CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data comes from two different sources. Population-based lung cancer incidence rates for the period 2010-2014 (most updated data) were abstracted from National Cancer Institute state cancer profiles (Schwartz et al. 1996).This national county-level database of cancer data is collected by state public health surveillance systems. The domain specific county level environmental quality index (EQI) data for the period 2000-2005 were abstracted from United States Environmental Protection Agency (USEPA) profile. Complete descriptions of the datasets used in the EQI are provided in Lobdell’s paper (Lobdell 2011). Data were merged based on the Federal Information Processing Standards (FIPS) code. Out of 3144 counties in United States this study has available information for 2602 counties: Data was not available for four states namely Kansas, Michigan, Minnesota and Nevada due to state legislation and regulations which prohibit the release of county-level data to outside entities, county whose lung cancer mortality information is missing were omitted from the data set, the Union county, Florida is an outlier in terms of mortality information which was deleted from the data set, in the process of local control analysis this study experiences two (cluster 28 and 29) non-informative clusters (non-informative cluster is one for which either treatment or control group information is missing). For analysis, non-informative clusters information was deleted from the data set. Three types of variables are used in this study: (i) lung cancer mortality as an outcome variable (ii) binary treatment indicator is the PM2.5 high (greater than 10.59 mg/m3) vs. low (less than 10.59 mg/m3) (iii) three potential X confounder for clustering namely land EQI, sociodemographic EQI and built EQI. For each index, higher values correspond to poorer environmental quality (Jagai et al. 2017). As PM2.5 is one of the indicators for measuring air EQI, that is why we do not consider the air EQI to avoid confounding effects.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Years of Life Lost (YLL) as a result of death from lung cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The lung cancer diagnostic tests market size was valued at USD 2.5 billion in 2023 and is projected to reach USD 6.1 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 10.5% during the forecast period. This substantial growth can be attributed to the rising prevalence of lung cancer globally, advancements in diagnostic technologies, and increasing awareness regarding early detection and treatment of lung cancer. The growing aging population and the high incidence of smoking, which is a leading cause of lung cancer, further propel the demand for diagnostic tests.
The increasing prevalence of lung cancer is one of the primary drivers of market growth. Lung cancer remains the leading cause of cancer-related deaths worldwide, necessitating the development of more accurate and early diagnostic methods. With advancements in medical technology, such as molecular diagnostics and non-invasive imaging techniques, the accuracy and efficiency of lung cancer diagnosis have significantly improved. These innovations not only enhance the detection rate but also facilitate personalized treatment plans, thereby improving patient outcomes.
Furthermore, government initiatives and funding for cancer research play a crucial role in market expansion. Many countries are investing heavily in cancer research, leading to the development of new diagnostic tools and techniques. For instance, organizations such as the National Cancer Institute (NCI) in the United States provide substantial grants for lung cancer research, fostering innovations in diagnostics. In addition, public awareness campaigns and screening programs conducted by healthcare organizations and governments encourage early diagnosis, which is vital for successful treatment and survival rates.
The integration of artificial intelligence (AI) and machine learning in diagnostic tools is another significant factor contributing to market growth. AI algorithms can analyze medical images with high precision, aiding radiologists in identifying lung cancer at earlier stages. Moreover, AI-driven software can evaluate large datasets from genetic and molecular tests, providing insights into the most effective treatment options based on individual patient profiles. This technological advancement not only enhances the accuracy of diagnostics but also reduces the time required for analysis, thereby increasing the efficiency of healthcare services.
The EGFR Mutation Test is a pivotal advancement in the realm of lung cancer diagnostics, offering a more personalized approach to treatment. This test specifically identifies mutations in the Epidermal Growth Factor Receptor (EGFR) gene, which are often present in non-small cell lung cancer (NSCLC) patients. By detecting these mutations, healthcare providers can tailor therapies that target the specific genetic alterations, thereby improving treatment efficacy and patient outcomes. The growing adoption of EGFR Mutation Tests underscores the shift towards precision medicine, where treatments are increasingly customized based on individual genetic profiles. This approach not only enhances the effectiveness of therapies but also minimizes adverse effects, as treatments are more accurately aligned with the patient's unique genetic makeup.
Regionally, North America holds the largest share of the lung cancer diagnostic tests market, followed by Europe and Asia Pacific. The dominance of North America can be attributed to the presence of advanced healthcare infrastructure, high healthcare expenditure, and a robust research landscape. The Asia Pacific region, however, is expected to witness the highest growth rate during the forecast period, driven by increasing healthcare investments, growing awareness about lung cancer, and rising incidences of the disease in countries like China and India. The growing middle-class population and improving healthcare access in these countries further support market growth.
The lung cancer diagnostic tests market is segmented by test type into imaging tests, sputum cytology, tissue biopsy, molecular tests, and others. Imaging tests are one of the most commonly used diagnostic methods for lung cancer detection. Techniques such as X-rays, CT scans, and PET scans provide detailed visuals of the lungs, helping in identifying abnormal growths or tumors. The non-invasive nature of these tests and their ability to provide quick results make them a preferred choice among healthcare
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Objective: To identify the socioepidemiologic and histopathologic patterns of lung cancer patients in the Middle Euphrates region. Patients and Methods: This study analyzed medical information from lung cancer patients at the Middle Euphrates Cancer Center in Iraq from January 2018 to December 2023. Demographic information (age, gender, residency, and education level) as well as clinical details (histopathological categorization) were obtained. The inclusion criteria included all confirmed lung cancer cases, while cases with inadequate data or non-lung cancer diagnosis were omitted. The data were analyzed using IBM SPSS Statistics (version 26). The data summarized using descriptive statistics, and chi-square tests used to identify correlations between categorical variables at a significance level of p < 0.05. Ethical approval was obtained from the relevant institutional review board. Results: A total of 1162 patients were included with mean age at diagnosis(64.47±11.45) years. Majority of patients are over 60 years (64.4%), followed by (40–60 years), 34%, and the least affected group is under 40 years (1.6%). Males account for the majority of cases (68%), while females about 32%, with male:female ratio that fluctuate around 2:1. Illiterate patients and those with low education levels represent the largest proportion accounting for about 87.9% of the study population. Squamous Cell Carcinoma (SCC) is the most frequent subtype (41.7%), followed closely by Adenocarcinoma (AC) at 37%, and Small Cell Lung Cancer (SCLC), 10.5%. Although SCC is the predominant subtype overall, AC incidence is increasing overtime (from 31.7% in 2018 to 41.4% in 2023) with predominance in females, younger and higher educated groups. While the percentage of SCLC and other less common subgroups remained relatively stable over time, there is a significant reduction in NSCLC-NOS diagnoses (from 11.1% in 2018 to 3.2% in 2023). Conclusions: In Iraq, specifically in the Middle Euphrates region, lung cancer is a major public health issue in the elder age groups. The two main subtypes, SCC and AC, are the main contributors, with obvious increment in AC cases in the recent years. The shifting trends indicate the urgent need for improved screening strategies, focused preventative initiatives, and customized treatment plans in view of changing risk profiles.
https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
Characteristic | Value (N = 26254) |
---|---|
Age (years) | Mean ± SD: 61.4± 5 Median (IQR): 60 (57-65) Range: 43-75 |
Sex | Male: 15512 (59%) Female: 10742 (41%) |
Race | White: 23969 (91.3%) |
Ethnicity | Not Available |
Background: The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer.
Methods: From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. This dataset includes the low-dose CT scans from 26,254 of these subjects, as well as digitized histopathology images from 451 subjects.
Results: The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02).
Conclusions: Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385).
Data Availability: A summary of the National Lung Screening Trial and its available datasets are provided on the Cancer Data Access System (CDAS). CDAS is maintained by Information Management System (IMS), contracted by the National Cancer Institute (NCI) as keepers and statistical analyzers of the NLST trial data. The full clinical data set from NLST is available through CDAS. Users of TCIA can download without restriction a publicly distributable subset of that clinical data, along with the CT and Histopathology images collected during the trial. (These previously were restricted.)
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths from lung cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lung cancer is the number one cancer-related cause of death in Sweden and worldwide. In most countries, five-year survival estimates vary between 10% and 20% with evidence of improved survival over time. Over the last decades, the management of lung cancer has changed including the introduction of national guidelines, new diagnostic procedures and treatments. This study aimed to investigate temporal trends in lung cancer survival both overall and in subgroups defined by established prognostic factors (i.e., sex, stage, histopathology and smoking history). We estimated one-, two-, and five-year relative survival, and excess mortality, in patients diagnosed with squamous cell carcinoma or adenocarcinoma of the lung between 1995 and 2016 in Sweden. We used population-based information available in a national lung cancer research database (LCBaSe) generated by cross-linkage between the Swedish National Lung Cancer Register and several Swedish health and sociodemographic registers. We included 36,935 patients diagnosed with squamous cell carcinoma or adenocarcinoma of the lung between 1995 and 2016. The overall one-, two- and five-year survival estimates increased between 1995 and 2016, from 38% to 53%, 21% to 37%, and 14% to 24%, respectively. Over the study period, we also found improved survival in subgroups, for example in patients with stages III-IV disease, patients with adenocarcinoma, and never-smokers. The excess mortality decreased over the study period, both overall and in all subgroups. Lung cancer survival increased over time in the overall lung cancer population. Of special note was evidence of improved survival in patients with stage IV disease. Our results corroborate a previously observed global trend of improved survival in patients with lung cancer.
Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Population based cancer incidence rates were abstracted from National Cancer Institute, State Cancer Profiles for all available counties in the United States for which data were available. This is a national county-level database of cancer data that are collected by state public health surveillance systems. All-site cancer is defined as any type of cancer that is captured in the state registry data, though non-melanoma skin cancer is not included. All-site age-adjusted cancer incidence rates were abstracted separately for males and females. County-level annual age-adjusted all-site cancer incidence rates for years 2006–2010 were available for 2687 of 3142 (85.5%) counties in the U.S. Counties for which there are fewer than 16 reported cases in a specific area-sex-race category are suppressed to ensure confidentiality and stability of rate estimates; this accounted for 14 counties in our study. Two states, Kansas and Virginia, do not provide data because of state legislation and regulations which prohibit the release of county level data to outside entities. Data from Michigan does not include cases diagnosed in other states because data exchange agreements prohibit the release of data to third parties. Finally, state data is not available for three states, Minnesota, Ohio, and Washington. The age-adjusted average annual incidence rate for all counties was 453.7 per 100,000 persons. We selected 2006–2010 as it is subsequent in time to the EQI exposure data which was constructed to represent the years 2000–2005. We also gathered data for the three leading causes of cancer for males (lung, prostate, and colorectal) and females (lung, breast, and colorectal). The EQI was used as an exposure metric as an indicator of cumulative environmental exposures at the county-level representing the period 2000 to 2005. A complete description of the datasets used in the EQI are provided in Lobdell et al. and methods used for index construction are described by Messer et al. The EQI was developed for the period 2000– 2005 because it was the time period for which the most recent data were available when index construction was initiated. The EQI includes variables representing each of the environmental domains. The air domain includes 87 variables representing criteria and hazardous air pollutants. The water domain includes 80 variables representing overall water quality, general water contamination, recreational water quality, drinking water quality, atmospheric deposition, drought, and chemical contamination. The land domain includes 26 variables representing agriculture, pesticides, contaminants, facilities, and radon. The built domain includes 14 variables representing roads, highway/road safety, public transit behavior, business environment, and subsidized housing environment. The sociodemographic environment includes 12 variables representing socioeconomics and crime. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jagai, J., L. Messer, K. Rappazzo , C. Gray, S. Grabich , and D. Lobdell. County-level environmental quality and associations with cancer incidence#. Cancer. John Wiley & Sons Incorporated, New York, NY, USA, 123(15): 2901-2908, (2017).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Cancer Incidence data for Lung Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are segmented by sex (Both Sexes, Male, and Female) and age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Cancer registrations for lung cancer per 100,000 population. Directly standardised registration rate Source: Regional Cancer Registries, Office for National Statistics (ONS). Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2004-2006 Type of data: Administrative data
https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Lung Image Database Consortium image collection (LIDC-IDRI) consists of diagnostic and lung cancer screening thoracic computed tomography (CT) scans with marked-up annotated lesions. It is a web-accessible international resource for development, training, and evaluation of computer-assisted diagnostic (CAD) methods for lung cancer detection and diagnosis. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process.
Seven academic centers and eight medical imaging companies collaborated to create this data set which contains 1018 cases. Each subject includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ("nodule > or =3 mm," "nodule <3 mm," and "non-nodule > or =3 mm"). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus.
Note : The TCIA team strongly encourages users to review pylidc and the Standardized representation of the TCIA LIDC-IDRI annotations using DICOM (DICOM-LIDC-IDRI-Nodules) of the annotations/segmentations included in this dataset before developing custom tools to analyze the XML version.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objective: While Hungary is often reported to have the highest incidence and mortality rates of lung cancer, until 2018 no nationwide epidemiology study was conducted to confirm these trends. The objective of this study was to estimate the occurrence of lung cancer in Hungary based on a retrospective review of the National Health Insurance Fund (NHIF) database.Methods: Our retrospective, longitudinal study included patients aged ≥20 years who were diagnosed with lung cancer (ICD-10 C34) between 1 Jan 2011 and 31 Dec 2016. Age-standardized incidence and mortality rates were calculated using both the 1976 and 2013 European Standard Populations (ESP).Results: Between 2011 and 2016, 6,996 – 7,158 new lung cancer cases were recorded in the NHIF database annually, and 6,045 – 6,465 all-cause deaths occurred per year. Age-adjusted incidence rates were 115.7–101.6/100,000 person-years among men (ESP 1976: 84.7–72.6), showing a mean annual change of − 2.26% (p = 0.008). Incidence rates among women increased from 48.3 to 50.3/100,000 person-years (ESP 1976: 36.9–38.0), corresponding to a mean annual change of 1.23% (p = 0.028). Age-standardized mortality rates varied between 103.8 and 97.2/100,000 person-years (ESP 1976: 72.8–69.7) in men and between 38.3 and 42.7/100,000 person-years (ESP 1976: 27.8–29.3) in women.Conclusion: Age-standardized incidence and mortality rates of lung cancer in Hungary were found to be high compared to Western-European countries, but lower than those reported by previous publications. The incidence of lung cancer decreased in men, while there was an increase in incidence and mortality among female lung cancer patients.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Cancer registrations for lung cancer per 100,000 population. Directly standardised registration rate Source: Regional Cancer Registries, Office for National Statistics (ONS). Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2004-2006 Type of data: Administrative data
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Making clinical audit data transparent In his transparency and open data letter to Cabinet Ministers on 7 July 2011, the Prime Minister restated the commitment to make clinical audit data available from the national audits within the National Clinical Audit and Patient Outcomes Programme. The National Lung Cancer Audit (NLCA) was identified as the pilot for this data release. The data was released in an open and standardised format for the first time in December 2011, and each year onward, data from the National Lung Cancer Audit will be made available in CSV format. The data are also being made available on the data.gov website. Covering all Strategic Clinical Networks and NHS Trusts in England, the data from the audit includes information about data completeness, audit process and outcome measures. The data will be available in a pdf format with the National Lung Cancer Audit 2014 annual report. ♯ What information is being made available? ♯ ☼ Measures about the process of care given to patients ☼ Information about care outcomes and treatment. ☼ The data also provides Audit participation by Trust and data completeness for the key fields. This data does not list data about individual patients nor does it contain any patient identifiable data. ♯ Using and interpreting the data ♯ Data from the National Lung Cancer Audit requires careful interpretation, and the information should not be looked at in isolation when assessing standards of care. Data is analysed either by cancer network or by place first seen in secondary care for the calendar year 2013 (except where noted). As a result, some trusts that only provide some specialist treatments for patients and do not routinely supply diagnostic data are not properly represented in these data. This is because all the analyses of the NLCA to date have been carried out by 'place first seen' and clinical networks. The ‘place first seen' most closely represents the Clinical Multi-Disciplinary Team (MDT) which makes the first treatment decisions (in partnership with representatives from the specialist centres who sit on these peripheral MDTs). We largely know the population base for these MDTs and that number provides the ‘denominator' for the outcome measures. It is much more difficult to define a population denominator for specialist centres and the treatment they provide is usually only one part of a complex care pathway. So taking the raw data at face value gives a very distorted picture both of their activity and performance. ♯ Accessing the data ♯ The data are being made available on the data.gov website. Each year three files of data from the National Lung Cancer Audit will be made available in CSV format. Trusts and Networks are identified by name and their national code. ♯ What does the data cover? ♯ The data measure levels of completeness for data submitted to the NLCA and measures of performance in the audit at trust level for key performance measures for assessing standards of care for lung cancer in secondary care. Details of these standards can be found in appendix 2 of the NLCA report. ♯ Are all Trusts included? ♯ All Trusts in England that manage patients diagnosed with lung cancer (excluding mesothelioma) are included. The audit also covers Wales. ♯ What period does the data cover? ♯ This data were extracted from the NLCA database in July 2014 and covers patients first seen in the calendar year 2013 (except where noted).
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
National Cancer Registration And Analysis Service (NCRAS). (2019). Cancer Registration: Frequency of lung Cancer tumours Diagnosed in 2015-2016 by CCG and Route to Diagnosis (2015 -2016) [Dataset]. Public Health England. https://doi.org/10.25503/7gpv-d753
Aggregated data on lung cancers tumours (ICD-10 C33-C34) diagnosed between 2015-2016 in English resident population.
Data within the File: - PATIENTS (Count of tumours) - CCG_NAME (Name of resident CCG) - CCG_ROUTE (Name of Route to Diagnosis)
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The National Lung Cancer Audit (NLCA) evaluates how the care received by people diagnosed with lung cancer in England and Wales compares with recommended practice and provides information that supports healthcare providers, commissioners, and regulators to improve the care for patients. The NLCA reports a set of process and outcome measures that cover important aspects of the care pathway for people diagnosed with lung cancer. In the NLCA State of the Nation report 2024, we give an overview of the patterns of care and outcomes for 36,886 people diagnosed with lung cancer in England in 2022. A separate section provides describes results for 2,211 people diagnosed in Wales in 2022. The report describes summarises the performance of lung cancer services in 2022 and compares this to the situation in 2019, 2020 and 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
TNM staging being unavailable in SEER before 2004, we categorized tumors as localized, regional, and distant, for patients between 1988 and 1999.*Smoking status is not reported in SEER.£Excluding missing stage.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The National Lung Cancer Audit (NLCA) evaluates how the care received by people diagnosed with lung cancer in England and Wales compares with recommended practice and provides information that supports healthcare providers, commissioners, and regulators to improve the care for patients. The NLCA reports a set of process and outcome measures that cover important aspects of the care pathway for people diagnosed with lung cancer. In the NLCA State of the Nation report 2025, we give an overview of the patterns of care and outcomes for 37,750 people diagnosed with lung cancer in England in 2023. A separate section provides describes results for 2,334 people diagnosed in Wales in 2023. The report describes summarises the performance of lung cancer services in 2023 and compares this to the situation in 2020, 2021 and 2022.
This map service portrays the number of deaths per 100,000 people per square mile from lung and colon cancer. It displays the distribution of lung and colon cancer across the United States. Pop-ups show attributes such as state name, county name, number of colon or lung cancer deaths, and square miles per area.Lung Cancer: Death due to malignant neoplasm of the trachea, bronchus and lung.Colon Cancer: Death due to malignant neoplasm of the colon, rectum and anus.This data was sourced from: Community Health Status Indicators_Other Health Datapalooza focused content that may interest you: Health Datapalooza Health Datapalooza
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data comes from two different sources. Population-based lung cancer incidence rates for the period 2010-2014 (most updated data) were abstracted from National Cancer Institute state cancer profiles (Schwartz et al. 1996).This national county-level database of cancer data is collected by state public health surveillance systems. The domain specific county level environmental quality index (EQI) data for the period 2000-2005 were abstracted from United States Environmental Protection Agency (USEPA) profile. Complete descriptions of the datasets used in the EQI are provided in Lobdell’s paper (Lobdell 2011). Data were merged based on the Federal Information Processing Standards (FIPS) code. Out of 3144 counties in United States this study has available information for 2602 counties: Data was not available for four states namely Kansas, Michigan, Minnesota and Nevada due to state legislation and regulations which prohibit the release of county-level data to outside entities, county whose lung cancer mortality information is missing were omitted from the data set, the Union county, Florida is an outlier in terms of mortality information which was deleted from the data set, in the process of local control analysis this study experiences two (cluster 28 and 29) non-informative clusters (non-informative cluster is one for which either treatment or control group information is missing). For analysis, non-informative clusters information was deleted from the data set. Three types of variables are used in this study: (i) lung cancer mortality as an outcome variable (ii) binary treatment indicator is the PM2.5 high (greater than 10.59 mg/m3) vs. low (less than 10.59 mg/m3) (iii) three potential X confounder for clustering namely land EQI, sociodemographic EQI and built EQI. For each index, higher values correspond to poorer environmental quality (Jagai et al. 2017). As PM2.5 is one of the indicators for measuring air EQI, that is why we do not consider the air EQI to avoid confounding effects.