about 128,000 adults in more than 120 economies. The latest edition follows the 2011, 2014, and 2017 editions, and it includes a number of new series measuring financial health and resilience and contains more granular data on digital payment adoption, including merchant and government payments.

    The Global Findex is an indispensable resource for financial service practitioners, policy makers, researchers, and development professionals.

    Geographic coverage

    National coverage

    Analysis unit

    Individual

    Kind of data

    Observation data/ratings [obs]

    Sampling procedure

    In most developing economies, Global Findex data have traditionally been collected through face-to-face interviews. Surveys are conducted face-to-face in economies where telephone coverage represents less than 80 percent of the population or where in-person surveying is the customary methodology. However, because of ongoing COVID-19 related mobility restrictions, face-to-face interviewing was not possible in some of these economies in 2021. Phone-based surveys were therefore conducted in 67 economies that had been surveyed face-to-face in 2017. These 67 economies were selected for inclusion based on population size, phone penetration rate, COVID-19 infection rates, and the feasibility of executing phone-based methods where Gallup would otherwise conduct face-to-face data collection, while complying with all government-issued guidance throughout the interviewing process. Gallup takes both mobile phone and landline ownership into consideration. According to Gallup World Poll 2019 data, when face-to-face surveys were last carried out in these economies, at least 80 percent of adults in almost all of them reported mobile phone ownership. All samples are probability-based and nationally representative of the resident adult population. Phone surveys were not a viable option in 17 economies that had been part of previous Global Findex surveys, however, because of low mobile phone ownership and surveying restrictions. Data for these economies will be collected in 2022 and released in 2023.

    In economies where face-to-face surveys are conducted, the first stage of sampling is the identification of primary sampling units. These units are stratified by population size, geography, or both, and clustering is achieved through one or more stages of sampling. Where population information is available, sample selection is based on probabilities proportional to population size; otherwise, simple random sampling is used. Random route procedures are used to select sampled households. Unless an outright refusal occurs, interviewers make up to three attempts to survey the sampled household. To increase the probability of contact and completion, attempts are made at different times of the day and, where possible, on different days. If an interview cannot be obtained at the initial sampled household, a simple substitution method is used. Respondents are randomly selected within the selected households. Each eligible household member is listed, and the hand-held survey device randomly selects the household member to be interviewed. For paper surveys, the Kish grid method is used to select the respondent. In economies where cultural restrictions dictate gender matching, respondents are randomly selected from among all eligible adults of the interviewer's gender.

    In traditionally phone-based economies, respondent selection follows the same procedure as in previous years, using random digit dialing or a nationally representative list of phone numbers. In most economies where mobile phone and landline penetration is high, a dual sampling frame is used.

    The same respondent selection procedure is applied to the new phone-based economies. Dual frame (landline and mobile phone) random digital dialing is used where landline presence and use are 20 percent or higher based on historical Gallup estimates. Mobile phone random digital dialing is used in economies with limited to no landline presence (less than 20 percent).

    For landline respondents in economies where mobile phone or landline penetration is 80 percent or higher, random selection of respondents is achieved by using either the latest birthday or household enumeration method. For mobile phone respondents in these economies or in economies where mobile phone or landline penetration is less than 80 percent, no further selection is performed. At least three attempts are made to reach a person in each household, spread over different days and times of day.

    Sample size for Iran, Islamic Rep. is 1005.

    Mode of data collection

    Landline and mobile telephone

    Research instrument

    Questionnaires are available on the website.

    Sampling error estimates

    Estimates of standard errors (which account for sampling error) vary by country and indicator. For country-specific margins of error, please refer to the Methodology section and corresponding table in Demirgüç-Kunt, Asli, Leora Klapper, Dorothe Singer, Saniya Ansar. 2022. The Global Findex Database 2021: Financial Inclusion, Digital Payments, and Resilience in the Age of COVID-19. Washington, DC: World Bank.

  18. w

    Iran, Islamic Rep. - Global Financial Inclusion (Global Findex) Database...

    • datacatalog.worldbank.org
    html
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iran, Islamic Rep. - Global Financial Inclusion (Global Findex) Database 2017 [Dataset]. https://datacatalog.worldbank.org/search/dataset/0048504/Iran--Islamic-Rep----Global-Financial-Inclusion--Global-Findex--Database-2017
    Explore at:
    htmlAvailable download formats
    License

    https://datacatalog.worldbank.org/public-licenses?fragment=researchhttps://datacatalog.worldbank.org/public-licenses?fragment=research

    Area covered
    Iran
    Description

    Financial inclusion is critical in reducing poverty and achieving inclusive economic growth. When people can participate in the financial system, they are better able to start and expand businesses, invest in their children’s education, and absorb financial shocks. Yet prior to 2011, little was known about the extent of financial inclusion and the degree to which such groups as the poor, women, and rural residents were excluded from formal financial systems.

    By collecting detailed indicators about how adults around the world manage their day-to-day finances, the Global Findex allows policy makers, researchers, businesses, and development practitioners to track how the use of financial services has changed over time. The database can also be used to identify gaps in access to the formal financial system and design policies to expand financial inclusion.

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). Religious Populations Worldwide [Dataset]. https://www.kaggle.com/datasets/thedevastator/religious-populations-worldwide
Organization logo

Religious Populations Worldwide

Religious Populations Worldwide by Year and Category

Explore at:
15 scholarly articles cite this dataset (View in Google Scholar)
zip(481071 bytes)Available download formats
Dataset updated
Dec 8, 2023
Authors
The Devastator
Description

Religious Populations Worldwide

Religious Populations Worldwide by Year and Category

By Throwback Thursday [source]

About this dataset

The dataset includes data on Christianity, Islam, Judaism, Buddhism, Hinduism, Sikhism, Shintoism, Baha'i Faith, Taoism, Confucianism, Jainism and various other syncretic and animist religions. For each religion or denomination category, it provides both the total population count and the percentage representation in relation to the overall population.

Additionally, - Columns labeled with Population provide numeric values representing the total number of individuals belonging to a particular religion or denomination. - Columns labeled with Percent represent numerical values indicating the percentage of individuals belonging to a specific religion or denomination within a given population. - Columns that begin with ** indicate primary categories (e.g., Christianity), while columns that do not have this prefix refer to subcategories (e.g., Christianity - Roman Catholics).

In addition to providing precise data about specific religions or denominations globally throughout multiple years,this dataset also records information about geographical locations by including state or country names under StateNme.

This comprehensive dataset is valuable for researchers seeking information on global religious trends and can be used for analysis in fields such as sociology, anthropology studies cultural studies among others

How to use the dataset

Introduction:

  • Understanding the Columns:

  • Year: Represents the year in which the data was recorded.

  • StateNme: Represents the name of the state or country for which data is recorded.

  • Population: Represents the total population of individuals.

  • Total Religious: Represents the total percentage and population of individuals who identify as religious, regardless of specific religion.

  • Non Religious: Represents the percentage and population of individuals who identify as non-religious or atheists.

  • Identifying Specific Religions: The dataset includes columns for different religions such as Christianity, Judaism, Islam, Buddhism, Hinduism, etc. Each religion is further categorized into specific denominations or types within that religion (e.g., Roman Catholics within Christianity). You can find relevant information about these religions by focusing on specific columns related to each one.

  • Analyzing Percentages vs. Population: Some columns provide percentages while others provide actual population numbers for each category. Depending on your analysis requirement, you can choose either column type for your calculations and comparisons.

  • Accessing Historical Data: The dataset includes records from multiple years allowing you to analyze trends in religious populations over time. You can filter data based on specific years using Excel filters or programming languages like Python.

  • Filtering Data by State/Country: If you are interested in understanding religious populations in a particular state or country, use filters to focus on that region's data only.

Example - Extracting Information:

Let's say you want to analyze Hinduism's growth globally from 2000 onwards:

  • Identify Relevant Columns:
  • Year: to filter data from 2000 onwards.
  • Hindu - Total (Percent): to analyze the percentage of individuals identifying as Hindus globally.

  • Filter Data:

  • Set a filter on the Year column and select values greater than or equal to 2000.

  • Look for rows where Hindu - Total (Percent) has values.

  • Analyze Results: You can now visualize and calculate the growth of Hinduism worldwide after filtering out irrelevant data. Use statistical methods or graphical representations like line charts to understand trends over time.

Conclusion: This guide has provided you with an overview of how to use the Rel

Research Ideas

  • Comparing religious populations across different countries: With data available for different states and countries, this dataset allows for comparisons of religious populations across regions. Researchers can analyze how different religions are distributed geographically and compare their percentages or total populations across various locations.
  • Studying the impact of historical events on religious demographics: Since the dataset includes records categorized by year, it can be used to study how historical events such as wars, migration, or political changes have influenced religious demographics over time. By comparing population numbers before and after specific events, resea...
Search
Clear search
Close search
Google apps
Main menu