79 datasets found
  1. h

    Public Health Research Database (PHRD)

    • healthdatagateway.org
    unknown
    Updated Apr 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Public Health Research Database (PHRD) [Dataset]. https://healthdatagateway.org/dataset/403
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Apr 21, 2021
    Dataset authored and provided by
    Office for National Statistics
    License

    https://www.ons.gov.uk/aboutus/whatwedo/statistics/requestingstatistics/approvedresearcherschemehttps://www.ons.gov.uk/aboutus/whatwedo/statistics/requestingstatistics/approvedresearcherscheme

    Description

    The Public Health Research Database (PHRD) is a linked asset which currently includes Census 2011 data; Mortality Data; Hospital Episode Statistics (HES); GP Extraction Service (GPES) Data for Pandemic Planning and Research data. Researchers may apply for these datasets individually or any combination of the current 4 datasets.

    The purpose of this dataset is to enable analysis of deaths involving COVID-19 by multiple factors such as ethnicity, religion, disability and known comorbidities as well as age, sex, socioeconomic and marital status at subnational levels. 2011 Census data for usual residents of England and Wales, who were not known to have died by 1 January 2020, linked to death registrations for deaths registered between 1 January 2020 and 8 March 2021 on NHS number. The data exclude individuals who entered the UK in the year before the Census took place (due to their high propensity to have left the UK prior to the study period), and those over 100 years of age at the time of the Census, even if their death was not linked. The dataset contains all individuals who died (any cause) during the study period, and a 5% simple random sample of those still alive at the end of the study period. For usual residents of England, the dataset also contains comorbidity flags derived from linked Hospital Episode Statistics data from April 2017 to December 2019 and GP Extraction Service Data from 2015-2019.

  2. Death Profiles by County

    • data.ca.gov
    • data.chhs.ca.gov
    • +4more
    csv, zip
    Updated Jun 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  3. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +2more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  4. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(4689434), csv(16301), csv(5034), csv(463460), csv(2026589), csv(5401561), csv(164006), csv(200270), csv(419332), zip, csv(385695)Available download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  5. D

    ARCHIVED: COVID-19 Deaths by Population Characteristics Over Time

    • data.sfgov.org
    application/rdfxml +5
    Updated Sep 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ARCHIVED: COVID-19 Deaths by Population Characteristics Over Time [Dataset]. https://data.sfgov.org/COVID-19/ARCHIVED-COVID-19-Deaths-by-Population-Characteris/w6fd-iq9e
    Explore at:
    csv, tsv, application/rssxml, xml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Sep 11, 2023
    Description

    A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.

    To access the dataset that continues to refresh daily, navigate to this page: COVID-19 Deaths by Population Characteristics Over Time.   The dataset contains data on the following population characteristics that are no longer being reported publicly:

    • Skilled Nursing Facility Occupancy
    • Sexual orientation
    • Comorbidities
    • Homelessness
    • Single room occupancy (SRO) tenancy
    • Transmission Type

    B. HOW THE DATASET IS CREATED COVID-19 deaths are suspected to be associated with COVID-19. This means COVID-19 is listed as a cause of death or significant condition on the death certificate.    Data on the population characteristics of COVID-19 deaths are from:  * Case interviews  * Laboratories  * Medical providers    These multiple streams of data are merged, deduplicated, and undergo data verification processes.      Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives.  * This dataset includes data for COVID-19 deaths reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.

    Sexual orientation    * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to Virtual Assistant information gathering starting December 2021. The California Department of Public Health, Virtual Assistant is only sent to adults who are 18+ years old. Learn more about our data collection guidelines pertaining to sexual orientation.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.

    Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    C. UPDATE PROCESS This dataset will only update when any population characteristics are archived. Data for existing characteristic types will not change but new characteristic types may be added.   D. HOW TO USE THIS DATASET This dataset may include different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.

    New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.

    E. CHANGE LOG

    • 6/6/2023 - data on deaths by transmission type are no longer being updated. This data is currently through 6/1/2023 (as of 6/6/2023) and will not include any new data after this date.
    • 5/16/2023 - data on deaths by sexual orientation, comorbidities, homelessness, and single room occupancy are no longer being updated. This data is currently through 5/11/2023 (as of 5/16/2023) and will not include any new data after this date.
    • 1/5/2023 - data on SNF deaths are no longer being updated. SNF data is currently through 12/31/2022 (as of 1/5/2023) and will not include any new data after this date.

  6. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
    Explore at:
    tsv, application/rssxml, csv, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  7. e

    Young Lives: Data Matching Series, 1900-2021 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Nov 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Young Lives: Data Matching Series, 1900-2021 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/d6b5c819-7e79-5965-b6b2-2c0e42ab88d3
    Explore at:
    Dataset updated
    Nov 21, 2024
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Young Lives survey is an innovative long-term project investigating the changing nature of childhood poverty in four developing countries. The study is being conducted in Ethiopia, India, Peru and Vietnam and has tracked the lives of 12,000 children over a 20-year period, through 5 (in-person) survey rounds (Round 1-5) and, with the latest survey round (Round 6) conducted over the phone in 2020 and 2021 as part of the Listening to Young Lives at Work: COVID-19 Phone Survey.Round 1 of Young Lives surveyed two groups of children in each country, at 1 year old and 5 years old. Round 2 returned to the same children who were then aged 5 and 12 years old. Round 3 surveyed the same children again at aged 7-8 years and 14-15 years, Round 4 surveyed them at 12 and 19 years old, and Round 5 surveyed them at 15 and 22 years old. Thus the younger children are being tracked from infancy to their mid-teens and the older children through into adulthood, when some will become parents themselves.The 2020 phone survey consists of three phone calls (Call 1 administered in June-July 2020; Call 2 in August-October 2020 and Call 3 in November-December 2020) and the 2021 phone survey consists of two additional phone calls (Call 4 in August 2021 and Call 5 in October-December 2021) The calls took place with each Young Lives respondent, across both the younger and older cohort, and in all four study countries (reaching an estimated total of around 11,000 young people).The Young Lives survey is carried out by teams of local researchers, supported by the Principal Investigator and Data Manager in each country.Further information about the survey, including publications, can be downloaded from the Young Lives website. Young Lives research has expanded to explore linking geographical data collected during the rounds to external datasets. Matching Young Lives data with administrative and geographic datasets significantly increases the scope for research in several areas, and may allow researchers to identify sources of exogenous variation for more convincing causal analysis on policy and/or early life circumstances. Young Lives: Data Matching Series, 1900-2021 includes the following linked datasets: 1. Climate Matched Datasets (four YL study countries): Community-level GPS data has been matched with temperature and precipitation data from the University of Delaware. Climate variables are offered at the community level, with a panel data structure spanning across years and months. Hence, each community has a unique value of precipitation (variable PRCP) and temperature (variable TEMP), for each year and month pairing for the period 1900-2017. 2. COVID-19 Matched Dataset (Peru only): The YL Phone Survey Calls data has been matched with external data sources (The Peruvian Ministry of Health and the National Information System of Deaths in Peru). The matched dataset includes the total number of COVID cases per 1,000 inhabitants, the total number of COVID deaths by district and per 1,000 inhabitants; the total number of excess deaths per 1,000 inhabitants and the number of lockdown days in each Young Lives district in Peru during August 2020 to December 2021.Further information is available in the PDF reports included in the study documentation.

  8. EmoVisual Data

    • kaggle.com
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arya Shah (2024). EmoVisual Data [Dataset]. https://www.kaggle.com/datasets/aryashah2k/emovisual-data/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Arya Shah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Emo Visual Data

    Introduction

    This is an emoticon visual annotation data set, which collects 5329 emoticons and uses the glm-4v api and step-free-api projects to complete the visual annotation through multi-modal large models.

    Example:

    0f20b31d-e019-4565-9286-fdf29cc8e144.jpg

    Original 这个表情包中的内容和笑点在于它展示了一只卡通兔子,兔子的表情看起来既无奈又有些生气,配文是“活着已经够累了,上网你还要刁难我”。这句话以一种幽默的方式表达了许多人在上网时可能会遇到的挫折感或烦恼,尤其是当遇到困难或不顺心的事情时。这种对现代生活压力的轻松吐槽使得这个表情包在社交媒体上很受欢迎,人们用它来表达自己在网络世界中的疲惫感或面对困难时的幽默态度。

    Translated: The content and laughter of this emoticon package is that it shows a cartoon rabbit. The rabbit's expression looks helpless and a little angry. The caption is "I am tired of living, but you still make things difficult for me online." This quote expresses in a humorous way the frustration or annoyance that many people may experience when surfing the Internet, especially when something difficult or doesn't go their way. This lighthearted take on the pressures of modern life has made the meme popular on social media, where people use it to express their feelings of exhaustion in the online world or to use humor in the face of difficulties.

  9. Statewide Live Birth Profiles

    • data.ca.gov
    • data.chhs.ca.gov
    • +6more
    csv, zip
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Live Birth Profiles [Dataset]. https://data.ca.gov/dataset/statewide-live-birth-profiles
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains counts of live births for California as a whole based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.

    The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.

  10. World Bank: GHNP Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). World Bank: GHNP Data [Dataset]. https://www.kaggle.com/datasets/theworldbank/world-bank-health-population
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The World Bank is an international financial institution that provides loans to countries of the world for capital projects. The World Bank's stated goal is the reduction of poverty. Source: https://en.wikipedia.org/wiki/World_Bank

    Content

    This dataset combines key health statistics from a variety of sources to provide a look at global health and population trends. It includes information on nutrition, reproductive health, education, immunization, and diseases from over 200 countries.

    Update Frequency: Biannual

    For more information, see the World Bank website.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://datacatalog.worldbank.org/dataset/health-nutrition-and-population-statistics

    https://cloud.google.com/bigquery/public-data/world-bank-hnp

    Dataset Source: World Bank. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Citation: The World Bank: Health Nutrition and Population Statistics

    Banner Photo by @till_indeman from Unplash.

    Inspiration

    What’s the average age of first marriages for females around the world?

  11. Z

    Effect of suicide rates on life expectancy dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Filip Zoubek (2021). Effect of suicide rates on life expectancy dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4694269
    Explore at:
    Dataset updated
    Apr 16, 2021
    Dataset authored and provided by
    Filip Zoubek
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Effect of suicide rates on life expectancy dataset

    Abstract In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy. The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.

    Data

    The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.

    LICENSE

    THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).

    [1] https://www.kaggle.com/szamil/who-suicide-statistics

    [2] https://www.kaggle.com/kumarajarshi/life-expectancy-who

  12. Total population worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  13. s

    Inpatient primary health care, patients per 1000 inhabitants - Datasets -...

    • store.smartdatahub.io
    Updated Mar 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Inpatient primary health care, patients per 1000 inhabitants - Datasets - This service has been deprecated - please visit https://www.smartdatahub.io/ to access data. See the About page for details. // [Dataset]. https://store.smartdatahub.io/dataset/fi_sotkanet_inpatient_primary_health_care_patients_per_1000_inhabitants
    Explore at:
    Dataset updated
    Mar 6, 2019
    Description

    Inpatient primary health care, patients per 1000 inhabitants Tables Inpatient Primary Health Care Patients Per 1000 InhabitantsTSV The indicator gives the number of all patients who have received hospital care in primary health care during the year per thousand inhabitants. Population figures refer to mean population. The indicator covers hospital care in the public sector (municipalities, joint municipal boards and the state), as well as in private sector hospitals. It covers municipal health-centre wards led by general practitioners and GP-level inpatient care acquired by municipalities/joint municipal boards from elsewhere.Population proportions are calculated at THL based on the Population Statistics of Statistics Finland.

  14. A

    ‘HIV AIDS Dataset’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘HIV AIDS Dataset’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-hiv-aids-dataset-428e/latest
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘HIV AIDS Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/imdevskp/hiv-aids-dataset on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    In the time of epidemics, what is the status of HIV AIDS across the world, where does each country stands, is it getting any better. The data set should be helpful to explore much more about above mentioned factors.

    Content

    The data set contains data on

    1. No. of people living with HIV AIDS
    2. No. of deaths due to HIV AIDS
    3. No. of cases among adults (19-45)
    4. Prevention of mother-to-child transmission estimates
    5. ART (Anti Retro-viral Therapy) coverage among people living with HIV estimates
    6. ART (Anti Retro-viral Therapy) coverage among children estimates

    Acknowledgements / Data Source

    Collection methodology

    https://github.com/imdevskp/hiv_aids_who_unesco_data_cleaning

    Cover Photo

    Photo by Anna Shvets from Pexels https://www.pexels.com/photo/red-ribbon-on-white-surface-3900425/

    Similar Datasets

    --- Original source retains full ownership of the source dataset ---

  15. Data from: TIHM: An open dataset for remote healthcare monitoring in...

    • zenodo.org
    zip
    Updated Aug 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesca Palermo; Francesca Palermo; Yu Chen; Yu Chen; Alexander Capstick; Nan Fletcher-Loyd; Chloe Walsh; Samaneh Kouchaki; Samaneh Kouchaki; Jessica True; Olga Balazikova; Eyal Soreq; Gregory Scott; Helen Rostill; Ramin Nilforooshan; Ramin Nilforooshan; Payam Barnaghi; Payam Barnaghi; Alexander Capstick; Nan Fletcher-Loyd; Chloe Walsh; Jessica True; Olga Balazikova; Eyal Soreq; Gregory Scott; Helen Rostill (2023). TIHM: An open dataset for remote healthcare monitoring in dementia [Dataset]. http://doi.org/10.5281/zenodo.7622128
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Francesca Palermo; Francesca Palermo; Yu Chen; Yu Chen; Alexander Capstick; Nan Fletcher-Loyd; Chloe Walsh; Samaneh Kouchaki; Samaneh Kouchaki; Jessica True; Olga Balazikova; Eyal Soreq; Gregory Scott; Helen Rostill; Ramin Nilforooshan; Ramin Nilforooshan; Payam Barnaghi; Payam Barnaghi; Alexander Capstick; Nan Fletcher-Loyd; Chloe Walsh; Jessica True; Olga Balazikova; Eyal Soreq; Gregory Scott; Helen Rostill
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dementia is a progressive condition that affects cognitive and functional abilities. There is a need for reliable and continuous health monitoring of People Living with Dementia (PLWD) to improve their quality of life and support their independent living. Healthcare services often focus on addressing and treating already established health conditions that affect PLWD. Managing these conditions continuously can inform better decision-making earlier for higher-quality care management for PLWD. The Technology Integrated Health Management (TIHM) project developed a new digital platform to routinely collect longitudinal observational and measurement data within the home and apply machine learning and analytical models for the detection and prediction of adverse health events affecting the well-being of PLWD. This work describes the TIHM dataset collected during the second phase (i.e., feasibility study) of the TIHM project. The data was collected from homes of 56 PLWD and associated with events and clinical observations (daily activity, physiological monitoring, and labels for health-related conditions). The study recorded an average of 50 days of data per participant, totalling 2803 days.

    We have provided raw data and guidelines on how to access, visualise, manipulate and predict health-related events within the dataset, available on the Github repository. The Jupyter Notebooks have been developed using Python 3.9.

    The dataset is provided for research and patient benefit purposes.
    Please acknowledge the Surrey and Borders Partnership NHS Foundation Trust in any publication or use of this dataset.

  16. C

    Poverty Rate

    • data.ccrpc.org
    csv
    Updated Oct 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Poverty Rate [Dataset]. https://data.ccrpc.org/dataset/poverty-rate
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 17, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This poverty rate data shows what percentage of the measured population* falls below the poverty line. Poverty is closely related to income: different “poverty thresholds” are in place for different sizes and types of household. A family or individual is considered to be below the poverty line if that family or individual’s income falls below their relevant poverty threshold. For more information on how poverty is measured by the U.S. Census Bureau (the source for this indicator’s data), visit the U.S. Census Bureau’s poverty webpage.

    The poverty rate is an important piece of information when evaluating an area’s economic health and well-being. The poverty rate can also be illustrative when considered in the contexts of other indicators and categories. As a piece of data, it is too important and too useful to omit from any indicator set.

    The poverty rate for all individuals in the measured population in Champaign County has hovered around roughly 20% since 2005. However, it reached its lowest rate in 2021 at 14.9%, and its second lowest rate in 2023 at 16.3%. Although the American Community Survey (ACS) data shows fluctuations between years, given their margins of error, none of the differences between consecutive years’ estimates are statistically significant, making it impossible to identify a trend.

    Poverty rate data was sourced from the U.S. Census Bureau’s American Community Survey 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Poverty Status in the Past 12 Months by Age.

    *According to the U.S. Census Bureau document “How Poverty is Calculated in the ACS," poverty status is calculated for everyone but those in the following groups: “people living in institutional group quarters (such as prisons or nursing homes), people in military barracks, people in college dormitories, living situations without conventional housing, and unrelated individuals under 15 years old."

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (17 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (25 September 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (16 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using data.census.gov; (8 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (14 September 2017).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (19 September 2016).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S1701; generated by CCRPC staff; using American FactFinder; (16 March 2016).

  17. Z

    Global Country Information 2023

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elgiriyewithana, Nidula (2024). Global Country Information 2023 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8165228
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset authored and provided by
    Elgiriyewithana, Nidula
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    Country: Name of the country.

    Density (P/Km2): Population density measured in persons per square kilometer.

    Abbreviation: Abbreviation or code representing the country.

    Agricultural Land (%): Percentage of land area used for agricultural purposes.

    Land Area (Km2): Total land area of the country in square kilometers.

    Armed Forces Size: Size of the armed forces in the country.

    Birth Rate: Number of births per 1,000 population per year.

    Calling Code: International calling code for the country.

    Capital/Major City: Name of the capital or major city.

    CO2 Emissions: Carbon dioxide emissions in tons.

    CPI: Consumer Price Index, a measure of inflation and purchasing power.

    CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.

    Currency_Code: Currency code used in the country.

    Fertility Rate: Average number of children born to a woman during her lifetime.

    Forested Area (%): Percentage of land area covered by forests.

    Gasoline_Price: Price of gasoline per liter in local currency.

    GDP: Gross Domestic Product, the total value of goods and services produced in the country.

    Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.

    Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.

    Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.

    Largest City: Name of the country's largest city.

    Life Expectancy: Average number of years a newborn is expected to live.

    Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.

    Minimum Wage: Minimum wage level in local currency.

    Official Language: Official language(s) spoken in the country.

    Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.

    Physicians per Thousand: Number of physicians per thousand people.

    Population: Total population of the country.

    Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.

    Tax Revenue (%): Tax revenue as a percentage of GDP.

    Total Tax Rate: Overall tax burden as a percentage of commercial profits.

    Unemployment Rate: Percentage of the labor force that is unemployed.

    Urban Population: Percentage of the population living in urban areas.

    Latitude: Latitude coordinate of the country's location.

    Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    Analyze population density and land area to study spatial distribution patterns.

    Investigate the relationship between agricultural land and food security.

    Examine carbon dioxide emissions and their impact on climate change.

    Explore correlations between economic indicators such as GDP and various socio-economic factors.

    Investigate educational enrollment rates and their implications for human capital development.

    Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.

    Study labor market dynamics through indicators such as labor force participation and unemployment rates.

    Investigate the role of taxation and its impact on economic development.

    Explore urbanization trends and their social and environmental consequences.

  18. d

    DOHMH COVID-19 Antibody-by-Neighborhood Poverty

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Jul 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). DOHMH COVID-19 Antibody-by-Neighborhood Poverty [Dataset]. https://catalog.data.gov/dataset/dohmh-covid-19-antibody-by-neighborhood-poverty
    Explore at:
    Dataset updated
    Jul 7, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by ZIP Code Tabulation Area (ZCTA) neighborhood poverty group. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-poverty.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level. These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents. In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders.) Neighborhood-level poverty groups were classified in a manner consistent with Health Department practices to describe and monitor disparities in health in NYC. Neighborhood poverty measures are defined as the percentage of people earning below the Federal Poverty Threshold (FPT) within a ZCTA. The standard cut-points for defining categories of neighborhood-level poverty in NYC are: • Low: <10% of residents in ZCTA living below the FPT • Medium: 10% to <20% • High: 20% to <30% • Very high: ≥30% residents living below the FPT The ZCTAs used for classification reflect the first non-missing address within NYC for each person reported with an antibody test result. Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning. Rates for poverty were calculated using direct standardization for age at diagnosis and weighting by the US 2000 standard population. Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020. Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certain

  19. d

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • datasets.ai
    • data.ct.gov
    • +1more
    23, 40, 55, 8
    Updated Sep 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Connecticut (2024). COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE [Dataset]. https://datasets.ai/datasets/covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-7-days-by
    Explore at:
    23, 55, 40, 8Available download formats
    Dataset updated
    Sep 8, 2024
    Dataset authored and provided by
    State of Connecticut
    Description

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.

    Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  20. t

    Independent living - Dataset - Data Place Plymouth

    • plymouth.thedata.place
    Updated May 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Independent living - Dataset - Data Place Plymouth [Dataset]. https://plymouth.thedata.place/dataset/independent-living
    Explore at:
    Dataset updated
    May 14, 2018
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Plymouth
    Description

    This data has been taken from LG Inform at http://lginform.local.gov.uk/ data reference ID 31. It shows the percentage of vulnerable people achieving independent living in Plymouth from financial year 2006/2007 to 2010/2011 Percentage of vulnerable people achieving independent living. This is the number of service users (i.e. people who are receiving a Supporting People Service) who have moved on from supported accommodation in a planned way, as a percentage of total service users who have left the service. This was previously reported as NI 141. Source name: Communities and Local Government Collection name: Supporting People Local System (SPLS) Polarity: High is good Polarity is how sentiment is measured "Sentiment is usually considered to have "poles" positive and negative these are often translated into "good" and "bad" sentiment analysis is considered useful to tell us what is good and bad in our information stream

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Office for National Statistics (2021). Public Health Research Database (PHRD) [Dataset]. https://healthdatagateway.org/dataset/403

Public Health Research Database (PHRD)

Public Health Research Database (PHRD)

Explore at:
unknownAvailable download formats
Dataset updated
Apr 21, 2021
Dataset authored and provided by
Office for National Statistics
License

https://www.ons.gov.uk/aboutus/whatwedo/statistics/requestingstatistics/approvedresearcherschemehttps://www.ons.gov.uk/aboutus/whatwedo/statistics/requestingstatistics/approvedresearcherscheme

Description

The Public Health Research Database (PHRD) is a linked asset which currently includes Census 2011 data; Mortality Data; Hospital Episode Statistics (HES); GP Extraction Service (GPES) Data for Pandemic Planning and Research data. Researchers may apply for these datasets individually or any combination of the current 4 datasets.

The purpose of this dataset is to enable analysis of deaths involving COVID-19 by multiple factors such as ethnicity, religion, disability and known comorbidities as well as age, sex, socioeconomic and marital status at subnational levels. 2011 Census data for usual residents of England and Wales, who were not known to have died by 1 January 2020, linked to death registrations for deaths registered between 1 January 2020 and 8 March 2021 on NHS number. The data exclude individuals who entered the UK in the year before the Census took place (due to their high propensity to have left the UK prior to the study period), and those over 100 years of age at the time of the Census, even if their death was not linked. The dataset contains all individuals who died (any cause) during the study period, and a 5% simple random sample of those still alive at the end of the study period. For usual residents of England, the dataset also contains comorbidity flags derived from linked Hospital Episode Statistics data from April 2017 to December 2019 and GP Extraction Service Data from 2015-2019.

Search
Clear search
Close search
Google apps
Main menu