Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.
China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.
The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.
Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.
In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.
This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.
Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.
Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.
Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.
Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.
| Columns | Description |
|---|---|
| CCA3 | 3 Digit Country/Territories Code |
| Name | Name of the Country/Territories |
| 2022 | Population of the Country/Territories in the year 2022. |
| 2020 | Population of the Country/Territories in the year 2020. |
| 2015 | Population of the Country/Territories in the year 2015. |
| 2010 | Population of the Country/Territories in the year 2010. |
| 2000 | Population of the Country/Territories in the year 2000. |
| 1990 | Population of the Country/Territories in the year 1990. |
| 1980 | Population of the Country/Territories in the year 1980. |
| 1970 | Population of the Country/Territories in the year 1970. |
| Area (km²) | Area size of the Country/Territories in square kilometer. |
| Density (per km²) | Population Density per square kilometer. |
| Grow... |
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
National and subnational mid-year population estimates for the UK and its constituent countries by administrative area, age and sex (including components of population change, median age and population density).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Maryland population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Maryland. The dataset can be utilized to understand the population distribution of Maryland by age. For example, using this dataset, we can identify the largest age group in Maryland.
Key observations
The largest age group in Maryland was for the group of age 35 to 39 years years with a population of 429,168 (6.95%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Maryland was the 80 to 84 years years with a population of 113,210 (1.83%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Maryland Population by Age. You can refer the same here
Facebook
TwitterDPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2 As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county). This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity). A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case. These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities. These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020. Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.
Facebook
TwitterEstimated number of persons on July 1, by 5-year age groups and gender, and median age, for Canada, provinces and territories.
Facebook
TwitterUpdated 30 January 2023
There has been some confusion around licensing for this data set. Dr. Carla Patalano and Dr. Rich Huebner are the original authors of this dataset.
We provide a license to anyone who wishes to use this dataset for learning or teaching. For the purposes of sharing, please follow this license:
CC-BY-NC-ND This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://rpubs.com/rhuebner/hrd_cb_v14
PLEASE NOTE -- I recently updated the codebook - please use the above link. A few minor discrepancies were identified between the codebook and the dataset. Please feel free to contact me through LinkedIn (www.linkedin.com/in/RichHuebner) to report discrepancies and make requests.
HR data can be hard to come by, and HR professionals generally lag behind with respect to analytics and data visualization competency. Thus, Dr. Carla Patalano and I set out to create our own HR-related dataset, which is used in one of our graduate MSHRM courses called HR Metrics and Analytics, at New England College of Business. We created this data set ourselves. We use the data set to teach HR students how to use and analyze the data in Tableau Desktop - a data visualization tool that's easy to learn.
This version provides a variety of features that are useful for both data visualization AND creating machine learning / predictive analytics models. We are working on expanding the data set even further by generating even more records and a few additional features. We will be keeping this as one file/one data set for now. There is a possibility of creating a second file perhaps down the road where you can join the files together to practice SQL/joins, etc.
Note that this dataset isn't perfect. By design, there are some issues that are present. It is primarily designed as a teaching data set - to teach human resources professionals how to work with data and analytics.
We have reduced the complexity of the dataset down to a single data file (v14). The CSV revolves around a fictitious company and the core data set contains names, DOBs, age, gender, marital status, date of hire, reasons for termination, department, whether they are active or terminated, position title, pay rate, manager name, and performance score.
Recent additions to the data include: - Absences - Most Recent Performance Review Date - Employee Engagement Score
Dr. Carla Patalano provided the baseline idea for creating this synthetic data set, which has been used now by over 200 Human Resource Management students at the college. Students in the course learn data visualization techniques with Tableau Desktop and use this data set to complete a series of assignments.
We've included some open-ended questions that you can explore and try to address through creating Tableau visualizations, or R or Python analyses. Good luck and enjoy the learning!
There are so many other interesting questions that could be addressed through this interesting data set. Dr. Patalano and I look forward to seeing what we can come up with.
If you have any questions or comments about the dataset, please do not hesitate to reach out to me on LinkedIn: http://www.linkedin.com/in/RichHuebner
You can also reach me via email at: Richard.Huebner@go.cambridgecollege.edu
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).
A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.
Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.
These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.
These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).
DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd
As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.
With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).
Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Maryland population pyramid, which represents the Maryland population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Maryland Population by Age. You can refer the same here
Facebook
TwitterFor my final project for my Data Science Principle course at University of Texas at Austin, our team decided to do income prediction using census data. However, we had a hard time finding any data set that was not from the 1994 "Adult Data Set". We wanted a more updated version of the data set that we can use alongside the 1994 data set to do various comparisons and data analysis. So, we found data from the ASEC survey from 2020 on the US Census Bureau's website and preprocessed the data to look like the 1994 data set. This data set is derived from: https://www.census.gov/data/datasets/time-series/demo/cps/cps-asec.html.
Data was extracted using the same conditions as the 1994 data set: ((AAGE>16) && (AGI>100) && (AFNLWGT>1)&& (HRSWK>0)).
Columns are almost exactly the same as the 1994 data set with a few changes: - We are missing a "capital-loss" column in the newer 2020 data set because we could not find such feature in the original ASEC data. - "income-90k-threshold" added, because 50k (which is the threshold used in the "Adult Data Set") in 1994 adjusted for inflation is 90k. - "coded-income" added. This contains more specific income brackets. -"native-country" and "occupation" may have countries and occupations not existing in the 1994 data set, and some countries and occupations existing in 1994 data set may not be in the 2020 data set.
https://www2.census.gov/programs-surveys/cps/datasets/2020/march/ASEC2020ddl_pub_full.pdf A_AGE = age A_FNLWGT = fnlwgt A_SEX = gender A_MARITL = marital-status A_PFREL = relationship A_HGA = education PRDTRACE = race PTOT_R (income recode)= income A_CLSWKR = class of worker A_MJOCC = occupation HRSWK = hours per week PENATVTY(coded) = native-country CAP_VAL = capital gain
"coded-income" means: 0 = NO INCOME 1 = UNDER $2,500 OR LOSS 2 = $2,500 TO $4,999 3 = $5,000 TO $7,499 4 = $7,500 TO $9,999 5 = $10,000 TO $12,499 6 = $12,500 TO $14,999 7 = $15,000 TO $17,499 8 = $17,500 TO $19,999 9 = $20,000 TO $22,499 10 = $22,500 to $24,999 11 = $25,000 to $27,499 12 = $27,500 to $29,999 13 = $30,000 to $32,499 14 = $32,500 to $34,999 15 = $35,000 to $37,499 16 = $37,500 to $39,999 17 = $40,000 to $42,499 18 = $42,500 to $44,999 19 = $45,000 to $47,499 20 = $47,500 to $49,999 21 = $50,000 to $52,499 22 = $52,500 to $54,999 23 = $55,000 to $57,499 24 = $57,500 to $59,999 25 = $60,000 to $62,499 26 = $62,500 to $64,999 27 = $65,000 to $67,499 28 = $67,500 to $69,999 29 = $70,000 to $72,499 30 = $72,500 to $74,999 31 = $75,000 to $77,499 32 = $77,500 to $79,999 33 = $80,000 to $82,499 34 = $82,500 to $84,999 35 = $85,000 to $87,499 36 = $87,500 to $89,999 37 = $90,000 to $92,499 38 = $92,500 to $94,999 39 = $95,000 to $97,499 40 = $97,500 to $99,999 41 = $100,000 and over
We wouldn't be here without the help of others. Special thanks to my team members: Julian Fritz, Chris Karouta, and Samuel Rizzo.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides historical stock price data for Netflix Inc. (NASDAQ: NFLX) from May 23, 2002, to January 31, 2025. The data has been sourced from Yahoo Finance and includes essential financial metrics, making it valuable for financial analysis, stock price prediction, and time-series forecasting.
Date: The trading date (YYYY-MM-DD format).
Open: Opening price of Netflix stock on that trading day.
High: Highest price recorded during the trading session.
Low: Lowest price recorded during the trading session.
Close: Closing price of the stock at the end of the trading session.
Adj Close: Adjusted closing price, accounting for corporate actions such as stock splits and dividends.
Volume: The total number of Netflix shares traded on the respective day.
Stock Price Analysis – Evaluate historical trends and identify key patterns.
Time-Series Forecasting – Train predictive models for stock market behavior.
Volatility & Risk Assessment – Analyze price fluctuations over time.
Trading Strategy Development – Backtest investment strategies.
Data Source: Extracted using Yahoo Finance API.
This dataset is publicly available and should be credited to Yahoo Finance API and Muhammad Atif Latif when used in research or projects.
If you want to check out my more stocks related Datasets then CLICK HERE
Facebook
TwitterDPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, the school learning model indicator metrics will be calculated using a 14-day average rather than a 7-day average. The new school learning model indicators dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/CT-School-Learning-Model-Indicators-by-County-14-d/e4bh-ax24 As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county). This dataset includes the leading and secondary metrics identified by the Connecticut Department of Health (DPH) and the Department of Education (CSDE) to support local district decision-making on the level of in-person, hybrid (blended), and remote learning model for Pre K-12 education. Data represent daily averages for each week by date of specimen collection (cases and positivity), date of hospital admission, or date of ED visit. Hospitalization data come from the Connecticut Hospital Association and are based on hospital location, not county of patient residence. COVID-19-like illness includes fever and cough or shortness of breath or difficulty breathing or the presence of coronavirus diagnosis code and excludes patients with influenza-like illness. All data are preliminary. These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020. These metrics were adapted from recommendations by the Harvard Global Institute and supplemented by existing DPH measures. For national data on COVID-19, see COVID View, the national weekly surveillance summary of U.S. COVID-19 activity, at https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The database for this study (Briganti et al. 2018; the same for the Braun study analysis) was composed of 1973 French-speaking students in several universities or schools for higher education in the following fields: engineering (31%), medicine (18%), nursing school (16%), economic sciences (15%), physiotherapy, (4%), psychology (11%), law school (4%) and dietetics (1%). The subjects were 17 to 25 years old (M = 19.6 years, SD = 1.6 years), 57% were females and 43% were males. Even though the full dataset was composed of 1973 participants, only 1270 answered the full questionnaire: missing data are handled using pairwise complete observations in estimating a Gaussian Graphical Model, meaning that all available information from every subject are used.
The feature set is composed of 28 items meant to assess the four following components: fantasy, perspective taking, empathic concern and personal distress. In the questionnaire, the items are mixed; reversed items (items 3, 4, 7, 12, 13, 14, 15, 18, 19) are present. Items are scored from 0 to 4, where “0” means “Doesn’t describe me very well” and “4” means “Describes me very well”; reverse-scoring is calculated afterwards. The questionnaires were anonymized. The reanalysis of the database in this retrospective study was approved by the ethical committee of the Erasmus Hospital.
Size: A dataset of size 1973*28
Number of features: 28
Ground truth: No
Type of Graph: Mixed graph
The following gives the description of the variables:
| Feature | FeatureLabel | Domain | Item meaning from Davis 1980 |
|---|---|---|---|
| 001 | 1FS | Green | I daydream and fantasize, with some regularity, about things that might happen to me. |
| 002 | 2EC | Purple | I often have tender, concerned feelings for people less fortunate than me. |
| 003 | 3PT_R | Yellow | I sometimes find it difficult to see things from the “other guy’s” point of view. |
| 004 | 4EC_R | Purple | Sometimes I don’t feel very sorry for other people when they are having problems. |
| 005 | 5FS | Green | I really get involved with the feelings of the characters in a novel. |
| 006 | 6PD | Red | In emergency situations, I feel apprehensive and ill-at-ease. |
| 007 | 7FS_R | Green | I am usually objective when I watch a movie or play, and I don’t often get completely caught up in it.(Reversed) |
| 008 | 8PT | Yellow | I try to look at everybody’s side of a disagreement before I make a decision. |
| 009 | 9EC | Purple | When I see someone being taken advantage of, I feel kind of protective towards them. |
| 010 | 10PD | Red | I sometimes feel helpless when I am in the middle of a very emotional situation. |
| 011 | 11PT | Yellow | sometimes try to understand my friends better by imagining how things look from their perspective |
| 012 | 12FS_R | Green | Becoming extremely involved in a good book or movie is somewhat rare for me. (Reversed) |
| 013 | 13PD_R | Red | When I see someone get hurt, I tend to remain calm. (Reversed) |
| 014 | 14EC_R | Purple | Other people’s misfortunes do not usually disturb me a great deal. (Reversed) |
| 015 | 15PT_R | Yellow | If I’m sure I’m right about something, I don’t waste much time listening to other people’s arguments. (Reversed) |
| 016 | 16FS | Green | After seeing a play or movie, I have felt as though I were one of the characters. |
| 017 | 17PD | Red | Being in a tense emotional situation scares me. |
| 018 | 18EC_R | Purple | When I see someone being treated unfairly, I sometimes don’t feel very much pity for them. (Reversed) |
| 019 | 19PD_R | Red | I am usually pretty effective in dealing with emergencies. (Reversed) |
| 020 | 20FS | Green | I am often quite touched by things that I see happen. |
| 021 | 21PT | Yellow | I believe that there are two sides to every question and try to look at them both. |
| 022 | 22EC | Purple | I would describe myself as a pretty soft-hearted person. |
| 023 | 23FS | Green | When I watch a good movie, I can very easily put myself in the place of a leading character. |
| 024 | 24PD | Red | I tend to lose control during emergencies. |
| 025 | 25PT | Yellow | When I’m upset at someone, I usually try to “put myself in his shoes” for a while. |
| 026 | 26FS | Green | When I am reading an interesting story or novel, I imagine how I would feel if the events in the story were happening to me. |
| 027 | 27PD | Red | When I see someone who badly needs help in an emergency, I go to pieces. |
| 028 | 28PT | Yellow | Before criticizing somebody, I try to imagine how I would feel if I were in their place |
More information about the dataset is contained in empathy_description.html file.
Facebook
TwitterThis web map displays data from the voter registration database as the percent of registered voters by census tract in King County, Washington. The data for this web map is compiled from King County Elections voter registration data for the years 2013-2019. The total number of registered voters is based on the geo-location of the voter's registered address at the time of the general election for each year. The eligible voting population, age 18 and over, is based on the estimated population increase from the US Census Bureau and the Washington Office of Financial Management and was calculated as a projected 6 percent population increase for the years 2010-2013, 7 percent population increase for the years 2010-2014, 9 percent population increase for the years 2010-2015, 11 percent population increase for the years 2010-2016 & 2017, 14 percent population increase for the years 2010-2018 and 17 percent population increase for the years 2010-2019. The total population 18 and over in 2010 was 1,517,747 in King County, Washington. The percentage of registered voters represents the number of people who are registered to vote as compared to the eligible voting population, age 18 and over. The voter registration data by census tract was grouped into six percentage range estimates: 50% or below, 51-60%, 61-70%, 71-80%, 81-90% and 91% or above with an overall 84 percent registration rate. In the map the lighter colors represent a relatively low percentage range of voter registration and the darker colors represent a relatively high percentage range of voter registration. PDF maps of these data can be viewed at King County Elections downloadable voter registration maps. The 2019 General Election Voter Turnout layer is voter turnout data by historical precinct boundaries for the corresponding year. The data is grouped into six percentage ranges: 0-30%, 31-40%, 41-50% 51-60%, 61-70%, and 71-100%. The lighter colors represent lower turnout and the darker colors represent higher turnout. The King County Demographics Layer is census data for language, income, poverty, race and ethnicity at the census tract level and is based on the 2010-2014 American Community Survey 5 year Average provided by the United States Census Bureau. Since the data is based on a survey, they are considered to be estimates and should be used with that understanding. The demographic data sets were developed and are maintained by King County Staff to support the King County Equity and Social Justice program. Other data for this map is located in the King County GIS Spatial Data Catalog, where data is managed by the King County GIS Center, a multi-department enterprise GIS in King County, Washington. King County has nearly 1.3 million registered voters and is the largest jurisdiction in the United States to conduct all elections by mail. In the map you can view the percent of registered voters by census tract, compare registration within political districts, compare registration and demographic data, verify your voter registration or register to vote through a link to the VoteWA, Washington State Online Voter Registration web page.
Facebook
TwitterNOTE: This dataset pertains only to the 2020-2021 school year and is no longer being updated. For additional data on COVID-19, visit data.ct.gov/coronavirus. This dataset includes the leading and secondary metrics identified by the Connecticut Department of Health (DPH) and the Department of Education (CSDE) to support local district decision-making on the level of in-person, hybrid (blended), and remote learning model for Pre K-12 education. Data represent daily averages for two-week periods by date of specimen collection (cases and positivity), date of hospital admission, or date of ED visit. Hospitalization data come from the Connecticut Hospital Association and are based on hospital _location, not county of patient residence. COVID-19-like illness includes fever and cough or shortness of breath or difficulty breathing or the presence of coronavirus diagnosis code and excludes patients with influenza-like illness. All data are preliminary. These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). These metrics were adapted from recommendations by the Harvard Global Institute and supplemented by existing DPH measures. For national data on COVID-19, see COVID View, the national weekly surveillance summary of U.S. COVID-19 activity, at https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/CT-School-Learning-Model-Indicators-by-County/rpph-4ysy As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).
Facebook
TwitterPolygons in this layer represent Census Tracts in the DMV (DC, Maryland, and Virginia). Data are included for each tract which estimate hunger and food insecurity. Data were compiled by the CAFB through internal tracking, and the layer was shared with the DC government as a courtesy. Fields include (all available for 2015 and 2014):15_FI_Rate: The estimated portion of the population in the census tract experiencing food insecurity (by CAFB standards). 15/14 indicates year measured.15_FI_Pop: The estimated number of people in the census tract experiencing food insecurity (by CAFB standards). 15/14 indicates year measured.15_LB_Need: The estimated pounds of food needed by the food insecure population in the census tract. 15/14 indicates year measured.15_Distrib: The number of pounds of food distributed by CAFB and partners in the census tract. 15/14 indicates year in which the distribution took place.15_LB_Unme: The difference between the estimated pounds of food needed and the real pounds of food distributed by CAFB and partners, representing the unmet need for food assistance in the census tract. 15/14 indicates year.The layer was shared with the DC government in May 2016 and is based on 2015 and 2014 data.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.
The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.
The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.
Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.
As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.
Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.
For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.
*According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."
Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Virginia population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Virginia. The dataset can be utilized to understand the population distribution of Virginia by age. For example, using this dataset, we can identify the largest age group in Virginia.
Key observations
The largest age group in Virginia was for the group of age 30 to 34 years years with a population of 596,257 (6.89%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Virginia was the 85 years and over years with a population of 148,515 (1.72%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Virginia Population by Age. You can refer the same here
Facebook
TwitterWhat's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too. This dataset contains over 48,000 rows of data based on US census data. This dataset is used to determine whether an adult's income exceeds $50K/yr based on 14 different attributes collected. The dataset contains a distribution of 23.93% entries labelled with >50k and 76.07% entries labeled with < with <=50k. The attributes are as follows:
age workclass (eg. private, local-gov, never-worked...) fnlwgt (the number of people the census believes the entry represents) education education-num marital-status occupation relationship race sex capital-gain capital-loss hours-per-week native country label (whether the individual makes more than $50,000 annually)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the Texas population pyramid, which represents the Texas population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Texas Population by Age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here