Facebook
TwitterThis dataset contains data about lung cancer Mortality. This database is a comprehensive collection of patient information, specifically focused on individuals diagnosed with cancer. It is designed to facilitate the analysis of various factors that may influence cancer prognosis and treatment outcomes. The database includes a range of demographic, medical, and treatment-related variables, capturing essential details about each patient's condition and history.
Key components of the database include:
Demographic Information: Basic details about the patients such as age, gender, and country of residence. This helps in understanding the distribution of cancer cases across different populations and regions.
Medical History: Information about each patient’s medical background, including family history of cancer, smoking status, Body Mass Index (BMI), cholesterol levels, and the presence of other health conditions such as hypertension, asthma, cirrhosis, and other cancers. This section is crucial for identifying potential risk factors and comorbidities.
Cancer Diagnosis: Detailed data about the cancer diagnosis itself, including the date of diagnosis and the stage of cancer at the time of diagnosis. This helps in tracking the progression and severity of the disease.
Treatment Details: Information regarding the type of treatment each patient received, the end date of the treatment, and the outcome (whether the patient survived or not). This is essential for evaluating the effectiveness of different treatment approaches.
The structure of the database allows for in-depth analysis and research, making it possible to identify patterns, correlations, and potential causal relationships between various factors and cancer outcomes. It is a valuable resource for medical researchers, epidemiologists, and healthcare providers aiming to improve cancer treatment and patient care.
id: A unique identifier for each patient in the dataset. age: The age of the patient at the time of diagnosis. gender: The gender of the patient (e.g., male, female). country: The country or region where the patient resides. diagnosis_date: The date on which the patient was diagnosed with lung cancer. cancer_stage: The stage of lung cancer at the time of diagnosis (e.g., Stage I, Stage II, Stage III, Stage IV). family_history: Indicates whether there is a family history of cancer (e.g., yes, no). smoking_status: The smoking status of the patient (e.g., current smoker, former smoker, never smoked, passive smoker). bmi: The Body Mass Index of the patient at the time of diagnosis. cholesterol_level: The cholesterol level of the patient (value). hypertension: Indicates whether the patient has hypertension (high blood pressure) (e.g., yes, no). asthma: Indicates whether the patient has asthma (e.g., yes, no). cirrhosis: Indicates whether the patient has cirrhosis of the liver (e.g., yes, no). other_cancer: Indicates whether the patient has had any other type of cancer in addition to the primary diagnosis (e.g., yes, no). treatment_type: The type of treatment the patient received (e.g., surgery, chemotherapy, radiation, combined). end_treatment_date: The date on which the patient completed their cancer treatment or died. survived: Indicates whether the patient survived (e.g., yes, no).
This dataset contains artificially generated data with as close a representation of reality as possible. This data is free to use without any licence required.
Good luck Gakusei!
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.
The rates are the numbers out of 100,000 people who developed or died from cancer each year.
Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Death Rates by State Rates of dying from cancer also vary from state to state.
*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.
†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.
Facebook
TwitterThe number of new cases, age-standardized rates and average age at diagnosis of cancers diagnosed annually from 1992 to the most recent diagnosis year available. Included are all invasive cancers and in situ bladder cancer with cases defined using the Surveillance, Epidemiology and End Results (SEER) Groups for Primary Site based on the World Health Organization International Classification of Diseases for Oncology, Third Edition (ICD-O-3). Cancer incidence rates are age-standardized using the direct method and the final 2011 Canadian postcensal population structure. Random rounding of case counts to the nearest multiple of 5 is used to prevent inappropriate disclosure of health-related information.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
** Description**
This dataset contains data about lung cancer Mortality and is a comprehensive collection of patient information, specifically focused on individuals diagnosed with cancer. This dataset contains comprehensive information on 800,000 individuals related to lung cancer diagnosis, treatment, and outcomes. With 16 well-structured columns. This large-scale dataset is designed to aid researchers, data scientists, and healthcare professionals in studying patterns, building predictive models, and enhancing early detection and treatment strategies.
🌍 The Societal Impact of Lung Cancer
Lung cancer is not just a disease — it's a global crisis that steals time, health, and hope from millions of people every year. As the #1 cause of cancer deaths worldwide, it takes more lives annually than breast, colon, and prostate cancer combined.
But behind every statistic is a story:
A parent who never saw their child graduate.
A worker who had to leave their job too soon.
A community that lost a leader, a friend, a neighbor.
Why does this matter? Lung cancer often goes undetected until it's too late. It’s aggressive, silent, and devastating — especially in underserved areas where early detection is rare and treatment options are limited. It doesn’t just affect patients. It affects families, economies, and healthcare systems on a massive scale.
This dataset represents more than numbers. It represents 800,000 real-world stories — people who can help us unlock patterns, train models, and advance life-saving research.
By working with this data, you're not just analyzing a dataset — you're stepping into the fight against one of humanity’s deadliest diseases.
Let’s turn insight into impact. (😊The above descriptions is generated with the help of AI, Just wanted to share this dataset That all. Thank you)
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised rate of mortality from oral cancer (ICD-10 codes C00-C14) in persons of all ages and sexes per 100,000 population.RationaleOver the last decade in the UK (between 2003-2005 and 2012-2014), oral cancer mortality rates have increased by 20% for males and 19% for females1Five year survival rates are 56%. Most oral cancers are triggered by tobacco and alcohol, which together account for 75% of cases2. Cigarette smoking is associated with an increased risk of the more common forms of oral cancer. The risk among cigarette smokers is estimated to be 10 times that for non-smokers. More intense use of tobacco increases the risk, while ceasing to smoke for 10 years or more reduces it to almost the same as that of non-smokers3. Oral cancer mortality rates can be used in conjunction with registration data to inform service planning as well as comparing survival rates across areas of England to assess the impact of public health prevention policies such as smoking cessation.References:(1) Cancer Research Campaign. Cancer Statistics: Oral – UK. London: CRC, 2000.(2) Blot WJ, McLaughlin JK, Winn DM et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988; 48: 3282-7. (3) La Vecchia C, Tavani A, Franceschi S et al. Epidemiology and prevention of oral cancer. Oral Oncology 1997; 33: 302-12.Definition of numeratorAll cancer mortality for lip, oral cavity and pharynx (ICD-10 C00-C14) in the respective calendar years aggregated into quinary age bands (0-4, 5-9,…, 85-89, 90+). This does not include secondary cancers or recurrences. Data are reported according to the calendar year in which the cancer was diagnosed.Counts of deaths for years up to and including 2019 have been adjusted where needed to take account of the MUSE ICD-10 coding change introduced in 2020. Detailed guidance on the MUSE implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/causeofdeathcodinginmortalitystatisticssoftwarechanges/january2020Counts of deaths for years up to and including 2013 have been double adjusted by applying comparability ratios from both the IRIS coding change and the MUSE coding change where needed to take account of both the MUSE ICD-10 coding change and the IRIS ICD-10 coding change introduced in 2014. The detailed guidance on the IRIS implementation is available at: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/bulletins/impactoftheimplementationofirissoftwareforicd10causeofdeathcodingonmortalitystatisticsenglandandwales/2014-08-08Counts of deaths for years up to and including 2010 have been triple adjusted by applying comparability ratios from the 2011 coding change, the IRIS coding change and the MUSE coding change where needed to take account of the MUSE ICD-10 coding change, the IRIS ICD-10 coding change and the ICD-10 coding change introduced in 2011. The detailed guidance on the 2011 implementation is available at https://webarchive.nationalarchives.gov.uk/ukgwa/20160108084125/http://www.ons.gov.uk/ons/guide-method/classifications/international-standard-classifications/icd-10-for-mortality/comparability-ratios/index.htmlDefinition of denominatorPopulation-years (aggregated populations for the three years) for people of all ages, aggregated into quinary age bands (0-4, 5-9, …, 85-89, 90+)
Facebook
TwitterSUMMARYThis analysis, designed and executed by Ribble Rivers Trust, identifies areas across England with the greatest levels of cancer (in persons of all ages). Please read the below information to gain a full understanding of what the data shows and how it should be interpreted.ANALYSIS METHODOLOGYThe analysis was carried out using Quality and Outcomes Framework (QOF) data, derived from NHS Digital, relating to cancer (in persons of all ages).This information was recorded at the GP practice level. However, GP catchment areas are not mutually exclusive: they overlap, with some areas covered by 30+ GP practices. Therefore, to increase the clarity and usability of the data, the GP-level statistics were converted into statistics based on Middle Layer Super Output Area (MSOA) census boundaries.The percentage of each MSOA’s population (all ages) with cancer was estimated. This was achieved by calculating a weighted average based on:The percentage of the MSOA area that was covered by each GP practice’s catchment areaOf the GPs that covered part of that MSOA: the percentage of registered patients that have that illness The estimated percentage of each MSOA’s population with cancer was then combined with Office for National Statistics Mid-Year Population Estimates (2019) data for MSOAs, to estimate the number of people in each MSOA with cancer, within the relevant age range.Each MSOA was assigned a relative score between 1 and 0 (1 = worst, 0 = best) based on:A) the PERCENTAGE of the population within that MSOA who are estimated to have cancerB) the NUMBER of people within that MSOA who are estimated to have cancerAn average of scores A & B was taken, and converted to a relative score between 1 and 0 (1= worst, 0 = best). The closer to 1 the score, the greater both the number and percentage of the population in the MSOA that are estimated to have cancer, compared to other MSOAs. In other words, those are areas where it’s estimated a large number of people suffer from cancer, and where those people make up a large percentage of the population, indicating there is a real issue with cancer within the population and the investment of resources to address that issue could have the greatest benefits.LIMITATIONS1. GP data for the financial year 1st April 2018 – 31st March 2019 was used in preference to data for the financial year 1st April 2019 – 31st March 2020, as the onset of the COVID19 pandemic during the latter year could have affected the reporting of medical statistics by GPs. However, for 53 GPs (out of 7670) that did not submit data in 2018/19, data from 2019/20 was used instead. Note also that some GPs (997 out of 7670) did not submit data in either year. This dataset should be viewed in conjunction with the ‘Health and wellbeing statistics (GP-level, England): Missing data and potential outliers’ dataset, to determine areas where data from 2019/20 was used, where one or more GPs did not submit data in either year, or where there were large discrepancies between the 2018/19 and 2019/20 data (differences in statistics that were > mean +/- 1 St.Dev.), which suggests erroneous data in one of those years (it was not feasible for this study to investigate this further), and thus where data should be interpreted with caution. Note also that there are some rural areas (with little or no population) that do not officially fall into any GP catchment area (although this will not affect the results of this analysis if there are no people living in those areas).2. Although all of the obesity/inactivity-related illnesses listed can be caused or exacerbated by inactivity and obesity, it was not possible to distinguish from the data the cause of the illnesses in patients: obesity and inactivity are highly unlikely to be the cause of all cases of each illness. By combining the data with data relating to levels of obesity and inactivity in adults and children (see the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset), we can identify where obesity/inactivity could be a contributing factor, and where interventions to reduce obesity and increase activity could be most beneficial for the health of the local population.3. It was not feasible to incorporate ultra-fine-scale geographic distribution of populations that are registered with each GP practice or who live within each MSOA. Populations might be concentrated in certain areas of a GP practice’s catchment area or MSOA and relatively sparse in other areas. Therefore, the dataset should be used to identify general areas where there are high levels of cancer, rather than interpreting the boundaries between areas as ‘hard’ boundaries that mark definite divisions between areas with differing levels of cancer.TO BE VIEWED IN COMBINATION WITH:This dataset should be viewed alongside the following datasets, which highlight areas of missing data and potential outliers in the data:Health and wellbeing statistics (GP-level, England): Missing data and potential outliersLevels of obesity, inactivity and associated illnesses (England): Missing dataDOWNLOADING THIS DATATo access this data on your desktop GIS, download the ‘Levels of obesity, inactivity and associated illnesses: Summary (England)’ dataset.DATA SOURCESThis dataset was produced using:Quality and Outcomes Framework data: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital.GP Catchment Outlines. Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital. Data was cleaned by Ribble Rivers Trust before use.MSOA boundaries: © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021.Population data: Mid-2019 (June 30) Population Estimates for Middle Layer Super Output Areas in England and Wales. © Office for National Statistics licensed under the Open Government Licence v3.0. © Crown Copyright 2020.COPYRIGHT NOTICEThe reproduction of this data must be accompanied by the following statement:© Ribble Rivers Trust 2021. Analysis carried out using data that is: Copyright © 2020, Health and Social Care Information Centre. The Health and Social Care Information Centre is a non-departmental body created by statute, also known as NHS Digital; © Office for National Statistics licensed under the Open Government Licence v3.0. Contains OS data © Crown copyright and database right 2021. © Crown Copyright 2020.CaBA HEALTH & WELLBEING EVIDENCE BASEThis dataset forms part of the wider CaBA Health and Wellbeing Evidence Base.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset presents the mortality rate from cancer among individuals under the age of 75 within the Birmingham and Solihull area. It captures the number of deaths attributed to all cancers (classified under ICD-10 codes C00 to C97) and expresses this as a directly age-standardised rate per 100,000 population. The data is structured in quinary age bands and is available for both single-year and three-year rolling averages, providing a comprehensive view of premature cancer mortality trends in the region.
Rationale Reducing premature mortality from cancer is a key public health priority. This indicator helps track progress in lowering the number of cancer-related deaths among people under 75, supporting efforts to improve early diagnosis, treatment, and prevention strategies.
Numerator The numerator is the number of deaths from all cancers (ICD-10 codes C00 to C97) registered in the respective calendar years, for individuals aged under 75. These figures are aggregated into quinary age bands and sourced from the Death Register.
Denominator The denominator is the population of individuals under 75 years of age, also aggregated into quinary age bands. For single-year rates, the population for that year is used. For three-year rolling averages, the population-years are aggregated across the three years. The source of this data is the 2021 Census.
Caveats Data may not align exactly with published Office for National Statistics (ONS) figures due to differences in postcode lookup versions and the application of comparability ratios in Office for Health Improvement and Disparities (OHID) data. Users should be cautious when comparing this dataset with other national statistics.
External references Further information and related indicators can be found on the OHID Fingertips platform.
Localities ExplainedThis dataset contains data based on either the resident locality or registered locality of the patient, a distinction is made between resident locality and registered locality populations:Resident Locality refers to individuals who live within the defined geographic boundaries of the locality. These boundaries are aligned with official administrative areas such as wards and Lower Layer Super Output Areas (LSOAs).Registered Locality refers to individuals who are registered with GP practices that are assigned to a locality based on the Primary Care Network (PCN) they belong to. These assignments are approximate—PCNs are mapped to a locality based on the location of most of their GP surgeries. As a result, locality-registered patients may live outside the locality, sometimes even in different towns or cities.This distinction is important because some health indicators are only available at GP practice level, without information on where patients actually reside. In such cases, data is attributed to the locality based on GP registration, not residential address.
Click here to explore more from the Birmingham and Solihull Integrated Care Partnerships Outcome Framework.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with any type of cancer in a year who are still alive five years after diagnosis. Purpose This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with any type of cancer. Current version updated: Feb-17 Next version due: Feb-18
Facebook
TwitterBy Data Exercises [source]
This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.
This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.
When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied
- Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
- This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
- This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides insights into one-year survival rates from all cancers, serving as a key indicator of early cancer outcomes. It measures the proportion of individuals diagnosed with an invasive cancer who survive for at least one year following their diagnosis. The dataset includes all invasive tumours classified under ICD-10 codes C00 to C97, excluding non-melanoma skin cancer (C44). It supports analysis across different population groups and geographies, including ethnicity, deprivation levels, and the Birmingham and Solihull (BSol) area.
Rationale
Improving one-year survival rates is a critical goal in cancer care, as it reflects the effectiveness of early diagnosis and initial treatment. This indicator helps monitor progress in reducing early mortality from cancer and supports targeted interventions to improve outcomes.
Numerator
The numerator includes individuals who were diagnosed with a specific type of cancer and died from the same type of cancer within one year of diagnosis. Only invasive cancers are included, as defined by ICD-10 codes C00 to C97, excluding non-melanoma skin cancer (C44). Data is sourced from the National Cancer Registration and Analysis Service (NCRAS).
Denominator
The denominator comprises all individuals diagnosed with an invasive cancer (ICD-10 codes C00 to C97, excluding C44) within a five-year period. This data is also sourced from the National Cancer Registration and Analysis Service (NCRAS).
Caveats
This dataset uses a simplified methodology that differs from the national calculation of one-year cancer survival. As a result, the figures presented here may not align with nationally published statistics. However, this approach enables the provision of survival data disaggregated by ethnicity, deprivation, and local geographies such as BSol, which is not always possible with national data.
External references
For more information, visit the National Cancer Registration and Analysis Service (NCRAS).
Localities ExplainedThis dataset contains data based on either the resident locality or registered locality of the patient, a distinction is made between resident locality and registered locality populations:Resident Locality refers to individuals who live within the defined geographic boundaries of the locality. These boundaries are aligned with official administrative areas such as wards and Lower Layer Super Output Areas (LSOAs).Registered Locality refers to individuals who are registered with GP practices that are assigned to a locality based on the Primary Care Network (PCN) they belong to. These assignments are approximate—PCNs are mapped to a locality based on the location of most of their GP surgeries. As a result, locality-registered patients may live outside the locality, sometimes even in different towns or cities.This distinction is important because some health indicators are only available at GP practice level, without information on where patients actually reside. In such cases, data is attributed to the locality based on GP registration, not residential address.
Click here to explore more from the Birmingham and Solihull Integrated Care Partnerships Outcome Framework.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset presents information on five-year survival rates from all cancers, focusing on individuals diagnosed with invasive cancers (ICD-10 codes C00 to C97, excluding non-melanoma skin cancer C44). It provides a simplified local methodology for calculating survival outcomes, enabling analysis by ethnicity, deprivation, and within the Birmingham and Solihull (BSol) geography. While it does not replicate the national calculation, it offers valuable insights into cancer survival trends at a more granular level.
Rationale
The primary aim of this indicator is to increase five-year survival rates from all cancers. Monitoring survival over a five-year period provides a meaningful measure of cancer outcomes and the effectiveness of early diagnosis and treatment interventions.
Numerator
The numerator includes individuals who were diagnosed with a specific type of cancer and subsequently died from the same type of cancer within five years of diagnosis. Only invasive cancers (ICD-10 codes C00 to C97, excluding C44) are included.
Denominator
The denominator comprises all individuals diagnosed with an invasive cancer (ICD-10 codes C00 to C97, excluding C44) within a five-year period.
Caveats
This dataset uses a simplified methodology that does not replicate the national calculation. As a result, the values reported here may differ from nationally published figures. However, this approach allows for the inclusion of breakdowns by ethnicity, deprivation, and local geography (BSol), which are not always available in national statistics.
External References
For more information, refer to the National Cancer Registration and Analysis Service (NCRAS).
Localities ExplainedThis dataset contains data based on either the resident locality or registered locality of the patient, a distinction is made between resident locality and registered locality populations:Resident Locality refers to individuals who live within the defined geographic boundaries of the locality. These boundaries are aligned with official administrative areas such as wards and Lower Layer Super Output Areas (LSOAs).Registered Locality refers to individuals who are registered with GP practices that are assigned to a locality based on the Primary Care Network (PCN) they belong to. These assignments are approximate—PCNs are mapped to a locality based on the location of most of their GP surgeries. As a result, locality-registered patients may live outside the locality, sometimes even in different towns or cities.This distinction is important because some health indicators are only available at GP practice level, without information on where patients actually reside. In such cases, data is attributed to the locality based on GP registration, not residential address.
Click here to explore more from the Birmingham and Solihull Integrated Care Partnerships Outcome Framework.
Facebook
TwitterAll individuals diagnosed with cancer from 2000 to 2007 were identified in the Cancer Register of Southern Sweden, but only individuals who were also identified in the Population Register of Scania were included in this cohort. Age- and gender-matched controls were identified in the Population Register of Scania. The controls were reconciled with the cancer registry in southern Sweden so that they had no prior diagnosis of cancer and with the Population Register of Scania that they were alive at time of diagnosis to the matched case. Also spouses to cancer patients were used as controls.
For each individual, healthcare costs were monitored related to the date of diagnosis. Costs for outpatient care, inpatient care, number of days in hospital and medications were included. Costs were also calculated for the controls.
Other information available about the individuals in the cohort are age, sex, domicile, type of tumor and medication.
Purpose:
To study the health cost per individual in relation to mortality and comorbidity.
Facebook
TwitterThis is historical data. The update frequency has been set to "Static Data" and is here for historic value. Updated on 8/14/2024 Cancer Mortality Rate - This indicator shows the age-adjusted mortality rate from cancer (per 100,000 population). Maryland’s age adjusted cancer mortality rate is higher than the US cancer mortality rate. Cancer impacts people across all population groups, however wide racial disparities exist. Link to Data Details
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A measure of the number of adults diagnosed with any type of cancer in a year who are still alive one year after diagnosis. Purpose This indicator attempts to capture the success of the NHS in preventing people from dying once they have been diagnosed with any type of cancer. Current version updated: Feb-17 Next version due: Feb-18
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
AbstractIn Italy, approximately 400.000 new cases of malignant tumors are recorded every year. The average of annual deaths caused by tumors, according to the Italian Cancer Registers, is about 3.5 deaths and about 2.5 per 1,000 men and women respectively, for a total of about 3 deaths every 1,000 people. Long-term (at least a decade) and spatially detailed data (up to the municipality scale) are neither easily accessible nor fully available for public consultation by the citizens, scientists, research groups, and associations. Therefore, here we present a ten-year (2009–2018) database on cancer mortality rates (in the form of Standardized Mortality Ratios, SMR) for 23 cancer macro-types in Italy on municipal, provincial, and regional scales. We aim to make easily accessible a comprehensive, ready-to-use, and openly accessible source of data on the most updated status of cancer mortality in Italy for local and national stakeholders, researchers, and policymakers and to provide researchers with ready-to-use data to perform specific studies. Methods For a given locality, year, and cause of death, the SMR is the ratio between the observed number of deaths (Om) and the number of expected deaths (Em): SMR = Om/Em (1) where Om should be an available observational data and Em is estimated as the weighted sum of age-specific population size for the given locality (ni) per age-specific death rates of the reference population (MRi): Em = sum(MRi x ni) (2) MRi could be provided by a public health organization or be estimated as the ratio between the age-specific number of deaths of reference population (Mi) to the age-specific reference population size (Ni): MRi = Mi/Ni (3) Thus, the value of Em is weighted by the age distribution of deaths and population size. SMR assumes value 1 when the number of observed and expected deaths are equal. Following eqns. (1-3), the SMR was computed for single years of the period 2009-2018 and for single cause of death as defined by the International ICD-10 classification system by using the following data: age-specific number of deaths by cause of reference population (i.e., Mi) from the Italian National Institute of Statistics (ISTAT, (http://www.istat.it/en/, last access: 26/01/2022)); age-specific census data on reference population (i.e., Ni) from ISTAT; the observed number of deaths by cause (i.e., Om) from ISTAT; the age-specific census data on population (ni); the SMR was estimated at three different level of aggregation: municipal, provincial (equivalent to the European classification NUTS 3) and regional (i.e., NUTS2). The SMR was also computed for the broad category of malignant tumors (i.e. C00-C979, hereinafter cancer macro-type C), and for the broad category of malignant tumor plus non-malignant tumors (i.e. C00-C979 plus D0-D489, hereinafter cancer macro-type CD). Lower 90% and 95% confidence intervals of 10-year average values were computed according to the Byar method.
Facebook
Twitterhttps://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Rapid Cancer Registration Data (RCRD) provides a quick, indicative source of cancer data. It is provided to support the planning and provision of cancer services. The data is based on a rapid processing of cancer registration data sources, in particular on Cancer Outcomes and Services Dataset (COSD) information. In comparison, National Cancer Registration Data (NCRD) relies on additional data sources, enhanced follow-up with trusts and expert processing by cancer registration officers. The Rapid Cancer Registration Data (RCRD) may be useful for service improvement projects including healthcare planning and prioritisation. However, it is poorly suited for epidemiological research due to limitations in the data quality and completeness.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
One-year and five-year net survival for adults (15-99) in England diagnosed with one of 29 common cancers, by age and sex.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data set from- What Defines Quality of Life for Older Patients Diagnosed with Cancer? A Qualitative Study
Abstract of the study: The treatment of cancer can have a significant impact on quality of life in older patients and this needs to be taken into account in decision making. However, quality of life can consist of many different components with varying importance between individuals. We set out to assess how older patients with cancer define quality of life and the components that are most significant to them. This was a single-centre, qualitative interview study. Patients aged 70 years or older with cancer were asked to answer open-ended questions: What makes life worthwhile? What does quality of life mean to you? What could affect your quality of life? Subsequently, they were asked to choose the five most important determinants of quality of life from a predefined list: cognition, contact with family or with community, independence, staying in your own home, helping others, having enough energy, emotional well-being, life satisfaction, religion and leisure activities. Afterwards, answers to the open-ended questions were independently categorized by two authors. The proportion of patients mentioning each category in the open-ended questions were compared to the predefined questions. Overall, 63 patients (median age 76 years) were included. When asked, “What makes life worthwhile?”, patients identified social functioning (86%) most frequently. Moreover, to define quality of life, patients most frequently mentioned categories in the domains of physical functioning (70%) and physical health (48%). Maintaining cognition was mentioned in 17% of the open-ended questions and it was the most commonly chosen option from the list of determinants (72% of respondents). In conclusion, physical functioning, social functioning, physical health and cognition are important components in quality of life. When discussing treatment options, the impact of treatment on these aspects should be taken into consideration.
Reference of research paper: Seghers PAL, Kregting JA, van Huis-Tanja LH, Soubeyran P, O'Hanlon S, Rostoft S, Hamaker ME, Portielje JEA. What Defines Quality of Life for Older Patients Diagnosed with Cancer? A Qualitative Study. Cancers. 2022; 14(5):1123. https://doi.org/10.3390/cancers14051123
Content of the data set: The first Tab describes what questions were asked, the second tab shows all individual anonymised answers to the open questions, the fourth shows the definitions that were used to classify all answers. Q1-Q4 show how the answers were categorised.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionTriple-negative breast cancer (TNBC) is linked to a poorer outlook, heightened aggressiveness relative to other breast cancer variants, and limited treatment choices. The absence of conventional treatment methods makes TNBC patients susceptible to metastasis. The objective of this research was to assess the clinical and pathological traits of TNBC patients, predict the influence of risk elements on their outlook, and create a prediction model to assist doctors in treating TNBC patients and enhancing their prognosis.MethodsWe included 23,394 individuals with complete baseline clinical data and survival information who were diagnosed with primary TNBC between 2010 and 2015 based on the SEER database. External validation utilised a group from The Affiliated Lihuili Hospital of Ningbo University. Independent risk factors linked to TNBC prognosis were identified through univariate, multivariate, and least absolute shrinkage and selection operator regression methods. These characteristics were chosen as parameters to develop 3- and 5-year overall survival (OS) and breast cancer-specific survival (BCSS) nomogram models. Model accuracy was assessed using calibration curves, consistency indices (C-indices), receiver operating characteristic curves (ROCs), and decision curve analyses (DCAs). Finally, TNBC patients were divided into groups of high, medium, and low risk, employing the nomogram model for conducting a Kaplan-Meier survival analysis.ResultsIn the training cohort, variables such as age at diagnosis, marital status, grade, T stage, N stage, M stage, surgery, radiation, and chemotherapy were linked to OS and BCSS. For the nomogram, the C-indices stood at 0.762, 0.747, and 0.764 in forecasting OS across the training, internal validation, and external validation groups, respectively. Additionally, the C-index values for the training, internal validation, and external validation groups in BCSS prediction stood at 0.793, 0.755, and 0.811, in that order. The findings revealed that the calibration of our nomogram model was successful, and the time-variant ROC curves highlighted its effectiveness in clinical settings. Ultimately, the clinical DCA showcased the prospective clinical advantages of the suggested model. Furthermore, the online version was simple to use, and nomogram classification may enhance the differentiation of TNBC prognosis and distinguish risk groups more accurately.ConclusionThese nomograms are precise tools for assessing risk in patients with TNBC and forecasting survival. They can help doctors identify prognostic markers and create more effective treatment plans for patients with TNBC, providing more accurate assessments of their 3- and 5-year OS and BCSS.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.
The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.
The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .
The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .
The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.
COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.
The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.
The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.
Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf
Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.
Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics
Data are subject to future revision as reporting changes.
Starting in July 2020, this dataset will be updated every weekday.
Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.
A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.
Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Facebook
TwitterThis dataset contains data about lung cancer Mortality. This database is a comprehensive collection of patient information, specifically focused on individuals diagnosed with cancer. It is designed to facilitate the analysis of various factors that may influence cancer prognosis and treatment outcomes. The database includes a range of demographic, medical, and treatment-related variables, capturing essential details about each patient's condition and history.
Key components of the database include:
Demographic Information: Basic details about the patients such as age, gender, and country of residence. This helps in understanding the distribution of cancer cases across different populations and regions.
Medical History: Information about each patient’s medical background, including family history of cancer, smoking status, Body Mass Index (BMI), cholesterol levels, and the presence of other health conditions such as hypertension, asthma, cirrhosis, and other cancers. This section is crucial for identifying potential risk factors and comorbidities.
Cancer Diagnosis: Detailed data about the cancer diagnosis itself, including the date of diagnosis and the stage of cancer at the time of diagnosis. This helps in tracking the progression and severity of the disease.
Treatment Details: Information regarding the type of treatment each patient received, the end date of the treatment, and the outcome (whether the patient survived or not). This is essential for evaluating the effectiveness of different treatment approaches.
The structure of the database allows for in-depth analysis and research, making it possible to identify patterns, correlations, and potential causal relationships between various factors and cancer outcomes. It is a valuable resource for medical researchers, epidemiologists, and healthcare providers aiming to improve cancer treatment and patient care.
id: A unique identifier for each patient in the dataset. age: The age of the patient at the time of diagnosis. gender: The gender of the patient (e.g., male, female). country: The country or region where the patient resides. diagnosis_date: The date on which the patient was diagnosed with lung cancer. cancer_stage: The stage of lung cancer at the time of diagnosis (e.g., Stage I, Stage II, Stage III, Stage IV). family_history: Indicates whether there is a family history of cancer (e.g., yes, no). smoking_status: The smoking status of the patient (e.g., current smoker, former smoker, never smoked, passive smoker). bmi: The Body Mass Index of the patient at the time of diagnosis. cholesterol_level: The cholesterol level of the patient (value). hypertension: Indicates whether the patient has hypertension (high blood pressure) (e.g., yes, no). asthma: Indicates whether the patient has asthma (e.g., yes, no). cirrhosis: Indicates whether the patient has cirrhosis of the liver (e.g., yes, no). other_cancer: Indicates whether the patient has had any other type of cancer in addition to the primary diagnosis (e.g., yes, no). treatment_type: The type of treatment the patient received (e.g., surgery, chemotherapy, radiation, combined). end_treatment_date: The date on which the patient completed their cancer treatment or died. survived: Indicates whether the patient survived (e.g., yes, no).
This dataset contains artificially generated data with as close a representation of reality as possible. This data is free to use without any licence required.
Good luck Gakusei!