100+ datasets found
  1. i

    SEER Breast Cancer Data

    • ieee-dataport.org
    • zenodo.org
    • +1more
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jing teng (2025). SEER Breast Cancer Data [Dataset]. https://ieee-dataport.org/open-access/seer-breast-cancer-data
    Explore at:
    Dataset updated
    Jun 16, 2025
    Authors
    jing teng
    Description

    examined regional LNs

  2. Cancer Incidence - Surveillance, Epidemiology, and End Results (SEER)...

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (NCI), National Institutes of Health (NIH) (2025). Cancer Incidence - Surveillance, Epidemiology, and End Results (SEER) Registries Limited-Use [Dataset]. https://catalog.data.gov/dataset/cancer-incidence-surveillance-epidemiology-and-end-results-seer-registries-limited-use
    Explore at:
    Dataset updated
    Jul 16, 2025
    Dataset provided by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    SEER Limited-Use cancer incidence data with associated population data. Geographic areas available are county and SEER registry. The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute collects and distributes high quality, comprehensive cancer data from a number of population-based cancer registries. Data include patient demographics, primary tumor site, morphology, stage at diagnosis, first course of treatment, and follow-up for vital status. The SEER Program is the only comprehensive source of population-based information in the United States that includes stage of cancer at the time of diagnosis and survival rates within each stage.

  3. A

    ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-cancer-rates-by-u-s-state-5f6a/af56eb24/?iid=000-919&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

    The rates are the numbers out of 100,000 people who developed or died from cancer each year.

    Incidence Rates by State
    The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • ‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Death Rates by State
    Rates of dying from cancer also vary from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

    This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.

    How to use this dataset

    • Analyze Range in relation to Rate
    • Study the influence of Range on Rate
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Adam Helsinger

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  4. p

    BREAST CANCER - Dataset - CKAN

    • data.poltekkes-smg.ac.id
    Updated Oct 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). BREAST CANCER - Dataset - CKAN [Dataset]. https://data.poltekkes-smg.ac.id/dataset/breast-cancer
    Explore at:
    Dataset updated
    Oct 7, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset of breast cancer patients was obtained from the 2017 November update of the SEER Program of the NCI, which provides information on population-based cancer statistics. The dataset involved female patients with infiltrating duct and lobular carcinoma breast cancer (SEER primary cites recode NOS histology codes 8522/3) diagnosed in 2006-2010. Patients with unknown tumour size, examined regional LNs, positive regional LNs, and patients whose survival months were less than 1 month were excluded; thus, 4024 patients were ultimately included.

  5. Breast Cancer India Statewise 2016-2021

    • kaggle.com
    Updated Apr 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NITISH SINGHAL (2022). Breast Cancer India Statewise 2016-2021 [Dataset]. https://www.kaggle.com/datasets/nitishsinghal/breast-cancer-india-statewise-20162021
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 26, 2022
    Dataset provided by
    Kaggle
    Authors
    NITISH SINGHAL
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    Breast cancer is the most frequently diagnosed cancer and the most frequent cause for cancer-related deaths in women worldwide. Globally, breast cancer accounted for 2.08 million out of 18.08 million new cancer cases (incidence rate of 11.6%) and 626,679 out of 9.55 million cancer-related deaths (6.6% of all cancer-related deaths) in 2018. 1,2 In India, breast cancer has surpassed cancers of the cervix and the oral cavity to be the most common cancer and the leading cause of cancer deaths. In 2018, 159,500 new cases of breast cancer were diagnosed, representing 27.7% of all new cancers among Indian women and 11.1% of all cancer deaths.

    In india breast cancer cases reporting and diagnotics have increased 10 times in past 3 years . All thanks to the various cancer awareness initiatives by both private and govt. organisations.

  6. a

    Cancer (in persons of all ages): England

    • hub.arcgis.com
    • data.catchmentbasedapproach.org
    Updated Apr 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Rivers Trust (2021). Cancer (in persons of all ages): England [Dataset]. https://hub.arcgis.com/datasets/theriverstrust::cancer-in-persons-of-all-ages-england/explore
    Explore at:
    Dataset updated
    Apr 6, 2021
    Dataset authored and provided by
    The Rivers Trust
    Area covered
    Description

    SUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.

  7. Data from: County-level cumulative environmental quality associated with...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). County-level cumulative environmental quality associated with cancer incidence. [Dataset]. https://catalog.data.gov/dataset/county-level-cumulative-environmental-quality-associated-with-cancer-incidence
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Population based cancer incidence rates were abstracted from National Cancer Institute, State Cancer Profiles for all available counties in the United States for which data were available. This is a national county-level database of cancer data that are collected by state public health surveillance systems. All-site cancer is defined as any type of cancer that is captured in the state registry data, though non-melanoma skin cancer is not included. All-site age-adjusted cancer incidence rates were abstracted separately for males and females. County-level annual age-adjusted all-site cancer incidence rates for years 2006–2010 were available for 2687 of 3142 (85.5%) counties in the U.S. Counties for which there are fewer than 16 reported cases in a specific area-sex-race category are suppressed to ensure confidentiality and stability of rate estimates; this accounted for 14 counties in our study. Two states, Kansas and Virginia, do not provide data because of state legislation and regulations which prohibit the release of county level data to outside entities. Data from Michigan does not include cases diagnosed in other states because data exchange agreements prohibit the release of data to third parties. Finally, state data is not available for three states, Minnesota, Ohio, and Washington. The age-adjusted average annual incidence rate for all counties was 453.7 per 100,000 persons. We selected 2006–2010 as it is subsequent in time to the EQI exposure data which was constructed to represent the years 2000–2005. We also gathered data for the three leading causes of cancer for males (lung, prostate, and colorectal) and females (lung, breast, and colorectal). The EQI was used as an exposure metric as an indicator of cumulative environmental exposures at the county-level representing the period 2000 to 2005. A complete description of the datasets used in the EQI are provided in Lobdell et al. and methods used for index construction are described by Messer et al. The EQI was developed for the period 2000– 2005 because it was the time period for which the most recent data were available when index construction was initiated. The EQI includes variables representing each of the environmental domains. The air domain includes 87 variables representing criteria and hazardous air pollutants. The water domain includes 80 variables representing overall water quality, general water contamination, recreational water quality, drinking water quality, atmospheric deposition, drought, and chemical contamination. The land domain includes 26 variables representing agriculture, pesticides, contaminants, facilities, and radon. The built domain includes 14 variables representing roads, highway/road safety, public transit behavior, business environment, and subsidized housing environment. The sociodemographic environment includes 12 variables representing socioeconomics and crime. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jagai, J., L. Messer, K. Rappazzo , C. Gray, S. Grabich , and D. Lobdell. County-level environmental quality and associations with cancer incidence#. Cancer. John Wiley & Sons Incorporated, New York, NY, USA, 123(15): 2901-2908, (2017).

  8. G

    Number of new cases and age-standardized rates of primary cancer, by cancer...

    • ouvert.canada.ca
    • www150.statcan.gc.ca
    • +2more
    csv, html, xml
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2025). Number of new cases and age-standardized rates of primary cancer, by cancer type and sex [Dataset]. https://ouvert.canada.ca/data/dataset/a1302774-b04c-4dc6-9b7e-7f827b8244ec
    Explore at:
    csv, html, xmlAvailable download formats
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The number of new cases, age-standardized rates and average age at diagnosis of cancers diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Cancer incidence rates are age-standardized using the direct method and the final 2011 Canadian postcensal population structure. Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.

  9. H

    SEER Cancer Statistics Database

    • data.niaid.nih.gov
    Updated Jul 11, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). SEER Cancer Statistics Database [Dataset]. http://doi.org/10.7910/DVN/C9KBBC
    Explore at:
    Dataset updated
    Jul 11, 2011
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Users can access data about cancer statistics in the United States including but not limited to searches by type of cancer and race, sex, ethnicity, age at diagnosis, and age at death. Background Surveillance Epidemiology and End Results (SEER) database’s mission is to provide information on cancer statistics to help reduce the burden of disease in the U.S. population. The SEER database is a project to the National Cancer Institute. The SEER database collects information on incidence, prevalence, and survival from specific geographic areas representing 28 percent of the United States population. User functionality Users can access a variety of reso urces. Cancer Stat Fact Sheets allow users to look at summaries of statistics by major cancer type. Cancer Statistic Reviews are available from 1975-2008 in table format. Users are also able to build their own tables and graphs using Fast Stats. The Cancer Query system provides more flexibility and a larger set of cancer statistics than F ast Stats but requires more input from the user. State Cancer Profiles include dynamic maps and graphs enabling the investigation of cancer trends at the county, state, and national levels. SEER research data files and SEER*Stat software are available to download through your Internet connection (SEER*Stat’s client-server mode) or via discs shipped directly to you. A signed data agreement form is required to access the SEER data Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available under “Data Documentation and Variable Recodes”.

  10. Cancer survival in England - adults diagnosed

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2019). Cancer survival in England - adults diagnosed [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/cancersurvivalratescancersurvivalinenglandadultsdiagnosed
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 12, 2019
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    One-year and five-year net survival for adults (15-99) in England diagnosed with one of 29 common cancers, by age and sex.

  11. d

    [MI] Rapid Cancer Registration Data

    • digital.nhs.uk
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). [MI] Rapid Cancer Registration Data [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/mi-rapid-cancer-registration-data
    Explore at:
    Dataset updated
    Jul 3, 2025
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    Rapid Cancer Registration Data (RCRD) provides a quick, indicative source of cancer data. It is provided to support the planning and provision of cancer services. The data is based on a rapid processing of cancer registration data sources, in particular on Cancer Outcomes and Services Dataset (COSD) information. In comparison, National Cancer Registration Data (NCRD) relies on additional data sources, enhanced follow-up with trusts and expert processing by cancer registration officers. The Rapid Cancer Registration Data (RCRD) may be useful for service improvement projects including healthcare planning and prioritisation. However, it is poorly suited for epidemiological research due to limitations in the data quality and completeness.

  12. r

    Cancer Incidence och mortality in a population based investigation in the...

    • researchdata.se
    • demo.researchdata.se
    Updated Oct 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Håkan Olsson (2024). Cancer Incidence och mortality in a population based investigation in the southern health care region - Cost for health care for controls [Dataset]. https://researchdata.se/en/catalogue/dataset/ext0119-2
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset provided by
    Lund University
    Authors
    Håkan Olsson
    Time period covered
    2000 - 2007
    Description

    All individuals diagnosed with cancer from 2000 to 2007 were identified in the Cancer Register of Southern Sweden, but only individuals who were also identified in the Population Register of Scania were included in this cohort. Age- and gender-matched controls were identified in the Population Register of Scania. The controls were reconciled with the cancer registry in southern Sweden so that they had no prior diagnosis of cancer and with the Population Register of Scania that they were alive at time of diagnosis to the matched case. Also spouses to cancer patients were used as controls.

    For each individual, healthcare costs were monitored related to the date of diagnosis. Costs for outpatient care, inpatient care, number of days in hospital and medications were included. Costs were also calculated for the controls.

    Other information available about the individuals in the cohort are age, sex, domicile, type of tumor and medication.

    Purpose:

    To study the health cost per individual in relation to mortality and comorbidity.

    Dataset includes the study controls (individuals matched by age and sex ) Also spouses to cancer patients were included in the control group.

  13. H

    Air Quality-Lung Cancer Data

    • dataverse.harvard.edu
    Updated Jan 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mithun Acharjee; Kumer Pial Das; Young S.Stanley (2020). Air Quality-Lung Cancer Data [Dataset]. http://doi.org/10.7910/DVN/HMOEJO
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 31, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Mithun Acharjee; Kumer Pial Das; Young S.Stanley
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Data comes from two different sources. Population-based lung cancer incidence rates for the period 2010-2014 (most updated data) were abstracted from National Cancer Institute state cancer profiles (Schwartz et al. 1996).This national county-level database of cancer data is collected by state public health surveillance systems. The domain specific county level environmental quality index (EQI) data for the period 2000-2005 were abstracted from United States Environmental Protection Agency (USEPA) profile. Complete descriptions of the datasets used in the EQI are provided in Lobdell’s paper (Lobdell 2011). Data were merged based on the Federal Information Processing Standards (FIPS) code. Out of 3144 counties in United States this study has available information for 2602 counties: Data was not available for four states namely Kansas, Michigan, Minnesota and Nevada due to state legislation and regulations which prohibit the release of county-level data to outside entities, county whose lung cancer mortality information is missing were omitted from the data set, the Union county, Florida is an outlier in terms of mortality information which was deleted from the data set, in the process of local control analysis this study experiences two (cluster 28 and 29) non-informative clusters (non-informative cluster is one for which either treatment or control group information is missing). For analysis, non-informative clusters information was deleted from the data set. Three types of variables are used in this study: (i) lung cancer mortality as an outcome variable (ii) binary treatment indicator is the PM2.5 high (greater than 10.59 mg/m3) vs. low (less than 10.59 mg/m3) (iii) three potential X confounder for clustering namely land EQI, sociodemographic EQI and built EQI. For each index, higher values correspond to poorer environmental quality (Jagai et al. 2017). As PM2.5 is one of the indicators for measuring air EQI, that is why we do not consider the air EQI to avoid confounding effects.

  14. Cancer Mortality & Incidence Rates: (Country LVL)

    • kaggle.com
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Cancer Mortality & Incidence Rates: (Country LVL) [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-county-level-cancer-mortality-and-incidence-r/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 3, 2022
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    Description

    Cancer Mortality & Incidence Rates: (Country LVL)

    Investigating Cancer Trends over time

    By Data Exercises [source]

    About this dataset

    This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.

    This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.

    When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied

    Research Ideas

    • Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
    • This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
    • This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...

  15. Cancer incidence, by selected sites of cancer and sex, three-year average,...

    • www150.statcan.gc.ca
    • data.urbandatacentre.ca
    • +4more
    Updated Feb 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2018). Cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas [Dataset]. http://doi.org/10.25318/1310011201-eng
    Explore at:
    Dataset updated
    Feb 14, 2018
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Age standardized rate of cancer incidence, by selected sites of cancer and sex, three-year average, census metropolitan areas.

  16. Cancer Incidence in the US by state and race

    • kaggle.com
    Updated Dec 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SKariuki (2018). Cancer Incidence in the US by state and race [Dataset]. https://www.kaggle.com/salomekariuki/cancer-incidence-in-the-us-by-state-and-race/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 17, 2018
    Dataset provided by
    Kaggle
    Authors
    SKariuki
    Area covered
    United States
    Description

    I was interested in investigating cancer incidence levels in the US by looking at how they vary by race or state. All the data is collected online from Centers for Disease Control and Prevention, State Cancer Profiles, and United States Census Bureau. This dataset can be used to answer questions on the correlation between poverty levels, insurance levels and cancer incidence levels. Further, one can find which cancers affect a certain race more or a certain state.

  17. Lung Cancer

    • kaggle.com
    Updated Jul 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ms. Nancy Al Aswad (2022). Lung Cancer [Dataset]. https://www.kaggle.com/datasets/nancyalaswad90/lung-cancer/discussion?sort=undefined
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 15, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ms. Nancy Al Aswad
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    What is Lung Cancer Dataset?

    The effectiveness of the cancer prediction system helps people to know their cancer risk at a low cost and it also helps the people to take the appropriate decision based on their cancer risk status. The data is collected from the website online lung cancer prediction system.

    .

    https://user-images.githubusercontent.com/36210723/182395183-ef7519e3-9c18-47ac-b7a6-a00e234f3949.png" alt="2022-08-02_170741">

    .

    Acknowledgments

    When we use this dataset in our research, we credit the authors as :

    • License : CC BY 4.0.

    • Hong, Z.Q. and Yang, J.Y. "Optimal Discriminant Plane for a Small Number of Samples and Design Method of Classifier on the Plane", Pattern Recognition, Vol. 24, No. 4, pp. 317-324, 1991 and it is published t to reuse in google research dataset

    The main idea for uploading this dataset is to practice data analysis with my students, as I am working in college and want my student to train our studying ideas in a big dataset, It may be not up to date and I mention the collecting years, but it is a good resource of data to practice

  18. A

    ‘Breast Cancer Dataset’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Breast Cancer Dataset’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-breast-cancer-dataset-ba67/2037810e/?iid=003-192&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Breast Cancer Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yasserh/breast-cancer-dataset on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Description:

    Breast cancer is the most common cancer amongst women in the world. It accounts for 25% of all cancer cases, and affected over 2.1 Million people in 2015 alone. It starts when cells in the breast begin to grow out of control. These cells usually form tumors that can be seen via X-ray or felt as lumps in the breast area.

    The key challenges against it’s detection is how to classify tumors into malignant (cancerous) or benign(non cancerous). We ask you to complete the analysis of classifying these tumors using machine learning (with SVMs) and the Breast Cancer Wisconsin (Diagnostic) Dataset.

    Acknowledgements:

    This dataset has been referred from Kaggle.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build classification models to predict whether the cancer type is Malignant or Benign.
    • Also fine-tune the hyperparameters & compare the evaluation metrics of various classification algorithms.

    --- Original source retains full ownership of the source dataset ---

  19. Deaths from All Cancers - Datasets - Lincolnshire Open Data

    • lincolnshire.ckan.io
    Updated May 9, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.io (2017). Deaths from All Cancers - Datasets - Lincolnshire Open Data [Dataset]. https://lincolnshire.ckan.io/dataset/deaths-from-all-cancers
    Explore at:
    Dataset updated
    May 9, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages. Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID), indicator ID 40501, E05a. This data is updated annually.

  20. Cancer Statistics in US States

    • kaggle.com
    Updated Jun 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ms. Nancy Al Aswad (2022). Cancer Statistics in US States [Dataset]. https://www.kaggle.com/datasets/nancyalaswad90/cancer-statistics-in-us-states
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 17, 2022
    Dataset provided by
    Kaggle
    Authors
    Ms. Nancy Al Aswad
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    What are Cancer Statistics in US States?

    The circled group of good survivors has genetic indicators of poor survivors (i.e. low ESR1 levels, which is typically the prognostic indicator of poor outcomes in breast cancer) – understanding this group could be critical for helping improve mortality rates for this disease. Why this group survived was quickly analysed by using the Outcome Column (here Event Death - which is binary - 0,1) as a Data Lens (which we term Supervised vs Unsupervised analyses).

    How to use this dataset

    • A network was built using only gene expression with 272 breast cancer patients (as rows), and 1570 columns.

    • Metadata includes patient info, treatment, and survival.

    • Each node is a group of patients similar to each other. Flares (left) represent sub-populations that are distinct from the larger population. (One differentiating factor between the two flares is estrogen expression (low = top flare, high = bottom flare)).

    • A bottom flare is a group of patients with 100% survival. The top flare shows a range of survival – very poor towards the tip (red), and very good near the base (circled).

    Acknowledgments

    When we use this dataset in our research, we credit the authors as :

    The main idea for uploading this dataset is to practice data analysis with my students, as I am working in college and want my student to train our studying ideas in a big dataset, It may be not up to date and I mention the collecting years, but it is a good resource of data to practice

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
jing teng (2025). SEER Breast Cancer Data [Dataset]. https://ieee-dataport.org/open-access/seer-breast-cancer-data

SEER Breast Cancer Data

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 16, 2025
Authors
jing teng
Description

examined regional LNs

Search
Clear search
Close search
Google apps
Main menu