Facebook
TwitterMultiyear estimates from the American Community Survey (ACS) are "period" estimates derived from a data sample collected over a period of time, as opposed to "point-in-time" estimates such as those from past decennial censuses. ACS 5-year estimate includes data collected over a 60-month period. The date of the data is the end of the 5-year period. For example, a value dated 2014 represents data from 2010 to 2014. However, they do not describe any specific day, month, or year within that time period.
Multiyear estimates require some considerations that single-year estimates do not. For example, multiyear estimates released in consecutive years consist mostly of overlapping years and shared data. The 2010–2014 ACS 5-year estimates share sample data from 2011 through 2014 with the 2011–2015 ACS 5-year estimates. Because of this overlap, users should use extreme caution in making comparisons with consecutive years of multiyear estimates.
Please see "Section 3: Understanding and Using ACS Single-Year and Multiyear Estimates" on publication page 13 (file page 19) of the 2018 ACS General Handbook for a more thorough clarification. https://www.census.gov/content/dam/Census/library/publications/2018/acs/acs_general_handbook_2018.pdf
This is a dataset from the U.S. Census Bureau hosted by the Federal Reserve Economic Database (FRED). FRED has a data platform found here and they update their information according the amount of data that is brought in. Explore the U.S. Census Bureau using Kaggle and all of the data sources available through the U.S. Census Bureau organization page!
Update Frequency: This dataset is updated daily.
Observation Start: 2009-01-01
Observation End : 2017-01-01
This dataset is maintained using FRED's API and Kaggle's API.
Facebook
TwitterEstimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Virginia population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Virginia. The dataset can be utilized to understand the population distribution of Virginia by age. For example, using this dataset, we can identify the largest age group in Virginia.
Key observations
The largest age group in Virginia was for the group of age 30 to 34 years years with a population of 596,257 (6.89%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Virginia was the 85 years and over years with a population of 148,515 (1.72%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Virginia Population by Age. You can refer the same here
Facebook
TwitterNOTE: This dataset replaces two previous ones. Please see below. Chicago residents who are up to date with COVID-19 vaccines, based on the reported address, race-ethnicity, sex, and age group of the person vaccinated, as provided by the medical provider in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE). “Up to date” refers to individuals who meet the CDC’s updated COVID-19 vaccination criteria based on their age and prior vaccination history. For surveillance purposes, up to date is defined based on the following criteria: People ages 5 years and older: · Are up to date when they receive 1+ doses of a COVID-19 vaccine during the current season. Children ages 6 months to 4 years: · Children who have received at least two prior COVID-19 vaccine doses are up to date when they receive one additional dose of COVID-19 vaccine during the current season, regardless of vaccine product. · Children who have received only one prior COVID-19 vaccine dose are up to date when they receive one additional dose of the current season's Moderna COVID-19 vaccine or two additional doses of the current season's Pfizer-BioNTech COVID-19 vaccine. · Children who have never received a COVID-19 vaccination are up to date when they receive either two doses of the current season's Moderna vaccine or three doses of the current season's Pfizer-BioNTech vaccine. This dataset takes the place of two previous datasets, which cover doses administered from December 15, 2020 through September 13, 2023 and are marked has historical: - https://data.cityofchicago.org/Health-Human-Services/COVID-19-Daily-Vaccinations-Chicago-Residents/2vhs-cf6b - https://data.cityofchicago.org/Health-Human-Services/COVID-19-Vaccinations-by-Age-and-Race-Ethnicity/37ac-bbe3. Data Notes: Weekly cumulative totals of people up to date are shown for each combination of race-ethnicity, sex, and age group. Note that race-ethnicity, age, and sex all have an option for “All” so care should be taken when summing rows. Coverage percentages are calculated based on the cumulative number of people in each race-ethnicity/age/sex population subgroup who are considered up to date as of the week ending date divided by the estimated number of people in that subgroup. Population counts are obtained from the 2020 U.S. Decennial Census. Actual counts may exceed population estimates and lead to coverage estimates that are greater than 100%, especially in smaller demographic groupings with smaller populations. Additionally, the medical provider may report incorrect demographic information for the person receiving the vaccination, which may lead to over- or underestimation of vaccination coverage. All coverage percentages are capped at 99%. Weekly cumulative counts and coverage percentages are reported from the week ending Saturday, September 16, 2023 onward through the Saturday prior to the dataset being updated. All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. At any given time, this dataset reflects data currently known to CDPH. Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined. The Chicago Department of Public Health uses the most complete data available to estimate COVID-19 vaccination coverage among Chicagoans, but there are several limitations that impact our estimates. Individuals may receive vaccinations that are not recorded in the Illinois immunization registry, I-CARE, such as those administered in another state, causing underestimation of the number individuals who are up to date. Inconsistencies in records of separate doses administered to the same person, such as slight variations in dates of birth, can result in duplicate records for a person and underestimate the number of people who are up to date.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138
Facebook
TwitterNote: In these datasets, a person is defined as up to date if they have received at least one dose of an updated COVID-19 vaccine. The Centers for Disease Control and Prevention (CDC) recommends that certain groups, including adults ages 65 years and older, receive additional doses.
On 6/16/2023 CDPH replaced the booster measures with a new “Up to Date” measure based on CDC’s new recommendations, replacing the primary series, boosted, and bivalent booster metrics The definition of “primary series complete” has not changed and is based on previous recommendations that CDC has since simplified. A person cannot complete their primary series with a single dose of an updated vaccine. Whereas the booster measures were calculated using the eligible population as the denominator, the new up to date measure uses the total estimated population. Please note that the rates for some groups may change since the up to date measure is calculated differently than the previous booster and bivalent measures.
This data is from the same source as the Vaccine Progress Dashboard at https://covid19.ca.gov/vaccination-progress-data/ which summarizes vaccination data at the county level by county of residence. Where county of residence was not reported in a vaccination record, the county of provider that vaccinated the resident is included. This applies to less than 1% of vaccination records. The sum of county-level vaccinations does not equal statewide total vaccinations due to out-of-state residents vaccinated in California.
These data do not include doses administered by the following federal agencies who received vaccine allocated directly from CDC: Indian Health Service, Veterans Health Administration, Department of Defense, and the Federal Bureau of Prisons.
Totals for the Vaccine Progress Dashboard and this dataset may not match, as the Dashboard totals doses by Report Date and this dataset totals doses by Administration Date. Dose numbers may also change for a particular Administration Date as data is updated.
Previous updates:
On March 3, 2023, with the release of HPI 3.0 in 2022, the previous equity scores have been updated to reflect more recent community survey information. This change represents an improvement to the way CDPH monitors health equity by using the latest and most accurate community data available. The HPI uses a collection of data sources and indicators to calculate a measure of community conditions ranging from the most to the least healthy based on economic, housing, and environmental measures.
Starting on July 13, 2022, the denominator for calculating vaccine coverage has been changed from age 5+ to all ages to reflect new vaccine eligibility criteria. Previously the denominator was changed from age 16+ to age 12+ on May 18, 2021, then changed from age 12+ to age 5+ on November 10, 2021, to reflect previous changes in vaccine eligibility criteria. The previous datasets based on age 16+ and age 5+ denominators have been uploaded as archived tables.
Starting on May 29, 2021 the methodology for calculating on-hand inventory in the shipped/delivered/on-hand dataset has changed. Please see the accompanying data dictionary for details. In addition, this dataset is now down to the ZIP code level.
Facebook
TwitterBy Robert Hoyt MD [source]
The Heart Disease Prediction dataset provides vital insight in the relationship between risk factors and cardiac health. This dataset contains 270 case studies of individuals classified as either having or not having heart disease based on results from cardiac catheterizations - the gold standard in heart health assessment. Each patient is identified by 13 independent predictive variables revealing their age, sex, chest pain type, blood pressure measurements, cholesterol levels, electrocardiogram results, exercise-induced angina symptoms, and the number of vessels seen on fluoroscopy showing narrowing of their coronary arteries. Provided with this data set is an opportunity to evaluate how these characteristics interact with each other in order to determine an individual’s level of risk for developing cardiovascular problems that lead to heart failure or stroke. With this knowledge we can create preventative strategies beyond what traditional medical treatment can do by identifying those at risk earlier and aid our healthcare professionals in treating them better. By analyzing a combination of clinical variables explained here, we have a powerful tool at our fingertips to try and combat cardiovascular illness before it even has the chance to take root!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides the information necessary to predict whether a patient has heart disease or not, using clinical variables. The dataset contains information from 270 patients and 13 independent predictive variables.
To use this dataset effectively, it is best to start by understanding the column attributes and their importance in predicting heart disease risk.
The attributes are Age, Sex, Chest Pain Type, BP (blood pressure), Cholesterol level, FBS over 120 (fasting blood sugar), EKG Results (electrocardiogram results), Max HR (maximum heart rate), Exercise Angina status, ST Depression ( depression of ST segment on ECG) , Slope of ST(slope of the ST segment on the ECG), Number of Vessels Fluroscopy (number of vessels seen on fluoroscopy) and Thallium Stress test results.
Understanding how each variable relates to heart disease risk will help you make better predictions based on this data set. For example age is one variable that affects the odds of someone having a heart attack or stroke as it relates to arterial blockages- so it is important to note if age could be an independent factor or if other factors could be enhancing the odds in an individual patient’s case . It should also be noted that although cholesterol levels are included in this data set , other laboratory parameters such as hdl cholesterol , triglycerides and ldl need to also be considered when assessing overall cardiovascular risk . Knowing gender can also play an important role when analyzing possible trends for diagnosing new cases with suspected cardiac symptoms . Finally , understanding exercise angina status can provide critical information about a patient’s history with exercise -induced chest pain which could result from myocardial ischemia .
Once you have understood all these factors along with other pertinent medical history including family medical background and lifestyle habits like smoking/ vaping , consuming alcohol etc., , you can use machine learning techniques along with logistic regression models such as k-nearest neighbours algorithms & decision trees to predict whether someone has a higher risk for developing cardiovascular problems like coronary artery disease [CAD]. This can help physicians plan out preventive measures for reducing chances for future myocardial infarctions [MIs] among such patients
- Developing predictive models to predict a patient's risk of having heart disease based on demographic and medical data.
- Creating an algorithm to classify patients with and without heart disease using all the available clinical characteristics including age, sex, chest pain type, BP, cholesterol, FBS over 120 and EKG results.
- Identifying patterns in the data that could help identify which factors have the biggest influence on a person's risk for developing heart disease. This could lead to better preventive health care measures for heart disease in general or for specific groups of people at higher risk than others (e.g., due to certain age or gender)
If you use this dataset in your research, please credit the original authors. [Data Source](https://data....
Facebook
TwitterHow many people use social media?
Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
Who uses social media?
Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
How much time do people spend on social media?
Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
What are the most popular social media platforms?
Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset shows Emergency Hospital Admissions for fractured neck of femur, for persons Age 65 and over by Gender. The data source (Office for Health Improvement and Disparities (OHID)) has indicated the following aspects in its commentary. Firstly, hip fracture is a debilitating condition - only one in three sufferers return to their former levels of independence, and one in three ends up leaving their own home and moving to long-term care. Hip fractures are almost as common and as costly to public services as strokes. Mortality from hip fracture is high - about one in ten people with a hip fracture die within a month, and about one in three die within a year. Within the 65 and over age group there are differences in hip fracture rates by Age and Gender. For data breakouts and more information please see the source link. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard European population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. Source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 4.14i (41401-E13). This data is updated annually.
Facebook
TwitterNumber of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
Facebook
TwitterFamilies of tax filers; Census families with children by age of children and children by age groups (final T1 Family File; T1FF).
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Blog Authorship Corpus Over 600,000 posts from more than 19 thousand bloggers
The Blog Authorship Corpus consists of the collected posts of 19,320 bloggers gathered from blogger.com in August 2004. The corpus incorporates a total of 681,288 posts and over 140 million words - or approximately 35 posts and 7250 words per person.
Each blog is presented as a separate file, the name of which indicates a blogger id# and the blogger’s self-provided gender, age, industry, and astrological sign. (All are labelled for gender and age but for many, industry and/or sign is marked as unknown.)
All bloggers included in the corpus fall into one of three age groups:
- 8240 "10s" blogs (ages 13-17),
- 8086 "20s" blogs(ages 23-27)
- 2994 "30s" blogs (ages 33-47)
For each age group, there is an equal number of male and female bloggers. Each blog in the corpus includes at least 200 occurrences of common English words. All formatting has been stripped with two exceptions. Individual posts within a single blogger are separated by the date of the following post and links within a post are denoted by the label urllink.
Facebook
TwitterThis table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
Facebook
TwitterThis dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
**Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool **
As of January 26, 2023, the population counts are based on Statistics Canada’s 2021 estimates. The coverage methodology has been revised to calculate age based on the current date and deceased individuals are no longer included. The method used to count daily dose administrations has changed is now based on the date delivered versus the day entered into the data system. Historical data has been updated.
Please note that Cases by Vaccination Status data will no longer be published as of June 30, 2022.
Please note that case rates by vaccination status and age group data will no longer be published as of July 13, 2022.
Please note that Hospitalization by Vaccination Status data will no longer be published as of June 30, 2022.
Learn more about COVID-19 vaccines.
All data reflects totals from 8 p.m. the previous day.
This dataset is subject to change.
Additional notes
Hospitalizations
Cases
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.
However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.
2 Data-set Introduction
2.1 Data Collection
We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:
The headline must have one or more words directly or indirectly related to COVID-19.
The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.
The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.
Avoid taking duplicate reports.
Maintain a time frame for the above mentioned newspapers.
To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.
2.2 Data Pre-processing and Statistics
Some pre-processing steps performed on the newspaper report dataset are as follows:
Remove hyperlinks.
Remove non-English alphanumeric characters.
Remove stop words.
Lemmatize text.
While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.
The primary data statistics of the two dataset are shown in Table 1 and 2.
Table 1: Covid-News-USA-NNK data statistics
No of words per headline
7 to 20
No of words per body content
150 to 2100
Table 2: Covid-News-BD-NNK data statistics No of words per headline
10 to 20
No of words per body content
100 to 1500
2.3 Dataset Repository
We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.
3 Literature Review
Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.
Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].
Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.
Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.
4 Our experiments and Result analysis
We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:
In February, both the news paper have talked about China and source of the outbreak.
StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.
Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.
Washington Post discussed global issues more than StarTribune.
StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.
While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.
We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases
where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,
Facebook
TwitterMultiyear estimates from the American Community Survey (ACS) are "period" estimates derived from a data sample collected over a period of time, as opposed to "point-in-time" estimates such as those from past decennial censuses. ACS 5-year estimate includes data collected over a 60-month period. The date of the data is the end of the 5-year period. For example, a value dated 2014 represents data from 2010 to 2014. However, they do not describe any specific day, month, or year within that time period.
Multiyear estimates require some considerations that single-year estimates do not. For example, multiyear estimates released in consecutive years consist mostly of overlapping years and shared data. The 2010–2014 ACS 5-year estimates share sample data from 2011 through 2014 with the 2011–2015 ACS 5-year estimates. Because of this overlap, users should use extreme caution in making comparisons with consecutive years of multiyear estimates.
Please see "Section 3: Understanding and Using ACS Single-Year and Multiyear Estimates" on publication page 13 (file page 19) of the 2018 ACS General Handbook for a more thorough clarification. https://www.census.gov/content/dam/Census/library/publications/2018/acs/acs_general_handbook_2018.pdf
This is a dataset from the U.S. Census Bureau hosted by the Federal Reserve Economic Database (FRED). FRED has a data platform found here and they update their information according the amount of data that is brought in. Explore the U.S. Census Bureau using Kaggle and all of the data sources available through the U.S. Census Bureau organization page!
Update Frequency: This dataset is updated daily.
Observation Start: 2009-01-01
Observation End : 2017-01-01
This dataset is maintained using FRED's API and Kaggle's API.