The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.
For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.
Contact points:
Maintainer: Leticia Pina
Maintainer: Sarah E., Castle
Data lineage:
The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.
References:
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.
Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Online resources:
GEE asset for "Forest proximate people - 5km cutoff distance"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.
Datasets
DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.
DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.
DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.
Please refer to the related publication for details.
Temporal extent
The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)
The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)
The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)
The underlying census data is from 2018.
Data format
The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems.
Further information
For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de).
A web-visualization of this dataset is available here.
Publication
Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044
Acknowledgements
Census data were provided by the German Federal Statistical Offices.
Funding
This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Tree Proximate People" (TPP) dataset provides an estimate of the number of people living in or within 1 kilometer of trees outside forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level. Trees outside forests are defined as areas classified as croplands with at least 10% tree cover.
For more detail, such as the theory behind, the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.
Contact points:
Maintainer: Leticia Pina
Maintainer: Sarah E., Castle
Data lineage:
The TPP data are generated using Google Earth Engine. Trees outside forests (TOFs) are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) fractional cover data layer using a minimum of 10% tree cover on croplands lands. Any area classified as land with TOFs sized ≥ 1 ha in 2019 was included in this definition. Lands classified as forests in CGLC were excluded from the analysis. Croplands were defined using the FAO-LCCS2 land use classification layer from MODIS Land Cover (MCD12Q1.006). Croplands were defined as the total of three classifications: 1) “Herbaceous Croplands”: dominated by herbaceous annuals (<2m) with at least 60% cover and a cultivated fraction >60%, 2) “Natural Herbaceous/Croplands Mosaics”: mosaics of small-scale cultivation 40-60% with natural shrub or herbaceous vegetation, and 3) “Forest/Cropland Mosaics”: mosaics of small-scale cultivation 40-60% with >10% natural tree cover. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 1 kilometer of TOFs on croplands in 2019 were classified as tree proximate people. Euclidean distance was used as the measure to create a 1-kilometer buffer zone around each TOF pixel. The scripts for generating the tree-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.
References:
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.
Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Online resources:
GEE asset for "Tree proximate people – Croplands, 1km cutoff distance"
Information was obtained from the ANARE Health Register. See Metadata record entitled ANARE Health Register.
INDICATOR DEFINITION Human population in stations and ships expressed in person-days.
TYPE OF INDICATOR There are three types of indicators used in this report: 1.Describes the CONDITION of important elements of a system; 2.Show the extent of the major PRESSURES exerted on a system; 3.Determine RESPONSES to either condition or changes in the condition of a system.
This indicator is one of: PRESSURE
RATIONALE FOR INDICATOR SELECTION It is generally accepted that the potential impact on the natural environment is proportional to the human population. This is the 'human footprint'. Human activities can cause disruption in physical, chemical and biological systems. As stated by the Australian Bureau of Statistics (1996): 'To understand the human impact on the Australian environment, it is necessary to know how many people live here, and how they are distributed across the continent.'
This indicator reveals where the greatest direct pressures related to size of the human population (e.g. fuel usage, sewerage and other waste generation etc) occur.
DESIGN AND STRATEGY FOR INDICATOR MONITORING PROGRAM Spatial scale: Antarctic and sub-Antarctic stations and ANARE ships travelling to and from these stations.
Frequency: Monthly figures reported annually.
Measurement technique: The Polar Medicine Branch collects data on all expeditioner movements. These data are entered into the Health Register and updated as personnel arrive on or leave a station.
RESEARCH ISSUES Now that this figure is available, research is required to ascertain the quantitive relationships of station and ship population to other indicators such as fuel usage and waste generation. This measure may be able to deliver a quantitative estimate of human pressure on the Antarctic environment.
LINKS TO OTHER INDICATORS SOE Indicator 47 - Number and nature of incidents resulting in environmental impact SOE Indicator 49 - Medical consultations per 1000 person years SOE Indicator 50 - Effluent monitoring - Volume of coastal discharge from Australian stations SOE Indicator 51 - Effluent monitoring - Biological oxygen demand SOE Indicator 52 - Effluent monitoring - Suspended solids content SOE Indicator 53 - Recycled and quarantine waste returned to Australia SOE Indicator 54 - Amount of waste incinerated at Australian Stations SOE Indicator 56 - Monthly fuel usage of the generator sets and boilers SOE Indicator 57 - Monthly total of fuel used by station incinerators SOE Indicator 58 - Monthly total of fuel used by station vehicles SOE Indicator 59 - Monthly electricity usage SOE Indicator 60 - Total helicopter hours SOE Indicator 61 - Total potable water consumption
The fields in this dataset are: Location Date Population (person-days) Illness Rate (per 1000 person years) Injury Rate (per 1000 person years)
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
LISTOS_Ground_CCNY_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the CCNY ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.
The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
LISTOS_Ground_Rutgers_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) Rutgers ground site data collected during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.
The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 766440796 Coronavirus Cases since the epidemic began. In addition, countries reported 6932591 Coronavirus Deaths. This dataset provides - World Coronavirus Cases- actual values, historical data, forecast, chart, statistics, economic calendar and news.
LISTOS_Ground_BronxPfizer_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) ground site data collected at the Bronx Pfizer ground site during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.
The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
SGI is the state's expert body on landslide, race and beach erosion issues and contributes to reducing risks in the geotechnical field of society. The starting point for the activities is that people should be able to live on a safe foundation, so that life and property are not wasted in natural disasters such as landslides and falls or beach erosion. SGI's landslides database is a compilation of the landslides, races and other earth movements in Sweden with associated description of the type of event, extent, location, etc. - see SGI Varia 512. The number of objects is 1564 (Aug 2023). Some major landslides have a more detailed description (cause, course of events, experience feedback, etc.) in MSB's Natural Accident Database. [Geotechnics]
LISTOS_AircraftInSitu_UMDAircraft_Data is the Long Island Sound Tropospheric Ozone Study (LISTOS) in-situ data collected onboard the University of Maryland Cessna Aircraft during the LISTOS field campaign. This product is a result of a joint effort across multiple agencies, including NASA, NOAA, the EPA Northeast States for Coordinated Air Use Management (NESCAUM), Maine Department of Environmental Protection, New Jersey Department of Environmental Protection, New York State Department of Environmental Conservation and several research groups at universities. Data collection is complete.
The New York City (NYC) metropolitan area (comprised of portions of New Jersey, New York, and Connecticut in and around NYC) is home to over 20 million people, but also millions of people living downwind in neighboring states. This area continues to persistently have challenges meeting past and recently revised federal health-based air quality standards for ground-level ozone, which impacts the health and well-being of residents living in the area. A unique feature of this chronic ozone problem is the pollution transported in a northeast direction out of NYC over Long Island Sound. The relatively cool waters of Long Island Sound confine the pollutants in a shallow and stable marine boundary layer. Afternoon heating over coastal land creates a sea breeze that carries the air pollution inland from the confined marine layer, resulting in high ozone concentrations in Connecticut and, at times, farther east into Rhode Island and Massachusetts. To investigate the evolving nature of ozone formation and transport in the NYC region and downwind, Northeast States for Coordinated Air Use Management (NESCAUM) launched the Long Island Sound Tropospheric Ozone Study (LISTOS). LISTOS was a multi-agency collaborative study focusing on Long Island Sound and the surrounding coastlines that continually suffer from poor air quality exacerbated by land/water circulation. The primary measurement observations took place between June-September 2018 and include in-situ and remote sensing instrumentation that were integrated aboard three aircraft, a network of ground sites, mobile vehicles, boat measurements, and ozonesondes. The goal of LISTOS was to improve the understanding of ozone chemistry and sea breeze transported pollution over Long Island Sound and its coastlines. LISTOS also provided NASA the opportunity to test air quality remote sensing retrievals with the use of its airborne simulators (GEOstationary Coastal and Air Pollution Events (GEO-CAPE) Airborne Simulator (GCAS), and Geostationary Trace gas and Aerosol Sensory Optimization (GeoTASO)) for the preparation of the Tropospheric Emissions; Monitoring of Pollution (TEMPO) observations for monitoring air quality from space. LISTOS also helped collaborators in the validation of Tropospheric Monitoring Instrument (TROPOMI) science products, with use of airborne- and ground-based measurements of ozone, NO2, and HCHO.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for 100 Richest People In World
Dataset Summary
This dataset contains the list of Top 100 Richest People in the World Column Information:-
Name - Person Name NetWorth - His/Her Networth Age - Person Age Country - The country person belongs to Source - Information Source Industry - Expertise Domain
Join our Community
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]… See the full description on the dataset page: https://huggingface.co/datasets/nateraw/100-richest-people-in-world.
The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
http://spdx.org/licenses/CC0-1.0http://spdx.org/licenses/CC0-1.0
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The data has been collected during the Q1: Nansen Legacy Seasonal Study Q1 2nd March - 25th March 2021 on research vessel RV Kronprins Haakon (toktnummer 2021703), along a transect from 76N to 82N east of Svalbard. The dataset contains mesozooplankton occurrence. It has been sampled using a BongoNet, HydroBios 60 cm. Small mesozooplankton were collected with a mesh-size 64 µm and large mesozooplankton were collected with a mesh-size 180 µm. All specimens are identified to the lowest taxonomical level and the occurrence is given for a specific species and stage or size group as ind/m3.
The sampling covers a transect from the central Barents Sea (76N) to the Arctic Ocean (82N) east of Svalbard, including 7 stations (P1 to P7). Zooplankton has been collected using a BongoNet 60 cm (HydroBios, opening: 0.2827 m2, net length: 250 cm). Small mesozooplankton were collected with a mesh-size 64 µm and large mesozooplankton were collected with a mesh-size 180 µm. All samples were added 1 ml of Neutral Red Stain stock solution and wait 20 minutes before the samples is rinsed briefly and preserved in 4 % formaldehyde free from acid. The NeutralRed Stain. The samples were analysed within two months after sampling. Neutral Red Stain make it possible to distinguish between dead and alive zooplankton (Elliot and Tang 2009).
PLEASE NOTE: THIS DATASET CONTAINS TWO COMPLETE DATASETS OF ZOOPLANKTON: ONE FOR SMALL MESOZOOPLANKTON (APPROX BODY SIZE BELOW 2 MM) COLLECTED WITH MULTINET 64 µM AND ONE FOR LARGE MESOZOOPLANKTON (APPROX BODY SIZE ABOVE 2 MM) COLLECTED WITH MULTINET 180 µM MESH SIZE. THE INFO ABOUT WHICH NET IS USED CAN BE FOUND IN gearType. USE EITHER 64 UM OR 180 UM DEPENDING ON WHETHER THE FOCUS IS SMALL OR LARGE MESOZOOPLANKTON
All samples have been analysed at Institute of Oceanology of the Polish Academy of Sciences (IOPAN). The organisms were identified and counted under a stereomicroscope equipped with an ocular micrometer, according to standard procedures (Harris et al. 2000). Small-sized zooplankters (most of Copepoda, juvenile stages of Pteropoda, Euphausiacea, Ostracoda, Amphipoda and Chaetognatha) were identified and counted in sub-samples obtained from the fixed sample volume by automatic pipette (approximately 500 individuals). Large zooplankters (big Copepoda, Pteropoda, Euphausiacea, Ostracoda, Amphipoda, Decapoda, Appendicularia, Chaetognatha, and Pisces larvae) were sorted out and identified from the whole sample. Representatives of Calanus spp. were identified at the species level based on morphology and prosome lengths of individual copepodid stages (Kwasniewski et al. 2003).
The data is following Darwin Core nomenclature as far as possible but also include variables that aren’t supported by Darwin Core. All information about the sampling such as eventDate, latitude, longitude, depts etc is located in event file while the result such as scientificName, lifeStage, occurrence etc. are found in the occurrence file
individualCount: The number of (all) organisms found in the sample examined - for “mesozooplankton”, the number of mesozooplankton (medium size zooplankton organisms) encountered in all sub-samples - for “macrozooplankton”, the number of macrozooplankton (large size zooplankton organisms, total length > 5 mm) encountered, identified in the entire sample - for “rare” zooplankton, we only enter information about the finding of “rare” zooplankton in the database template, and its absolute number (“organismQuantity”) is not estimated
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolongued development arc in Sub-Saharan Africa.