38 datasets found
  1. Total population worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

  2. Forest proximate people - 5km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Forest proximate people - 5km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b5
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Maintainer: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest proximate people - 5km cutoff distance"

  3. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  4. Gridded population maps of Germany from disaggregated census data and...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Mar 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Franz Schug; Franz Schug; David Frantz; David Frantz; Sebastian van der Linden; Patrick Hostert; Sebastian van der Linden; Patrick Hostert (2021). Gridded population maps of Germany from disaggregated census data and bottom-up estimates [Dataset]. http://doi.org/10.5281/zenodo.4601292
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 13, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Franz Schug; Franz Schug; David Frantz; David Frantz; Sebastian van der Linden; Patrick Hostert; Sebastian van der Linden; Patrick Hostert
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.

    Datasets

    DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.

    DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.

    DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.

    Please refer to the related publication for details.

    Temporal extent

    The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)

    The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)

    The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)

    The underlying census data is from 2018.

    Data format

    The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems.

    Further information

    For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de).
    A web-visualization of this dataset is available here.

    Publication

    Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044

    Acknowledgements

    Census data were provided by the German Federal Statistical Offices.

    Funding
    This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).

  5. Tree proximate people – Croplands, 1km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Tree proximate people – Croplands, 1km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/es/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b6
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Tree Proximate People" (TPP) dataset provides an estimate of the number of people living in or within 1 kilometer of trees outside forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level. Trees outside forests are defined as areas classified as croplands with at least 10% tree cover.

    For more detail, such as the theory behind, the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Maintainer: Sarah E., Castle

    Data lineage:

    The TPP data are generated using Google Earth Engine. Trees outside forests (TOFs) are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) fractional cover data layer using a minimum of 10% tree cover on croplands lands. Any area classified as land with TOFs sized ≥ 1 ha in 2019 was included in this definition. Lands classified as forests in CGLC were excluded from the analysis. Croplands were defined using the FAO-LCCS2 land use classification layer from MODIS Land Cover (MCD12Q1.006). Croplands were defined as the total of three classifications: 1) “Herbaceous Croplands”: dominated by herbaceous annuals (<2m) with at least 60% cover and a cultivated fraction >60%, 2) “Natural Herbaceous/Croplands Mosaics”: mosaics of small-scale cultivation 40-60% with natural shrub or herbaceous vegetation, and 3) “Forest/Cropland Mosaics”: mosaics of small-scale cultivation 40-60% with >10% natural tree cover. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 1 kilometer of TOFs on croplands in 2019 were classified as tree proximate people. Euclidean distance was used as the measure to create a 1-kilometer buffer zone around each TOF pixel. The scripts for generating the tree-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Tree proximate people – Croplands, 1km cutoff distance"

  6. n

    Station and ship person days

    • cmr.earthdata.nasa.gov
    cfm
    Updated Jul 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Station and ship person days [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214311276-AU_AADC.html
    Explore at:
    cfmAvailable download formats
    Dataset updated
    Jul 17, 2019
    Time period covered
    Oct 1, 1986 - Present
    Area covered
    Description

    Information was obtained from the ANARE Health Register. See Metadata record entitled ANARE Health Register.

    INDICATOR DEFINITION Human population in stations and ships expressed in person-days.

    TYPE OF INDICATOR There are three types of indicators used in this report: 1.Describes the CONDITION of important elements of a system; 2.Show the extent of the major PRESSURES exerted on a system; 3.Determine RESPONSES to either condition or changes in the condition of a system.

    This indicator is one of: PRESSURE

    RATIONALE FOR INDICATOR SELECTION It is generally accepted that the potential impact on the natural environment is proportional to the human population. This is the 'human footprint'. Human activities can cause disruption in physical, chemical and biological systems. As stated by the Australian Bureau of Statistics (1996): 'To understand the human impact on the Australian environment, it is necessary to know how many people live here, and how they are distributed across the continent.'

    This indicator reveals where the greatest direct pressures related to size of the human population (e.g. fuel usage, sewerage and other waste generation etc) occur.

    DESIGN AND STRATEGY FOR INDICATOR MONITORING PROGRAM Spatial scale: Antarctic and sub-Antarctic stations and ANARE ships travelling to and from these stations.

    Frequency: Monthly figures reported annually.

    Measurement technique: The Polar Medicine Branch collects data on all expeditioner movements. These data are entered into the Health Register and updated as personnel arrive on or leave a station.

    RESEARCH ISSUES Now that this figure is available, research is required to ascertain the quantitive relationships of station and ship population to other indicators such as fuel usage and waste generation. This measure may be able to deliver a quantitative estimate of human pressure on the Antarctic environment.

    LINKS TO OTHER INDICATORS SOE Indicator 47 - Number and nature of incidents resulting in environmental impact SOE Indicator 49 - Medical consultations per 1000 person years SOE Indicator 50 - Effluent monitoring - Volume of coastal discharge from Australian stations SOE Indicator 51 - Effluent monitoring - Biological oxygen demand SOE Indicator 52 - Effluent monitoring - Suspended solids content SOE Indicator 53 - Recycled and quarantine waste returned to Australia SOE Indicator 54 - Amount of waste incinerated at Australian Stations SOE Indicator 56 - Monthly fuel usage of the generator sets and boilers SOE Indicator 57 - Monthly total of fuel used by station incinerators SOE Indicator 58 - Monthly total of fuel used by station vehicles SOE Indicator 59 - Monthly electricity usage SOE Indicator 60 - Total helicopter hours SOE Indicator 61 - Total potable water consumption

    The fields in this dataset are: Location Date Population (person-days) Illness Rate (per 1000 person years) Injury Rate (per 1000 person years)

  7. u

    Census MAF/TIGER database

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Jun 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2011). Census MAF/TIGER database [Dataset]. http://gstore.unm.edu/apps/rgis/datasets/88cfaccf-9846-4cfb-897d-696ffbe1da70/metadata/FGDC-STD-001-1998.html
    Explore at:
    json(5), gml(5), geojson(5), csv(5), shp(5), kml(5), zip(4), xls(5)Available download formats
    Dataset updated
    Jun 6, 2011
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Jan 2010
    Area covered
    West Bounding Coordinate -109.050173 East Bounding Coordinate -103.001964 North Bounding Coordinate 37.000293 South Bounding Coordinate 31.332172, United States
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  8. d

    Data from: LISTOS CCNY Ground Site Data

    • datasets.ai
    • gimi9.com
    • +3more
    21, 33
    Updated Sep 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2024). LISTOS CCNY Ground Site Data [Dataset]. https://datasets.ai/datasets/listos-ccny-ground-site-data
    Explore at:
    21, 33Available download formats
    Dataset updated
    Sep 9, 2024
    Dataset authored and provided by
    National Aeronautics and Space Administration
    Description

    LISTOS_Ground_CCNY_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the CCNY ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.

    The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.

  9. LISTOS Rutgers Ground Site Data

    • datasets.ai
    • cmr.earthdata.nasa.gov
    • +1more
    21, 33
    Updated Sep 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2024). LISTOS Rutgers Ground Site Data [Dataset]. https://datasets.ai/datasets/listos-rutgers-ground-site-data-816bd
    Explore at:
    21, 33Available download formats
    Dataset updated
    Sep 11, 2024
    Dataset provided by
    NASAhttp://nasa.gov/
    Authors
    National Aeronautics and Space Administration
    Description

    LISTOS_Ground_Rutgers_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) Rutgers ground site data collected during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.

    The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.

  10. u

    Bernalillo County 2010 Census Tracts

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Jun 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2011). Bernalillo County 2010 Census Tracts [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/be59f00d-fb91-423f-9d8b-a46cd1b07f26/metadata/FGDC-STD-001-1998.html
    Explore at:
    zip(1), geojson(5), gml(5), shp(5), csv(5), kml(5), xls(5), json(5)Available download formats
    Dataset updated
    Jun 6, 2011
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Jan 2010
    Area covered
    West Bounding Coordinate -107.19617 East Bounding Coordinate -106.149575 North Bounding Coordinate 35.219639 South Bounding Coordinate 34.869024, Cibola County (35006)
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  11. u

    Census MAF/TIGER database

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Jun 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2011). Census MAF/TIGER database [Dataset]. https://gstore.unm.edu/apps/rgisarchive/datasets/8000ce31-932b-4cc2-b5df-4df299ec6df3/metadata/FGDC-STD-001-1998.html
    Explore at:
    geojson(5), xls(5), zip(1), shp(5), kml(5), json(5), gml(5), csv(5)Available download formats
    Dataset updated
    Jun 6, 2011
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Jan 2010
    Area covered
    West Bounding Coordinate -109.047513 East Bounding Coordinate -107.608283 North Bounding Coordinate 33.209646 South Bounding Coordinate 31.863694, Catron County (35003)
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  12. T

    World Coronavirus COVID-19 Cases

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 9, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). World Coronavirus COVID-19 Cases [Dataset]. https://tradingeconomics.com/world/coronavirus-cases
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 2020 - May 17, 2023
    Area covered
    World, World
    Description

    The World Health Organization reported 766440796 Coronavirus Cases since the epidemic began. In addition, countries reported 6932591 Coronavirus Deaths. This dataset provides - World Coronavirus Cases- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  13. d

    Data from: LISTOS Bronx Pfizer Ground Site Data

    • datasets.ai
    • data.nasa.gov
    • +2more
    21, 33
    Updated Sep 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2024). LISTOS Bronx Pfizer Ground Site Data [Dataset]. https://datasets.ai/datasets/listos-bronx-pfizer-ground-site-data
    Explore at:
    21, 33Available download formats
    Dataset updated
    Sep 15, 2024
    Dataset authored and provided by
    National Aeronautics and Space Administration
    Area covered
    The Bronx
    Description

    LISTOS_Ground_BronxPfizer_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Bronx Pfizer ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.

    The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.

  14. e

    Slides, race and other earth movements encountered (slides database)

    • data.europa.eu
    Updated Jan 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statens geotekniska institut (2024). Slides, race and other earth movements encountered (slides database) [Dataset]. https://data.europa.eu/data/datasets/https-admin-dataportal-se-store-778-resource-945d3e6f92368868368a6cf7595f830f/embed
    Explore at:
    zip, application/vnd.ogc.wms_xmlAvailable download formats
    Dataset updated
    Jan 31, 2024
    Dataset authored and provided by
    Statens geotekniska institut
    License

    http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply

    Description

    SGI is the state's expert body on landslide, race and beach erosion issues and contributes to reducing risks in the geotechnical field of society. The starting point for the activities is that people should be able to live on a safe foundation, so that life and property are not wasted in natural disasters such as landslides and falls or beach erosion. SGI's landslides database is a compilation of the landslides, races and other earth movements in Sweden with associated description of the type of event, extent, location, etc. - see SGI Varia 512. The number of objects is 1564 (Aug 2023). Some major landslides have a more detailed description (cause, course of events, experience feedback, etc.) in MSB's Natural Accident Database. [Geotechnics]

  15. d

    Data from: LISTOS University of Maryland Cessna Aircraft In-Situ Data

    • datasets.ai
    • data.nasa.gov
    • +2more
    21, 33
    Updated Aug 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Aeronautics and Space Administration (2024). LISTOS University of Maryland Cessna Aircraft In-Situ Data [Dataset]. https://datasets.ai/datasets/listos-university-of-maryland-cessna-aircraft-in-situ-data-94474
    Explore at:
    33, 21Available download formats
    Dataset updated
    Aug 6, 2024
    Dataset authored and provided by
    National Aeronautics and Space Administration
    Area covered
    Maryland
    Description

    LISTOS_AircraftInSitu_UMDAircraft_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) in-situ data collected onboard the University of Maryland Cessna Aircraft during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.

    The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.

  16. u

    Catron County 2010 Census Tracts

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Jun 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2011). Catron County 2010 Census Tracts [Dataset]. http://gstore.unm.edu/apps/rgis/datasets/f50a0cc5-167d-46f6-a05f-389595df33f6/metadata/FGDC-STD-001-1998.html
    Explore at:
    csv(5), json(5), shp(5), kml(5), geojson(5), xls(5), zip(1), gml(5)Available download formats
    Dataset updated
    Jun 6, 2011
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Jan 2010
    Area covered
    West Bounding Coordinate -109.04747 East Bounding Coordinate -107.711269 North Bounding Coordinate 34.581019 South Bounding Coordinate 33.20093, Socorro County (35053)
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  17. u

    Census MAF/TIGER database

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Jun 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2011). Census MAF/TIGER database [Dataset]. http://gstore.unm.edu/apps/rgisarchive/datasets/878cbbf9-b240-4e3a-97c4-0c3e68a52e48/metadata/FGDC-STD-001-1998.html
    Explore at:
    shp(5), json(5), zip(1), kml(5), csv(5), xls(5), geojson(5), gml(5)Available download formats
    Dataset updated
    Jun 6, 2011
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Jan 2010
    Area covered
    Valencia County, West Bounding Coordinate -107.204675 East Bounding Coordinate -106.410974 North Bounding Coordinate 34.958064 South Bounding Coordinate 34.436993, Socorro County (35053)
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  18. h

    100-richest-people-in-world

    • huggingface.co
    Updated Aug 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nate Raw (2023). 100-richest-people-in-world [Dataset]. https://huggingface.co/datasets/nateraw/100-richest-people-in-world
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 2, 2023
    Authors
    Nate Raw
    License

    https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

    Area covered
    World
    Description

    Dataset Card for 100 Richest People In World

      Dataset Summary
    

    This dataset contains the list of Top 100 Richest People in the World Column Information:-

    Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain

      Join our Community
    
    
    
    
    
    
    
    
    
      Supported Tasks and Leaderboards
    

    [More Information Needed]

      Languages
    

    [More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.

  19. u

    Census MAF/TIGER database

    • gstore.unm.edu
    csv, geojson, gml +5
    Updated Jun 6, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2011). Census MAF/TIGER database [Dataset]. http://gstore.unm.edu/apps/rgis/datasets/109d7914-c080-4fdd-9087-43cd85728d0f/metadata/FGDC-STD-001-1998.html
    Explore at:
    xls(5), gml(5), geojson(5), zip(1), shp(5), json(5), csv(5), kml(5)Available download formats
    Dataset updated
    Jun 6, 2011
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Jan 2010
    Area covered
    Los Alamos County, West Bounding Coordinate -106.418855 East Bounding Coordinate -106.171656 North Bounding Coordinate 35.973443 South Bounding Coordinate 35.754274, Rio Arriba County (35039)
    Description

    The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  20. n

    Mesozooplankton biodiversity Bongonet Nansen Legacy Q1

    • data.npolar.no
    csv
    Updated Oct 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wold, Anette (anette.wold@npolar.no); Søreide, Janne Elisabeth (janne.soreide@unis.no); Svensen, Camilla (camilla.svensen@uit.no); Halvorsen, Elisabeth (elisabeth.halvorsen@uit.no); Hop, Haakon (haakon.hop@npolar.no); Kwasniewski, Slawomir (kwas@iopan.gda.pl); Ormańczyk, Mateusz (ormanczyk@iopan.pl); Wold, Anette (anette.wold@npolar.no); Søreide, Janne Elisabeth (janne.soreide@unis.no); Svensen, Camilla (camilla.svensen@uit.no); Halvorsen, Elisabeth (elisabeth.halvorsen@uit.no); Hop, Haakon (haakon.hop@npolar.no); Kwasniewski, Slawomir (kwas@iopan.gda.pl); Ormańczyk, Mateusz (ormanczyk@iopan.pl) (2022). Mesozooplankton biodiversity Bongonet Nansen Legacy Q1 [Dataset]. http://doi.org/10.21334/npolar.2022.19e96642
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 26, 2022
    Dataset provided by
    Norwegian Polar Data Centre
    Authors
    Wold, Anette (anette.wold@npolar.no); Søreide, Janne Elisabeth (janne.soreide@unis.no); Svensen, Camilla (camilla.svensen@uit.no); Halvorsen, Elisabeth (elisabeth.halvorsen@uit.no); Hop, Haakon (haakon.hop@npolar.no); Kwasniewski, Slawomir (kwas@iopan.gda.pl); Ormańczyk, Mateusz (ormanczyk@iopan.pl); Wold, Anette (anette.wold@npolar.no); Søreide, Janne Elisabeth (janne.soreide@unis.no); Svensen, Camilla (camilla.svensen@uit.no); Halvorsen, Elisabeth (elisabeth.halvorsen@uit.no); Hop, Haakon (haakon.hop@npolar.no); Kwasniewski, Slawomir (kwas@iopan.gda.pl); Ormańczyk, Mateusz (ormanczyk@iopan.pl)
    License

    http://spdx.org/licenses/CC0-1.0http://spdx.org/licenses/CC0-1.0

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Mar 2, 2021 - Mar 25, 2021
    Area covered
    Description

    Summary:

    The data has been collected during the Q1: Nansen Legacy Seasonal Study Q1 2nd March - 25th March 2021 on research vessel RV Kronprins Haakon (toktnummer 2021703), along a transect from 76N to 82N east of Svalbard. The dataset contains mesozooplankton occurrence. It has been sampled using a BongoNet, HydroBios 60 cm. Small mesozooplankton were collected with a mesh-size 64 µm and large mesozooplankton were collected with a mesh-size 180 µm. All specimens are identified to the lowest taxonomical level and the occurrence is given for a specific species and stage or size group as ind/m3.

    Quality

    Sampling method:

    The sampling covers a transect from the central Barents Sea (76N) to the Arctic Ocean (82N) east of Svalbard, including 7 stations (P1 to P7). Zooplankton has been collected using a BongoNet 60 cm (HydroBios, opening: 0.2827 m2, net length: 250 cm). Small mesozooplankton were collected with a mesh-size 64 µm and large mesozooplankton were collected with a mesh-size 180 µm. All samples were added 1 ml of Neutral Red Stain stock solution and wait 20 minutes before the samples is rinsed briefly and preserved in 4 % formaldehyde free from acid. The NeutralRed Stain. The samples were analysed within two months after sampling. Neutral Red Stain make it possible to distinguish between dead and alive zooplankton (Elliot and Tang 2009).

    PLEASE NOTE: THIS DATASET CONTAINS TWO COMPLETE DATASETS OF ZOOPLANKTON: ONE FOR SMALL MESOZOOPLANKTON (APPROX BODY SIZE BELOW 2 MM) COLLECTED WITH MULTINET 64 µM AND ONE FOR LARGE MESOZOOPLANKTON (APPROX BODY SIZE ABOVE 2 MM) COLLECTED WITH MULTINET 180 µM MESH SIZE. THE INFO ABOUT WHICH NET IS USED CAN BE FOUND IN gearType. USE EITHER 64 UM OR 180 UM DEPENDING ON WHETHER THE FOCUS IS SMALL OR LARGE MESOZOOPLANKTON

    Analyse method:

    All samples have been analysed at Institute of Oceanology of the Polish Academy of Sciences (IOPAN). The organisms were identified and counted under a stereomicroscope equipped with an ocular micrometer, according to standard procedures (Harris et al. 2000). Small-sized zooplankters (most of Copepoda, juvenile stages of Pteropoda, Euphausiacea, Ostracoda, Amphipoda and Chaetognatha) were identified and counted in sub-samples obtained from the fixed sample volume by automatic pipette (approximately 500 individuals). Large zooplankters (big Copepoda, Pteropoda, Euphausiacea, Ostracoda, Amphipoda, Decapoda, Appendicularia, Chaetognatha, and Pisces larvae) were sorted out and identified from the whole sample. Representatives of Calanus spp. were identified at the species level based on morphology and prosome lengths of individual copepodid stages (Kwasniewski et al. 2003).

    Data structure:

    The data is following Darwin Core nomenclature as far as possible but also include variables that aren’t supported by Darwin Core. All information about the sampling such as eventDate, latitude, longitude, depts etc is located in event file while the result such as scientificName, lifeStage, occurrence etc. are found in the occurrence file

    Header name index - events

    • expedition: cruise number for R/V Kronprins Haakon
    • eventID: UUID for the sampel
    • parentID: UUID for the gear deployment (each MultiNet deployment has a unique parentID)
    • eventDate: the date-time when an event occurred, using ISO 8601-1:2019 format (2020-07-27T07:16:03.446Z).
    • fieldNumber: human-readable sample ID (e.g. ZOT-001)
    • locationID: station name
    • decimalLongitude: geographic latitude (in decimal degrees, using the spatial reference system given in geodetic datum)
    • decimalLatitude: geographic longitude (in decimal degrees, using the spatial reference system given in geodeticDatum)
    • bottomDepthInMeters: bottom depth in meters
    • eventRemarks: comments or remarks about the event (free text field)
    • gearType: the gear used to take the sample e.g. MultiNet 200 µm
    • maximumDepthInMeters: bottom depth of the sampled layer
    • minimumDepthInMeters: top depth of the sampled layer
    • sampleType: description of the sample type according to a standard list
    • fieldSplit: info about whether the sample is splitted. If the sample was split in 2 then fieldSplit = 2
    • initialSampleVolume: The volume of water filtered through the plankton net. (initialSampleVolume = (netOpeningArea * (maximumDepthInMeters – minimumDepthInMeters)/field Split), Bongonet opening area: 3.14*(0.3)^2=0.2826 m2
    • recordedBy: name of the person who took the samples
    • principalInvestigatorName: name of the person in charge of the sample collection
    • principalInvestigatorEmail: email address of the person in charge of the sample collection
    • principalInvestigatorInstitution: affiliated institution of the person in charge of the sample collection

    Header name index - occurrence

    • analysedFraction: fraction of the sampled volume that is examined for organism counted
    • individualCount: the number of individuals present in the analysed volume (see extra information below)
    • phylum, class, order, family, genus & taxonKey-LSID: Taxonomical information for given species according to Worms
    • scientificName: full scientific name of the identified organism at the lowest taxonomic level that can be ascertained. The scientificName should be selected from a drop-down menu linked to the list in taxonomy sheet. (e.g Calanus finmarchicus).
    • identificationQualifier: A standard term (sp., spp., and indet.) to express the determiner’s doubts about the Identification.
    • lifeStage: the age class, life stage, or life form/morph of the organism.
    • sizeGroupOperator: describes if the size group is less than or greater than a value (It = less than, gte = greater or equal to)
    • sizeGroup: the size group in mm.
    • organismRemark: indicates whether it is mesozooplankton, macrozooplankton, rare species
    • identificationRemarks: a free text field for adding information relevant to the analysis. Used to indicate the speciemen that were dead. When nothing was remarked they were alive.
    • identifiedBy: person who did the lab-analyse
    • sampleSizeValue: the sample volume used to calculate the organismQuantity (sampleSizeValue 0 initialSampleVolume *analysedFraction)
    • sampleSizeUnit: m3
    • organismQuantity: the quantity of the organism per volume water in the environment (organismQuantity = individualCount/sampleSizeValue)
    • organismQuantityType: ind/m3

    Additional information for some of the fields

    individualCount: The number of (all) organisms found in the sample examined - for “mesozooplankton”, the number of mesozooplankton (medium size zooplankton organisms) encountered in all sub-samples - for “macrozooplankton”, the number of macrozooplankton (large size zooplankton organisms, total length > 5 mm) encountered, identified in the entire sample - for “rare” zooplankton, we only enter information about the finding of “rare” zooplankton in the database template, and its absolute number (“organismQuantity”) is not estimated

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
Organization logo

Total population worldwide 1950-2100

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
World
Description

The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.

Search
Clear search
Close search
Google apps
Main menu