Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.
Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.
Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.
We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
Other files include:
The raw data comes from the Berkeley Earth data page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the White Earth population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of White Earth across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of White Earth was 93, a 0% decrease year-by-year from 2022. Previously, in 2022, White Earth population was 93, a decline of 4.12% compared to a population of 97 in 2021. Over the last 20 plus years, between 2000 and 2023, population of White Earth increased by 28. In this period, the peak population was 99 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Year. You can refer the same here
This dataset contains estimates of the number of persons per square kilometer consistent with national censuses and population registers. There is one image for each modeled year. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.
The Urban Place Time-Series Population of Mexico contains population counts for more than 700 urban centers every 10 years from 1921 through 1990. The urban centers include metropolitan, conurbation, and city areas with more than 5,000 inhabitants as of 1980. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset features three gridded population dadasets of Germany on a 10m grid. The units are people per grid cell.
Datasets
DE_POP_VOLADJ16: This dataset was produced by disaggregating national census counts to 10m grid cells based on a weighted dasymetric mapping approach. A building density, building height and building type dataset were used as underlying covariates, with an adjusted volume for multi-family residential buildings.
DE_POP_TDBP: This dataset is considered a best product, based on a dasymetric mapping approach that disaggregated municipal census counts to 10m grid cells using the same three underyling covariate layers.
DE_POP_BU: This dataset is based on a bottom-up gridded population estimate. A building density, building height and building type layer were used to compute a living floor area dataset in a 10m grid. Using federal statistics on the average living floor are per capita, this bottom-up estimate was created.
Please refer to the related publication for details.
Temporal extent
The building density layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: http://doi.org/10.1594/PANGAEA.920894)
The building height layer is representative for ca. 2015 (doi: 10.5281/zenodo.4066295)
The building types layer is based on Sentinel-2 time series data from 2018 and Sentinel-1 time series data from 2017 (doi: 10.5281/zenodo.4601219)
The underlying census data is from 2018.
Data format
The data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems.
Further information
For further information, please see the publication or contact Franz Schug (franz.schug@geo.hu-berlin.de).
A web-visualization of this dataset is available here.
Publication
Schug, F., Frantz, D., van der Linden, S., & Hostert, P. (2021). Gridded population mapping for Germany based on building density, height and type from Earth Observation data using census disaggregation and bottom-up estimates. PLOS ONE. DOI: 10.1371/journal.pone.0249044
Acknowledgements
Census data were provided by the German Federal Statistical Offices.
Funding
This dataset was produced with funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Tiny solid and liquid particles suspended in the atmosphere are called aerosols. Windblown dust, sea salts, volcanic ash, smoke from wildfires, and pollution from factories are all examples of aerosols. Depending upon their size, type, and location, aerosols can either cool the surface, or warm it. They can help clouds to form, or they can inhibit cloud formation. And if inhaled, some aerosols can be harmful to people’s health.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 1 kilometer of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.
For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.
Contact points:
Maintainer: Leticia Pina
Distributor: Sarah E., Castle
Data lineage:
The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 1 kilometer of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 1-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.
References:
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.
Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Online resources:
GEE asset for "Forest proximate people – 1km cutoff distance (100-m resolution)"
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description of Earthquakes Dataset (1990-2023)
The earthquakes dataset is an extensive collection of data containing information about all the earthquakes recorded worldwide from 1990 to 2023. The dataset comprises approximately three million rows, with each row representing a specific earthquake event. Each entry in the dataset contains a set of relevant attributes related to the earthquake, such as the date and time of the event, the geographical location (latitude and longitude), the magnitude of the earthquake, the depth of the epicenter, the type of magnitude used for measurement, the affected region, and other pertinent information.
Features
- time in millisecconds
- place
- status
- tsunami (boolean value)
- significance
- data_type
- magnitudo
- state
- longitude
- latitude
- depth
- date
Importance and Utility of the Dataset:
Earthquake Analysis and Prediction: The dataset provides a valuable data source for scientists and researchers interested in analyzing spatial and temporal distribution patterns of earthquakes. By studying historical data, trends, and patterns, it becomes possible to identify high-risk seismic zones and develop predictive models to forecast future seismic events more accurately.
Safety and Prevention: Understanding factors contributing to earthquake frequency and severity can assist authorities and safety experts in implementing preventive measures at both local and global levels. These data can enhance the design and construction of earthquake-resistant infrastructures, reducing material damage and safeguarding human lives.
Seismological Science: The dataset offers a critical resource for seismologists and geologists studying the dynamics of the Earth's crust and various geological faults. Analyzing details of recorded earthquakes allows for a deeper comprehension of geological processes leading to seismic activity.
Study of Tectonic Movements: The dataset can be utilized to analyze patterns of tectonic movements in specific areas over the years. This may help identify seasonal or long-term seismic activity, providing additional insights into plate tectonic behavior.
Public Information and Awareness: Earthquake data can be made accessible to the public through portals and applications, enabling individuals to monitor seismic activity in their regions of interest and promoting awareness and preparedness for earthquakes.
In summary, the earthquakes dataset represents a fundamental information source for scientific research, public safety, and community awareness. By analyzing historical data and building predictive models, this dataset can significantly contribute to mitigating seismic risks and protecting people and infrastructure from the consequences of earthquakes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of White Earth by race. It includes the distribution of the Non-Hispanic population of White Earth across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of White Earth across relevant racial categories.
Key observations
With a zero Hispanic population, White Earth is 100% Non-Hispanic. Among the Non-Hispanic population, the largest racial group is White alone with a population of 76 (100% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for White Earth Population by Race & Ethnicity. You can refer the same here
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/UFC6B5https://dataverse.harvard.edu/api/datasets/:persistentId/versions/3.1/customlicense?persistentId=doi:10.7910/DVN/UFC6B5
Web-based GIS for spatiotemporal crop climate niche mapping Interactive Google Earth Engine Application—Version 2, July 2020 https://cropniche.cartoscience.com https://cartoscience.users.earthengine.app/view/crop-niche Google Earth Engine Code /* ---------------------------------------------------------------------------------------------------------------------- # CropSuit-GEE Authors: Brad G. Peter (bpeter@ua.edu), Joseph P. Messina, and Zihan Lin Organizations: BGP, JPM - University of Alabama; ZL - Michigan State University Last Modified: 06/28/2020 To cite this code use: Peter, B. G.; Messina, J. P.; Lin, Z., 2019, "Web-based GIS for spatiotemporal crop climate niche mapping", https://doi.org/10.7910/DVN/UFC6B5, Harvard Dataverse, V1 ------------------------------------------------------------------------------------------------------------------------- This is a Google Earth Engine crop climate suitability geocommunication and map export tool designed to support agronomic development and deployment of improved crop system technologies. This content is made possible by the support of the American People provided to the Feed the Future Innovation Lab for Sustainable Intensification through the United States Agency for International Development (USAID). The contents are the sole responsibility of the authors and do not necessarily reflect the views of USAID or the United States Government. Program activities are funded by USAID under Cooperative Agreement No. AID-OAA-L-14-00006. ------------------------------------------------------------------------------------------------------------------------- Summarization of input options: There are 14 user options available. The first is a country of interest selection using a 2-digit FIPS code (link available below). This selection is used to produce a rectangular bounding box for export; however, other geometries can be selected with minimal modification to the code. Options 2 and 3 specify the complete temporal range for aggregation (averaged across seasons; single seasons may also be selected). Options 4–7 specify the growing season for calculating total seasonal rainfall and average season temperatures and NDVI (NDVI is for export only and is not used in suitability determination). Options 8–11 specify the climate parameters for the crop of interest (rainfall and temperature max/min). Option 12 enables masking to agriculture, 13 enables exporting of all data layers, and 14 is a text string for naming export files. ------------------------------------------------------------------------------------------------------------------------- ••••••••••••••••••••••••••••••••••••••••••• USER OPTIONS ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• */ // CHIRPS data availability: https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_PENTAD // MOD11A2 data availability: https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2 var country = 'MI' // [1] https://en.wikipedia.org/wiki/List_of_FIPS_country_codes var startRange = 2001 // [2] var endRange = 2017 // [3] var startSeasonMonth = 11 // [4] var startSeasonDay = 1 // [5] var endSeasonMonth = 4 // [6] var endSeasonDay = 30 // [7] var precipMin = 750 // [8] var precipMax = 1200 // [9] var tempMin = 22 // [10] var tempMax = 32 // [11] var maskToAg = 'TRUE' // [12] 'TRUE' (default) or 'FALSE' var exportLayers = 'TRUE' // [13] 'TRUE' (default) or 'FALSE' var exportNameHeader = 'crop_suit_maize' // [14] text string for naming export file // ••••••••••••••••••••••••••••••••• NO USER INPUT BEYOND THIS POINT •••••••••••••••••••••••••••••••••••••••••••••••••••• // Access precipitation and temperature ImageCollections and a global countries FeatureCollection var region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017') .filterMetadata('country_co','equals',country) var precip = ee.ImageCollection('UCSB-CHG/CHIRPS/PENTAD').select('precipitation') var temp = ee.ImageCollection('MODIS/006/MOD11A2').select(['LST_Day_1km','LST_Night_1km']) var ndvi = ee.ImageCollection('MODIS/006/MOD13Q1').select(['NDVI']) // Create layers for masking to agriculture and masking out water bodies var waterMask = ee.Image('UMD/hansen/global_forest_change_2015').select('datamask').eq(1) var agModis = ee.ImageCollection('MODIS/006/MCD12Q1').select('LC_Type1').mode() .remap([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17], [0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0]) var agGC = ee.Image('ESA/GLOBCOVER_L4_200901_200912_V2_3').select('landcover') .remap([11,14,20,30,40,50,60,70,90,100,110,120,130,140,150,160,170,180,190,200,210,220,230], [1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]) var cropland = ee.Image('USGS/GFSAD1000_V1').neq(0) var agMask = agModis.add(agGC).add(cropland).gt(0).eq(1) // Modify user input options for processing with raw data var years = ee.List.sequence(startRange,endRange) var bounds = region.geometry().bounds() var tMinMod = (tempMin+273.15)/0.02 var tMaxMod = (tempMax+273.15)/0.02 //...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Black Earth household income by gender. The dataset can be utilized to understand the gender-based income distribution of Black Earth income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Black Earth income distribution by gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Blue Earth County household income by gender. The dataset can be utilized to understand the gender-based income distribution of Blue Earth County income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Blue Earth County income distribution by gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Lincoln township household income by gender. The dataset can be utilized to understand the gender-based income distribution of Lincoln township income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of Lincoln township income distribution by gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Notes for the 13.10.2019 update- The months of January 2019 to July 2019 were added to the ERA5 reconstructions- The robustness of the ERA5 reconstruction was improved for a few Greenland and Antarctica mascons by better handling a special case occuring when air temperature is always lower than 0°C during the calibration period.- The updated ERA5 time series might differ from the previous version (especially individual ensemble members). With the exception of the special case mentioned above, these differences are not significant.List of all filesReadme file 00_readme.txtMonthly grids - ensemble means 01_monthly_grids_ensemble_means_allmodels.zipMonthly grids - ensembles, model 1 to 6 02_monthly_grids_ensemble_JPL_MSWEP_1979_2016.zip 02_monthly_grids_ensemble_JPL_GSWP3_1901_2014.zip 02_monthly_grids_ensemble_JPL_ERA5_1979_201907.zip 02_monthly_grids_ensemble_GSFC_MSWEP_1979_2016.zip 02_monthly_grids_ensemble_GSFC_GSWP3_1901_2014.zip 02_monthly_grids_ensemble_GSFC_ERA5_1979_201907.zipDaily grids - ensemble means, model 1 to 6 03_daily_grids_ensemble_means_JPL_MSWEP_1979_2016.zip 03_daily_grids_ensemble_means_JPL_GSWP3_1901_2014.zip 03_daily_grids_ensemble_means_JPL_ERA5_1979_201907.zip 03_daily_grids_ensemble_means_GSFC_MSWEP_1979_2016.zip 03_daily_grids_ensemble_means_GSFC_GSWP3_1901_2014.zip 03_daily_grids_ensemble_means_GSFC_ERA5_1979_201907.zipGlobal averages - daily and monthly time series 04_global_averages_allmodels.zipContent of readmeGRACE TWS Reconstruction (GRACE_REC_v03)The dataset contains reconstructed time series of daily and monthly anomalies of terrestrial water storage (TWS) based on two different GRACE solutions and three different meteorological forcing datasets. There is a total of 6 different models:JPL_MSWEP - trained with GRACE JPL mascons, forced with MSWEP forcing (1979-2016)JPL_GSWP3 - trained with GRACE JPL mascons, forced with GSWP3 forcing (1901-2014)JPL_ERA5 - trained with GRACE JPL mascons, forced with ERA5 forcing (1979-present)GSFC_MSWEP - trained with GRACE GSFC mascons, forced with MSWEP forcing (1979-2016)GSFC_GSWP3 - trained with GRACE GSFC mascons, forced with GSWP3 forcing (1901-2014)GSFC_ERA5 - trained with GRACE GSFC mascons, forced with ERA5 forcing (1979-present)The reconstruction aims at reproducing the sub-decadal climate-driven variability observed in the GRACE data. Seasonal cycle and human impacts on TWS are not reconstructed. A GRACE-based seasonal cycle is provided for convenience. Long-term signals (trends over a period >15 years) are removed during the model calibration procedure but are still present in the final dataset and mainly represent precipitation-driven trends. The interpretation of the reconstructed long-term trends should be done with the awareness that there can be some uncertainty in the reconstructed trends.For most applications, uncertainty ranges can be derived from the 100 ensemble members available for each model.The grids are stored in NetCDFv4 files in units of mm (kg m^-2). Although the data is provided on a 0.5 degrees grid, the effective spatial resolution should be considered to be 3 degrees, similar to the original resolution of the GRACE datasets. This might need to be taken into account when comparing this dataset against other sources.The global means are stored as csv files in units of Gt of water. To convert back to mm of water, use the land area values given in the reference paper below.When using this dataset, please cite:Humphrey, V., & Gudmundsson, L. (2019). GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth System Science Data, 11(3), 1153-1170.Vincent Humphrey, October 2019California Institute of TechnologyYour feedback is always welcome:vincent.humphrey[-a-t-]caltech.edu (vincent.humphrey[-a-t-]bluewin.ch) Abstract
The amount of water stored on continents is an important constraint for water mass and energy exchanges in the Earth system and exhibits large inter-annual variability at both local and continental scales. From 2002 to 2017, the satellites of the Gravity Recovery and Climate Experiment mission (GRACE) have observed changes in terrestrial water storage (TWS) with an unprecedented level of accuracy. In this paper, we use a statistical model trained with GRACE observations to reconstruct past climate-driven changes in TWS from historical and near real time meteorological datasets at daily and monthly scales. Unlike most hydrological models which represent water reservoirs individually (e.g. snow, soil moisture, etc.) and usually provide a single model run, the presented approach directly reconstructs total TWS changes and includes hundreds of ensemble members which can be used to quantify predictive uncertainty. We compare these data-driven TWS estimates with other independent evaluation datasets such as the sea level budget, large-scale water balance from atmospheric reanalysis and in-situ streamflow measurements. We find that the presented approach performs overall as well or better than a set of state-of-the-art global hydrological models (Water Resources Reanalysis version 2). We provide reconstructed TWS anomalies at a spatial resolution of 0.5°, at both daily and monthly scales over the period 1901 to present, based on two different GRACE products and three different meteorological forcing datasets, resulting in 6 reconstructed TWS datasets of 100 ensemble members each. Possible user groups and applications include hydrological modelling and model benchmarking, sea level budget studies, assessments of long-term changes in the frequency of droughts, the analysis of climate signals in geodetic time series and the interpretation of the data gap between the GRACE and the GRACE Follow-On mission.Check reference for additional details and caveats.ReferenceHumphrey, V., & Gudmundsson, L. (2019). GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth System Science Data, 11(3), 1153-1170.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
All known future asteroids poised to pass near Earth, some being potentially hazardous objects (PHO) are present in this dataset..
A visualization of known and tracked Near Earth Asteroids, or NEAs that will make a close approach to Earth within the next 12 months, or have made a close approach within the last 12 months.
See the live visualization at www.untilanasteroid.com.
https://data.world/api/markmarkoh/dataset/future-asteroids/file/raw/Screenshot%202016-08-04%2010.30.33.png" alt="Sample">
The data was taken from data.world https://data.world/markmarkoh/future-asteroids
Predicting Future asteroids and their danger is one of the most important things for the future of mankind, potential contact with Earth could be fatal as we all know what happened to the Dinosaurs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Black Earth town. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Black Earth town, the median income for all workers aged 15 years and older, regardless of work hours, was $68,125 for males and $58,750 for females.
Based on these incomes, we observe a gender gap percentage of approximately 14%, indicating a significant disparity between the median incomes of males and females in Black Earth town. Women, regardless of work hours, still earn 86 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.
- Full-time workers, aged 15 years and older: In Black Earth town, among full-time, year-round workers aged 15 years and older, males earned a median income of $93,000, while females earned $78,542, leading to a 16% gender pay gap among full-time workers. This illustrates that women earn 84 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Black Earth town offers better opportunities for women in non-full-time positions.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Black Earth town median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Lincoln township. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Lincoln township, the median income for all workers aged 15 years and older, regardless of work hours, was $49,792 for males and $23,500 for females.
These income figures highlight a substantial gender-based income gap in Lincoln township. Women, regardless of work hours, earn 47 cents for each dollar earned by men. This significant gender pay gap, approximately 53%, underscores concerning gender-based income inequality in the township of Lincoln township.
- Full-time workers, aged 15 years and older: In Lincoln township, among full-time, year-round workers aged 15 years and older, males earned a median income of $75,000, while females earned $56,250, leading to a 25% gender pay gap among full-time workers. This illustrates that women earn 75 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Lincoln township.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lincoln township median household income by race. You can refer the same here
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Some say climate change is the biggest threat of our age while others say it’s a myth based on dodgy science. We are turning some of the data over to you so you can form your own view.
Even more than with other data sets that Kaggle has featured, there’s a huge amount of data cleaning and preparation that goes into putting together a long-time study of climate trends. Early data was collected by technicians using mercury thermometers, where any variation in the visit time impacted measurements. In the 1940s, the construction of airports caused many weather stations to be moved. In the 1980s, there was a move to electronic thermometers that are said to have a cooling bias.
Given this complexity, there are a range of organizations that collate climate trends data. The three most cited land and ocean temperature data sets are NOAA’s MLOST, NASA’s GISTEMP and the UK’s HadCrut.
We have repackaged the data from a newer compilation put together by the Berkeley Earth, which is affiliated with Lawrence Berkeley National Laboratory. The Berkeley Earth Surface Temperature Study combines 1.6 billion temperature reports from 16 pre-existing archives. It is nicely packaged and allows for slicing into interesting subsets (for example by country). They publish the source data and the code for the transformations they applied. They also use methods that allow weather observations from shorter time series to be included, meaning fewer observations need to be thrown away.
In this dataset, we have include several files:
Global Land and Ocean-and-Land Temperatures (GlobalTemperatures.csv):
Other files include:
The raw data comes from the Berkeley Earth data page.