57 datasets found
  1. Prison Inmates in India

    • kaggle.com
    Updated Jan 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Prison Inmates in India [Dataset]. https://www.kaggle.com/datasets/thedevastator/prison-inmates-in-india-demographics-crimes-and
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 4, 2023
    Dataset provided by
    Kaggle
    Authors
    The Devastator
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    India
    Description

    Prison Inmates in India

    Demographics, Age, Education, Caste, Wages, Rehabilitation, Technical Info

    By Rajanand Ilangovan [source]

    About this dataset

    This dataset provides a detailed view of prison inmates in India, including their age, caste, and educational background. It includes information on inmates from all states/union territories for the year 2019 such as the number of male and female inmates aged 16-18 years, 18-30 year old inmates and those above 50 years old. The data also covers total number of penalized prisoners sentenced to death sentence, life imprisonment or executed by the state authorities. Additionally, it provides information regarding the crimehead (type) committed by an inmate along with its grand total across different age groups. This dataset not only sheds light on India’s criminal justice system but also highlights prevelance of crimes in different states and union territories as well as providing insight into crime trends across Indian states over time

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides a comprehensive look at the demographics, crimes and sentences of Indian prison inmates in 2019. The data is broken down by state/union territory, year, crime head, age groups and gender.

    This dataset can be used to understand the demographic composition of the prison population in India as well as the types of crimes committed. It can also be used to gain insight into any changes or trends related to sentencing patterns in India over time. Furthermore, this data can provide valuable insight into potential correlations between different demographic factors (such as gender and caste) and specific types of crimes or length of sentences handed out.

    To use this dataset effectively there are a few important things to keep in mind: •State/UT - This column refers to individual states or union territories in India where prisons are located •Year – This column indicates which year(s) the data relates to •Both genders - Female columns refer only to female prisoners while male columns refers only to male prisoners •Age Groups – 16-18 years old = 21-30 years old = 31-50 years old = 50+ years old •Crime Head – A broad definition for each type of crime that inmates have been convicted for •No Capital Punishment – The total number sentenced with capital punishment No Life Imprisonment – The total number sentenced with life imprisonment No Executed– The total number executed from death sentence Grand Total–The overall totals for each category

    By using this information it is possible to answer questions regarding topics such as sentencing trends, types of crimes committed by different age groups or genders and state-by-state variation amongst other potential queries

    Research Ideas

    • Using the age and gender information to develop targeted outreach strategies for prisons in order to reduce recidivism rates.
    • Creating an AI-based predictive model to predict crime trends by analyzing crime head data from a particular region/state and correlating it with population demographics, economic activity, etc.
    • Analyzing the caste of inmates across different states in India in order to understand patterns of discrimination within the criminal justice system

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original.

    Columns

    File: SLL_Crime_headwise_distribution_of_inmates_who_convicted.csv | Column name | Description | |:--------------------------|:---------------------------------------------------------------------------------------------------| | STATE/UT | Name of the state or union territory where the jail is located. (String) | | YEAR | Year when the inmate population data was collected. (Integer) ...

  2. d

    The Marshall Project: COVID Cases in Prisons

    • data.world
    csv, zip
    Updated Apr 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2023). The Marshall Project: COVID Cases in Prisons [Dataset]. https://data.world/associatedpress/marshall-project-covid-cases-in-prisons
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Apr 6, 2023
    Authors
    The Associated Press
    Time period covered
    Jul 31, 2019 - Aug 1, 2021
    Description

    Overview

    The Marshall Project, the nonprofit investigative newsroom dedicated to the U.S. criminal justice system, has partnered with The Associated Press to compile data on the prevalence of COVID-19 infection in prisons across the country. The Associated Press is sharing this data as the most comprehensive current national source of COVID-19 outbreaks in state and federal prisons.

    Lawyers, criminal justice reform advocates and families of the incarcerated have worried about what was happening in prisons across the nation as coronavirus began to take hold in the communities outside. Data collected by The Marshall Project and AP shows that hundreds of thousands of prisoners, workers, correctional officers and staff have caught the illness as prisons became the center of some of the country’s largest outbreaks. And thousands of people — most of them incarcerated — have died.

    In December, as COVID-19 cases spiked across the U.S., the news organizations also shared cumulative rates of infection among prison populations, to better gauge the total effects of the pandemic on prison populations. The analysis found that by mid-December, one in five state and federal prisoners in the United States had tested positive for the coronavirus -- a rate more than four times higher than the general population.

    This data, which is updated weekly, is an effort to track how those people have been affected and where the crisis has hit the hardest.

    Methodology and Caveats

    The data tracks the number of COVID-19 tests administered to people incarcerated in all state and federal prisons, as well as the staff in those facilities. It is collected on a weekly basis by Marshall Project and AP reporters who contact each prison agency directly and verify published figures with officials.

    Each week, the reporters ask every prison agency for the total number of coronavirus tests administered to its staff members and prisoners, the cumulative number who tested positive among staff and prisoners, and the numbers of deaths for each group.

    The time series data is aggregated to the system level; there is one record for each prison agency on each date of collection. Not all departments could provide data for the exact date requested, and the data indicates the date for the figures.

    To estimate the rate of infection among prisoners, we collected population data for each prison system before the pandemic, roughly in mid-March, in April, June, July, August, September and October. Beginning the week of July 28, we updated all prisoner population numbers, reflecting the number of incarcerated adults in state or federal prisons. Prior to that, population figures may have included additional populations, such as prisoners housed in other facilities, which were not captured in our COVID-19 data. In states with unified prison and jail systems, we include both detainees awaiting trial and sentenced prisoners.

    To estimate the rate of infection among prison employees, we collected staffing numbers for each system. Where current data was not publicly available, we acquired other numbers through our reporting, including calling agencies or from state budget documents. In six states, we were unable to find recent staffing figures: Alaska, Hawaii, Kentucky, Maryland, Montana, Utah.

    To calculate the cumulative COVID-19 impact on prisoner and prison worker populations, we aggregated prisoner and staff COVID case and death data up through Dec. 15. Because population snapshots do not account for movement in and out of prisons since March, and because many systems have significantly slowed the number of new people being sent to prison, it’s difficult to estimate the total number of people who have been held in a state system since March. To be conservative, we calculated our rates of infection using the largest prisoner population snapshots we had during this time period.

    As with all COVID-19 data, our understanding of the spread and impact of the virus is limited by the availability of testing. Epidemiology and public health experts say that aside from a few states that have recently begun aggressively testing in prisons, it is likely that there are more cases of COVID-19 circulating undetected in facilities. Sixteen prison systems, including the Federal Bureau of Prisons, would not release information about how many prisoners they are testing.

    Corrections departments in Indiana, Kansas, Montana, North Dakota and Wisconsin report coronavirus testing and case data for juvenile facilities; West Virginia reports figures for juvenile facilities and jails. For consistency of comparison with other state prison systems, we removed those facilities from our data that had been included prior to July 28. For these states we have also removed staff data. Similarly, Pennsylvania’s coronavirus data includes testing and cases for those who have been released on parole. We removed these tests and cases for prisoners from the data prior to July 28. The staff cases remain.

    About the Data

    There are four tables in this data:

    • covid_prison_cases.csv contains weekly time series data on tests, infections and deaths in prisons. The first dates in the table are on March 26. Any questions that a prison agency could not or would not answer are left blank.

    • prison_populations.csv contains snapshots of the population of people incarcerated in each of these prison systems for whom data on COVID testing and cases are available. This varies by state and may not always be the entire number of people incarcerated in each system. In some states, it may include other populations, such as those on parole or held in state-run jails. This data is primarily for use in calculating rates of testing and infection, and we would not recommend using these numbers to compare the change in how many people are being held in each prison system.

    • staff_populations.csv contains a one-time, recent snapshot of the headcount of workers for each prison agency, collected as close to April 15 as possible.

    • covid_prison_rates.csv contains the rates of cases and deaths for prisoners. There is one row for every state and federal prison system and an additional row with the National totals.

    Queries

    The Associated Press and The Marshall Project have created several queries to help you use this data:

    Get your state's prison COVID data: Provides each week's data from just your state and calculates a cases-per-100000-prisoners rate, a deaths-per-100000-prisoners rate, a cases-per-100000-workers rate and a deaths-per-100000-workers rate here

    Rank all systems' most recent data by cases per 100,000 prisoners here

    Find what percentage of your state's total cases and deaths -- as reported by Johns Hopkins University -- occurred within the prison system here

    Attribution

    In stories, attribute this data to: “According to an analysis of state prison cases by The Marshall Project, a nonprofit investigative newsroom dedicated to the U.S. criminal justice system, and The Associated Press.”

    Contributors

    Many reporters and editors at The Marshall Project and The Associated Press contributed to this data, including: Katie Park, Tom Meagher, Weihua Li, Gabe Isman, Cary Aspinwall, Keri Blakinger, Jake Bleiberg, Andrew R. Calderón, Maurice Chammah, Andrew DeMillo, Eli Hager, Jamiles Lartey, Claudia Lauer, Nicole Lewis, Humera Lodhi, Colleen Long, Joseph Neff, Michelle Pitcher, Alysia Santo, Beth Schwartzapfel, Damini Sharma, Colleen Slevin, Christie Thompson, Abbie VanSickle, Adria Watson, Andrew Welsh-Huggins.

    Questions

    If you have questions about the data, please email The Marshall Project at info+covidtracker@themarshallproject.org or file a Github issue.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  3. d

    People Released to Philadelphia from Prison & Jail

    • catalog.data.gov
    • data.wu.ac.at
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Philadelphia (2025). People Released to Philadelphia from Prison & Jail [Dataset]. https://catalog.data.gov/dataset/people-released-to-philadelphia-from-prison-jail-0cd84
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    City of Philadelphia
    Area covered
    Philadelphia
    Description

    This dataset includes people released to Philadelphia from the Philadelphia Department of Prisons (PDP) and the Pennsylvania Department of Correction (PA DOC). Individual-level data for releases from Federal (BOP) incarceration was not available, and makes up less than 2% of people released to Philadelphia in the year analyzed. The dataset also only includes people released to Philadelphia who have been charged with a criminal non-summary type offense in the Philadelphia adult criminal justice system.

  4. Z

    Mapping environmental injustices within the U.S. prison system: a nationwide...

    • data.niaid.nih.gov
    Updated Sep 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caitlin Mothes (2023). Mapping environmental injustices within the U.S. prison system: a nationwide dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8306891
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    Devin Hunt
    Caitlin Mothes
    Carrie Chennault
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This open-access geospatial dataset (downloadable in csv or shapefile format) contains a total of 11 environmental indicators calculated for 1865 U.S. prisons. This consists of all active state- and federally-operated prisons according to the Homeland Infrastructure Foundation-Level Data (HIFLD), last updated June 2022. This dataset includes both raw values and percentiles for each indicator. Percentiles denote a way to rank prisons among each other, where the number represents the percentage of prisons that are equal to or have a lower ranking than that prison. Higher percentile values indicate higher vulnerability to that specific environmental burden compared to all the other prisons. Full descriptions of how each indicator was calculated and the datasets used can be found here: https://github.com/GeospatialCentroid/NASA-prison-EJ/blob/main/doc/indicator_metadata.md.

    From these raw indicator values and percentiles, we also developed three individual component scores to summarize similar indicators, and to then create a single vulnerability index (methods based on other EJ screening tools such as Colorado Enviroscreen, CalEnviroScreen and EPA’s EJ Screen). The three component scores include climate vulnerability, environmental exposures and environmental effects. Climate vulnerability factors reflect climate change risks that have been associated with health impacts and includes flood risk, wildfire risk, heat exposure and canopy cover indicators. Environmental exposures reflect variables of different types of pollution people may come into contact with (but not a real-time exposure to pollution) and includes ozone, particulate matter (PM 2.5), traffic proximity and pesticide use. Environmental effects indicators are based on the proximity of toxic chemical facilities and includes proximity to risk management plan (RMP) facilities, National Priority List (NPL)/Superfund facilities, and hazardous waste facilities. Component scores were calculated by taking the geometric mean of the indicator percentiles. Using the geometric mean was most appropriate for our dataset since many values may be related (e.g., canopy cover and temperature are known to be correlated).

    To calculate a final, standardized vulnerability score to compare overall environmental burdens at prisons across the U.S., we took the average of each component score and then converted those values to a percentile rank. While this index only compares environmental burdens among prisons and is not comparable to non-prison sites/communities, it will be able to heighten awareness of prisons most vulnerable to negative environmental impacts at county, state and national scales. As an open-access dataset it also provides new opportunities for other researchers, journalists, activists, government officials and others to further analyze the data for their needs and make comparisons between prisons and other communities. This is made even easier as we produced the methodology for this project as an open-source code base so that others can apply the code to calculate individual indicators for any spatial boundaries of interest. The codebase can be found on GitHub (https://github.com/GeospatialCentroid/NASA-prison-EJ) and is also published via Zenodo (https://zenodo.org/record/8306856).

  5. d

    Prison Population - Datasets - Government of the Republic of Trinidad and...

    • data.gov.tt
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Prison Population - Datasets - Government of the Republic of Trinidad and Tobago Open Data Platform [Dataset]. https://data.gov.tt/dataset/prison-population
    Explore at:
    Dataset updated
    Sep 22, 2023
    Area covered
    Trinidad and Tobago
    Description

    This dataset contains the number of males and females committed to prison by type of committal and penal imprisonment. Committal may refer to a person's formal charging or commitment to stand trial for a criminal offence. Penal imprisonment refers to the act of being sentenced to serve time in prison as a punishment for a criminal offence.

  6. d

    Correctional Institutions

    • catalog.data.gov
    • data.oregon.gov
    • +3more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TechniGraphics, Inc. (2025). Correctional Institutions [Dataset]. https://catalog.data.gov/dataset/correctional-institutions
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    TechniGraphics, Inc.
    Description

    Jails and Prisons (Correctional Institutions). The Jails and Prisons sub-layer is part of the Emergency Law Enforcement Sector and the Critical Infrastructure Category. A Jail or Prison consists of any facility or location where individuals are regularly and lawfully detained against their will. This includes Federal and State prisons, local jails, and juvenile detention facilities, as well as law enforcement temporary holding facilities. Work camps, including camps operated seasonally, are included if they otherwise meet the definition. A Federal Prison is a facility operated by the Federal Bureau of Prisons for the incarceration of individuals. A State Prison is a facility operated by a state, commonwealth, or territory of the US for the incarceration of individuals for a term usually longer than 1 year. A Juvenile Detention Facility is a facility for the incarceration of those who have not yet reached the age of majority (usually 18 years). A Local Jail is a locally administered facility that holds inmates beyond arraignment (usually 72 hours) and is staffed by municipal or county employees. A temporary holding facility, sometimes referred to as a "police lock up" or "drunk tank", is a facility used to detain people prior to arraignment. Locations that are administrative offices only are excluded from the dataset. This definition of Jails is consistent with that used by the Department of Justice (DOJ) in their "National Jail Census", with the exception of "temporary holding facilities", which the DOJ excludes. Locations which function primarily as law enforcement offices are included in this dataset if they have holding cells. If the facility is enclosed with a fence, wall, or structure with a gate around the buildings only, the locations were depicted as "on entity" at the center of the facility. If the facility's buildings are not enclosed, the locations were depicted as "on entity" on the main building or "block face" on the correct street segment. Personal homes, administrative offices, and temporary locations are intended to be excluded from this dataset; however, some personal homes of constables are included due to the fact that many constables work out of their homes. TGS has made a concerted effort to include all correctional institutions. This dataset includes non license restricted data from the following federal agencies: Bureau of Indian Affairs; Bureau of Reclamation; U.S. Park Police; Federal Bureau of Prisons; Bureau of Alcohol, Tobacco, Firearms and Explosives; U.S. Marshals Service; U.S. Fish and Wildlife Service; National Park Service; U.S. Immigration and Customs Enforcement; and U.S. Customs and Border Protection. This dataset is comprised completely of license free data. The Law Enforcement dataset and the Correctional Institutions dataset were merged into one working file. TGS processed as one file and then separated for delivery purposes. With the merge of the Law Enforcement and the Correctional Institutions datasets, NAICS Codes & Descriptions were assigned based on the facility's main function which was determined by the entity's name, facility type, web research, and state supplied data. In instances where the entity's primary function is both law enforcement and corrections, the NAICS Codes and Descriptions are assigned based on the dataset in which the record is located (i.e., a facility that serves as both a Sheriff's Office and as a jail is designated as [NAICSDESCR]="SHERIFFS' OFFICES (EXCEPT COURT FUNCTIONS ONLY)" in the Law Enforcement layer and as [NAICSDESCR]="JAILS (EXCEPT PRIVATE OPERATION OF)" in the Correctional Institutions layer). Records with "-DOD" appended to the end of the [NAME] value are located on a military base, as defined by the Defense Installation Spatial Data Infrastructure (DISDI) military installations and military range boundaries. "#" and "*" characters were automatically removed from standard fields that TGS populated. Double spaces were replaced by sin

  7. Data from: Exploring Factors Influencing Family Members Connections to...

    • catalog.data.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +2more
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Exploring Factors Influencing Family Members Connections to Incarcerated Individuals in New Jersey, 2005-2006 [Dataset]. https://catalog.data.gov/dataset/exploring-factors-influencing-family-members-connections-to-incarcerated-individuals-2005--7002a
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    New Jersey
    Description

    In order to develop a better understanding of the factors that influence whether a male prisoner's family stays involved in his life during incarceration, researchers conducted face-to-face interviews with inmates from two New Jersey prisons and their family members between May 2005 and July 2006. A total of 35 (25 from one prison and 10 from the other) inmates and 15 family members were interviewed, comprising 13 inmate and family dyads, 1 inmate and family triad, and an additional 21 inmate interviews. The data include variables that explore the family's relationship with the incarcerated individual in the following areas: the inmate's relationship with the family prior to the incarceration, the strain (emotional, economic, stigma) that the incarceration has placed on the family, the economic resources available to the family to maintain the inmate, the family's social support system, and the inmate's efforts to improve or rehabilitate himself while incarcerated.

  8. National Prisoner Statistics, [United States], 1978-2022

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Jan 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of Justice Statistics (2024). National Prisoner Statistics, [United States], 1978-2022 [Dataset]. http://doi.org/10.3886/ICPSR38871.v1
    Explore at:
    r, delimited, spss, sas, stata, asciiAvailable download formats
    Dataset updated
    Jan 10, 2024
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of Justice Statistics
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38871/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38871/terms

    Time period covered
    1978 - 2022
    Area covered
    United States
    Description

    The National Prisoner Statistics (NPS) data collection began in 1926 in response to a congressional mandate to gather information on persons incarcerated in state and federal prisons. Originally under the auspices of the U.S. Census Bureau, the collection moved to the Bureau of Prisons in 1950, and then in 1971 to the National Criminal Justice Information and Statistics Service, the precursor to the Bureau of Justice Statistics (BJS) which was established in 1979. From 1979 to 2013, the Census Bureau was the NPS data collection agent. In 2014, the collection was competitively bid in conjunction with the National Corrections Reporting Program (NCRP), since many of the respondents for NPS and NCRP are the same. The contract was awarded to Abt Associates, Inc. The NPS is administered to 51 respondents. Before 2001, the District of Columbia was also a respondent, but responsibility for housing the District of Columbia's sentenced prisoners was transferred to the Federal Bureau of Prisons, and by yearend 2001 the District of Columbia no longer operated a prison system. The NPS provides an enumeration of persons in state and federal prisons and collects data on key characteristics of the nation's prison population. NPS has been adapted over time to keep pace with the changing information needs of the public, researchers, and federal, state, and local governments.

  9. d

    HSIP Correctional Institutions in New Mexico

    • catalog.data.gov
    • gstore.unm.edu
    • +2more
    Updated Dec 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact) (2020). HSIP Correctional Institutions in New Mexico [Dataset]. https://catalog.data.gov/dataset/hsip-correctional-institutions-in-new-mexico
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    (Point of Contact)
    Area covered
    New Mexico
    Description

    Jails and Prisons (Correctional Institutions). The Jails and Prisons sub-layer is part of the Emergency Law Enforcement Sector and the Critical Infrastructure Category. A Jail or Prison consists of any facility or location where individuals are regularly and lawfully detained against their will. This includes Federal and State prisons, local jails, and juvenile detention facilities, as well as law enforcement temporary holding facilities. Work camps, including camps operated seasonally, are included if they otherwise meet the definition. A Federal Prison is a facility operated by the Federal Bureau of Prisons for the incarceration of individuals. A State Prison is a facility operated by a state, commonwealth, or territory of the US for the incarceration of individuals for a term usually longer than 1 year. A Juvenile Detention Facility is a facility for the incarceration of those who have not yet reached the age of majority (usually 18 years). A Local Jail is a locally administered facility that holds inmates beyond arraignment (usually 72 hours) and is staffed by municipal or county employees. A temporary holding facility, sometimes referred to as a "police lock up" or "drunk tank", is a facility used to detain people prior to arraignment. Locations that are administrative offices only are excluded from the dataset. This definition of Jails is consistent with that used by the Department of Justice (DOJ) in their "National Jail Census", with the exception of "temporary holding facilities", which the DOJ excludes. Locations which function primarily as law enforcement offices are included in this dataset if they have holding cells. If the facility is enclosed with a fence, wall, or structure with a gate around the buildings only, the locations were depicted as "on entity" at the center of the facility. If the facility's buildings are not enclosed, the locations were depicted as "on entity" on the main building or "block face" on the correct street segment. Personal homes, administrative offices, and temporary locations are intended to be excluded from this dataset. TGS has made a concerted effort to include all correctional institutions. This dataset includes non license restricted data from the following federal agencies: Bureau of Indian Affairs; Bureau of Reclamation; U.S. Park Police; Federal Bureau of Prisons; Bureau of Alcohol, Tobacco, Firearms and Explosives; U.S. Marshals Service; U.S. Fish and Wildlife Service; National Park Service; U.S. Immigration and Customs Enforcement; and U.S. Customs and Border Protection. This dataset is comprised completely of license free data. The Law Enforcement dataset and the Correctional Institutions dataset were merged into one working file. TGS processed as one file and then separated for delivery purposes. With the merge of the Law Enforcement and the Correctional Institutions datasets, NAICS Codes & Descriptions were assigned based on the facility's main function which was determined by the entity's name, facility type, web research, and state supplied data. In instances where the entity's primary function is both law enforcement and corrections, the NAICS Codes and Descriptions are assigned based on the dataset in which the record is located (i.e., a facility that serves as both a Sheriff's Office and as a jail is designated as [NAICSDESCR]="SHERIFFS' OFFICES (EXCEPT COURT FUNCTIONS ONLY)" in the Law Enforcement layer and as [NAICSDESCR]="JAILS (EXCEPT PRIVATE OPERATION OF)" in the Correctional Institutions layer). Records with "-DOD" appended to the end of the [NAME] value are located on a military base, as defined by the Defense Installation Spatial Data Infrastructure (DISDI) military installations and military range boundaries. "#" and "*" characters were automatically removed from standard fields that TGS populated. Double spaces were replaced by single spaces in these same fields. Text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. All diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. The currentness of this dataset is indicated by the [CONTDATE] field. Based on the values in this field, the oldest record dates from 12/27/2004 and the newest record dates from 09/08/2009

  10. Data from: THE RELEVANCY OF MASSIVE HEALTH EDUCATION IN THE BRAZILIAN PRISON...

    • zenodo.org
    csv, pdf
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Janaína L. R. da S. Valentim; Janaína L. R. da S. Valentim; Sara Dias-Trindade; Sara Dias-Trindade; Eloiza da S. G. Oliveira; Eloiza da S. G. Oliveira; José A. M. Moreira; José A. M. Moreira; Felipe Fernandes; Felipe Fernandes; Manoel Honorio Romão; Manoel Honorio Romão; Philippi S. G. de Morais; Philippi S. G. de Morais; Alexandre R. Caitano; Alexandre R. Caitano; Aline P. Dias; Aline P. Dias; Carlos A. P. Oliveira; Carlos A. P. Oliveira; Karilany D. Coutinho; Karilany D. Coutinho; Ricardo B. Ceccim; Ricardo B. Ceccim; Ricardo A. de M. Valentim; Ricardo A. de M. Valentim (2024). THE RELEVANCY OF MASSIVE HEALTH EDUCATION IN THE BRAZILIAN PRISON SYSTEM: THE COURSE "HEALTH CARE FOR PEOPLE DEPRIVED OF FREEDOM" AND ITS IMPACTS [Dataset]. http://doi.org/10.5281/zenodo.6499752
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Janaína L. R. da S. Valentim; Janaína L. R. da S. Valentim; Sara Dias-Trindade; Sara Dias-Trindade; Eloiza da S. G. Oliveira; Eloiza da S. G. Oliveira; José A. M. Moreira; José A. M. Moreira; Felipe Fernandes; Felipe Fernandes; Manoel Honorio Romão; Manoel Honorio Romão; Philippi S. G. de Morais; Philippi S. G. de Morais; Alexandre R. Caitano; Alexandre R. Caitano; Aline P. Dias; Aline P. Dias; Carlos A. P. Oliveira; Carlos A. P. Oliveira; Karilany D. Coutinho; Karilany D. Coutinho; Ricardo B. Ceccim; Ricardo B. Ceccim; Ricardo A. de M. Valentim; Ricardo A. de M. Valentim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset name: asppl_dataset_v2.csv

    Version: 2.0

    Dataset period: 06/07/2018 - 01/14/2022

    Dataset Characteristics: Multivalued

    Number of Instances: 8118

    Number of Attributes: 9

    Missing Values: Yes

    Area(s): Health and education

    Sources:

    • Virtual Learning Environment of the Brazilian Health System (AVASUS) (Brasil, 2022a);

    • Brazilian Occupational Classification (CBO) (Brasil, 2022b);

    • National Registry of Health Establishments (CNES) (Brasil, 2022c);

    • Brazilian Institute of Geography and Statistics (IBGE) (Brasil, 2022e).

    Description: The data contained in the asppl_dataset_v2.csv dataset (see Table 1) originates from participants of the technology-based educational course “Health Care for People Deprived of Freedom.” The course is available on the AVASUS (Brasil, 2022a). This dataset provides elementary data for analyzing the course’s impact and reach and the profile of its participants. In addition, it brings an update of the data presented in work by Valentim et al. (2021).

    Table 1: Description of AVASUS dataset features.

    Attributes

    Description

    datatype

    Value

    gender

    Gender of the course participant.

    Categorical.

    Feminino / Masculino / Não Informado. (In English, Female, Male or Uninformed)

    course_progress

    Percentage of completion of the course.

    Numerical.

    Range from 0 to 100.

    course_evaluation

    A score given to the course by the participant.

    Numerical.

    0, 1, 2, 3, 4, 5 or NaN.

    evaluation_commentary

    Comment made by the participant about the course.

    Categorical.

    Free text or NaN.

    region

    Brazilian region in which the participant resides.

    Categorical.

    Brazilian region according to IBGE: Norte, Nordeste, Centro-Oeste, Sudeste or Sul (In English North, Northeast, Midwest, Southeast or South).

    CNES

    The CNES code refers to the health establishment where the participant works.

    Numerical.

    CNES Code or NaN.

    health_care_level

    Identification of the health care network level for which the course participant works.

    Categorical.

    “ATENCAO PRIMARIA”,

    “MEDIA COMPLEXIDADE”,

    “ALTA COMPLEXIDADE”,

    and their possible combinations.

    (In English "PRIMARY HEALTH CARE", "SECONDARY HEALTH CARE" AND "TERTIARY HEALTH CARE")

    year_enrollment

    Year in which the course participant registered.

    Numerical.

    Year (YYYY).

    CBO

    Participant occupation.

    Categorical.

    Text coded according to the Brazilian Classification of Occupations or “Indivíduo sem afiliação formal.” (In English “Individual without formal affiliation.”)

    Dataset name: prison_syphilis_and_population_brazil.csv

    Dataset period: 2017 - 2020

    Dataset Characteristics: Multivalued

    Number of Instances: 6

    Number of Attributes: 13

    Missing Values: No

    Source:

    • National Penitentiary Department (DEPEN) (Brasil, 2022d);

    Description: The data contained in the prison_syphilis_and_population_brazil.csv dataset (see Table 2) originate from the National Penitentiary Department Information System (SISDEPEN) (Brasil, 2022d). This dataset provides data on the population and prevalence of syphilis in the Brazilian prison system. In addition, it brings a rate that represents the normalized data for purposes of comparison between the populations of each region and Brazil.

    Table 2: Description of DEPEN dataset Features.

    Attributes

    Description

    datatype

    Value

    Region

    Brazilian region in which the participant resides. In addition, the sum of the regions, which refers to Brazil.

    Categorical.

    Brazil and Brazilian region according to IBGE: North, Northeast, Midwest, Southeast or South.

    syphilis_2017

    Number of syphilis cases in the prison system in 2017.

    Numerical.

    Number of syphilis cases.

    syphilis_rate_2017

    Normalized rate of syphilis cases in 2017.

    Numerical.

    Syphilis case rate.

    syphilis_2018

    Number of syphilis cases in the prison system in 2018.

    Numerical.

    Number of syphilis cases.

    syphilis_rate_2018

    Normalized rate of syphilis cases in 2018.

    Numerical.

    Syphilis case rate.

    syphilis_2019

    Number of syphilis cases in the prison system in 2019.

    Numerical.

    Number of syphilis cases.

    syphilis_rate_2019

    Normalized rate of syphilis cases in 2019.

    Numerical.

    Syphilis case rate.

    syphilis_2020

    Number of syphilis cases in the prison system in 2020.

    Numerical.

    Number of syphilis cases.

    syphilis_rate_2020

    Normalized rate of syphilis cases in 2020.

    Numerical.

    Syphilis case rate.

    pop_2017

    Prison population in 2017.

    Numerical.

    Population number.

    pop_2018

    Prison population in 2018.

    Numerical.

    Population number.

    pop_2019

    Prison population in 2019.

    Numerical.

    Population number.

    pop_2020

    Prison population in 2020.

    Numerical.

    Population number.

    Dataset name: students_cumulative_sum.csv

    Dataset period: 2018 - 2020

    Dataset Characteristics: Multivalued

    Number of Instances: 6

    Number of Attributes: 7

    Missing Values: No

    Source:

    • Virtual Learning Environment of the Brazilian Health System (AVASUS) (Brasil, 2022a);

    • Brazilian Institute of Geography and Statistics (IBGE) (Brasil, 2022e).

    Description: The data contained in the students_cumulative_sum.csv dataset (see Table 3) originate mainly from AVASUS (Brasil, 2022a). This dataset provides data on the number of students by region and year. In addition, it brings a rate that represents the normalized data for purposes of comparison between the populations of each region and Brazil. We used population data estimated by the IBGE (Brasil, 2022e) to calculate the rate.

    Table 3: Description of Students dataset Features.

  11. A

    Correctional Institutions

    • data.amerigeoss.org
    Updated Jul 27, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Correctional Institutions [Dataset]. https://data.amerigeoss.org/dataset/correctional-institutions
    Explore at:
    Dataset updated
    Jul 27, 2019
    Dataset provided by
    United States[old]
    Description

    Jails and Prisons (Correctional Institutions) in Kansas The Jails and Prisons sub-layer is part of the Emergency Law Enforcement Sector and the Critical Infrastructure Category. A Jail or Prison consists of any facility or location where individuals are regularly and lawfully detained against their will. This includes Federal and State prisons, local jails, and juvenile detention facilities, as well as law enforcement temporary holding facilities. Work camps, including camps operated seasonally, are included if they otherwise meet the definition. A Federal Prison is a facility operated by the Federal Bureau of Prisons for the incarceration of individuals. A State Prison is a facility operated by a state, commonwealth, or territory of the US for the incarceration of individuals for a term usually longer than 1 year. A Juvenile Detention Facility is a facility for the incarceration of those who have not yet reached the age of majority (usually 18 years). A Local Jail is a locally administered facility that holds inmates beyond arraignment (usually 72 hours) and is staffed by municipal or county employees. A temporary holding facility, sometimes referred to as a "police lock up" or "drunk tank", is a facility used to detain people prior to arraignment. Locations that are administrative offices only are excluded from the dataset. This definition of Jails is consistent with that used by the Department of Justice (DOJ) in their "National Jail Census", with the exception of "temporary holding facilities", which the DOJ excludes. If the facility is enclosed with a fence, wall, or structure with a gate around the buildings only, the locations were depicted as ONENTITY at the entrance. If the facility's buildings are not enclosed, the locations were depicted as ONENTITY on the building or BLOCKFACE on the correct street segment. Personal homes, administrative offices and temporary locations are intended to be excluded from this dataset, but a few may be included. Personal homes of constables may exist due to the fact that many constables work out of their home. With the merge of the Law Enforcement and the Correctional Institutions datasets, the NAICS Descriptions were assigned based on the facility's main function, which were determined by the entity's name, facility type, web research and state supplied data. For records where the entity's name represents both datasets, the NAICS Description was assigned based on the specifications of the dataset the record is assigned to. text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. All diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. The currentness of this dataset is indicated by the [CONTDATE] attribute. Based upon this attribute, the oldest record dates from 2006/06/27 and the newest record dates from 2008/03/06

  12. w

    Dataset of books called Prison people : my life and my work in the prison...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Prison people : my life and my work in the prison service [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Prison+people+%3A+my+life+and+my+work+in+the+prison+service
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Prison people : my life and my work in the prison service. It features 7 columns including author, publication date, language, and book publisher.

  13. Federal Justice Statistics Program: Offenders Released From Prison, 2003

    • catalog.data.gov
    • icpsr.umich.edu
    • +1more
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Justice Statistics (2025). Federal Justice Statistics Program: Offenders Released From Prison, 2003 [Dataset]. https://catalog.data.gov/dataset/federal-justice-statistics-program-offenders-released-from-prison-2003-0a4f8
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Bureau of Justice Statisticshttp://bjs.ojp.gov/
    Description

    The data contain records of sentenced offenders released from the custody of the Bureau of Prisons (BOP) during fiscal year 2003. The data include commitments of United States District Court, violators of conditions of release (e.g., parole, probation, or supervised release violators), offenders convicted in other courts (e.g., military or District of Columbia courts), and persons admitted to prison as material witnesses or for purposes of treatment, examination, or transfer to another authority. Records of offenders who exit federal prison temporarily, such as for transit to another location, to serve a weekend sentence, or for health care, are not included in the exiting cohort. These data include variables that describe the offender, such as age, race, citizenship, as well as variables that describe the sentences and expected prison terms. The data file contains original variables from the Bureau of Prisons' SENTRY database, as well as "SAF" variables that denote subsets of the data. These SAF variables are related to statistics reported in the Compendium of Federal Justice Statistics, Tables 7.9-7.16. Variables containing identifying information (e.g., name, Social Security Number) were replaced with blanks, and the day portions of date fields were also sanitized in order to protect the identities of individuals. These data are part of a series designed by the Urban Institute (Washington, DC) and the Bureau of Justice Statistics. Data and documentation were prepared by the Urban Institute.

  14. Federal Justice Statistics Program: Offenders Admitted to Prison, 1998

    • catalog.data.gov
    • icpsr.umich.edu
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Justice Statistics (2025). Federal Justice Statistics Program: Offenders Admitted to Prison, 1998 [Dataset]. https://catalog.data.gov/dataset/federal-justice-statistics-program-offenders-admitted-to-prison-1998
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Bureau of Justice Statisticshttp://bjs.ojp.gov/
    Description

    The data contain records of sentenced offenders committed to the custody of the Bureau of Prisons (BOP) during fiscal year 1998. The data include commitments of United States District Court, violators of conditions of release (e.g., parole, probation, or supervised release violators), offenders convicted in other courts (e.g., military or District of Columbia courts), and persons admitted to prison as material witnesses or for purposes of treatment, examination, or transfer to another authority. These data include variables that describe the offender, such as age, race, citizenship, as well as variables that describe the sentences and expected prison terms. The data file contains original variables from the Bureau of Prisons' SENTRY database, as well as "SAF" variables that denote subsets of the data. These SAF variables are related to statistics reported in the Compendium of Federal Justice Statistics, Tables 7.9-7.16. Variables containing identifying information (e.g., name, Social Security Number) were replaced with blanks, and the day portions of date fields were also sanitized in order to protect the identities of individuals. These data are part of a series designed by the Urban Institute (Washington, DC) and the Bureau of Justice Statistics. Data and documentation were prepared by the Urban Institute.

  15. e

    Prisoners on Cockatoo Island, Sydney 1847-1869 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Dec 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Prisoners on Cockatoo Island, Sydney 1847-1869 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/f486baaf-dd51-555f-abf4-ad36cbfddc7e
    Explore at:
    Dataset updated
    Dec 12, 2018
    Area covered
    Cockatoo Island, Sydney
    Description

    This dataset lists inmates incarcerated at Cockatoo Island prison in Sydney (Australia) between 1847-1869. It offers insights into how the colonial criminal justice system operated after New South Wales’ transition from a penal colony to a ‘free’ colony when transportation ceased in 1840. It is a useful tool for genealogists tracing the lives of their criminal ancestors and for historians of crime and punishment researching nineteenth-century Australia. The dataset includes prisoners' names and aliases, their ship of arrival, place of origin, details of their colonial conviction(s) (trial place, court, offence, sentence), date(s) admitted to Cockatoo Island, and when and how they were discharged from Cockatoo Island. In some cases, it also includes prisoners' place of origin, occupation, biometric information (height, eye/hair colour, complexion, scars, tattoos), 'condition upon arrival' (convict or free), and (for convicts) details of their original conviction in Britain or Ireland. As a UNESCO World Heritage 'Convict Site' Cockatoo Island is best known as a site of secondary punishment for recidivist convicts, especially those transferred from Norfolk Island. This dataset demonstrates the diversity of the prison population: including nominally free convicts (ticket-of-leave holders), migrants from Britain, China and other Australian colonies drawn in by the gold rush, exiles from Port Phillip, Aboriginal Australians convicted during frontier warfare, colonial-born white Australians (including bushrangers), and black, Indian and American sailors visiting Sydney. Significant attention has been paid to the more than 160,000 British and Irish convicts who were transported Australia as colonists between 1787 and 1868. Much less has been said about those punished within the criminal justice system that arose in the wake of New South Wales' transition from 'penal' to 'free' colony (Finnane, 1997: x-xi). Cockatoo Island prison opened in 1839, a year before convict transportation to New South Wales ceased, and was intended to punish the most recidivist and violent of the transported convicts. This archetype has prevailed in historical discourses, and they have been described as 'criminal lunatics... [and] criminals incapable of reform' (Parker, 1977: 61); 'the most desperate and abandoned characters' (O'Carrigan, 1994: 64); and people of 'doubtful character' (NSW Government Architect's Office, 2009: 29). Yet, this was far from the truth. My analysis of 1666 prisoners arriving between 1839-52 show they were overwhelming non-violent offenders, tried for minor property crimes at lower courts. They were also far more diverse population than commonly recognised, including Indigenous Australian, Chinese and black convicts alongside majority British and Irish men (Harman, 2012). This project will make publicly available extremely detailed records relating to Cockatoo Island's prisoners to show people firsthand exactly who made up the inmate population. The digital version of the original registers will include information on convicts' criminal record, but also their job, whether they were married or had children, and even what they looked like. It will also be a name-searchable database so family historians can search for their ancestors, who may have been incarcerated on the island. As it stands, they will be able find information online about ancestors who were transported as long as they remained in the 'convict system', but they may seem to disappear as soon as they are awarded their ticket-of-leave and become 'free'. However, many former convicts, and free immigrants, to New South Wales were convicted locally, and these records can give us information about their lives within the colony. The type of data included in these registers will also allow researchers to investigate questions including: (1) were convicts more likely to offend again than free immigrants? (2) Were the children of convicts more likely to offend than others? (3) Did the influx of mostly Chinese migrants during the gold rush actually lead to a crime-wave, as reported in the press? (4) Were laws introduced between 1830 and 1853, actually effective at prosecuting bushrangers (highwaymen)? (5) Was the criminal-judicial system in Australia more rehabilitative, despite developing out of a harsher convict transportation system? Alongside the dataset, the website will include 'life-biographies' of individual convicts to show you how this dataset can be used to piece together a life-story. It also to warns against understanding a real-life person only through the records of their conviction. There many of fascinating stories to tell, including those 'John Perry' ('Black Perry') the prizewinning boxer; the love story of the 'Two Fredericks'; and Tan, the Chinese gold-digger who resisted his incarceration. In addition, there will be teaching resources for secondary school children and undergraduate university students who want to engage directly with historical materials, without having to leave their classroom. Overall, this website invites anyone with an interest in the history of crime and punishment, and any visitors to the UNESCO world heritage site 'Cockatoo Island', to try searching for a name in the database or read about a featured convict's life story. It asks them, though, to think about how and why these people's lives intersected with the state, leading to their incarceration, and how history has erased much of their lives outside of it. Data collection involved photographing a Cockatoo Island’s surviving prison registers and returns kept at the State Archives of New South Wales (call numbers: 4/4540, 4/6501, 4/6509, 6571, 4/6572, 4/6573, 4/6574, 4/6575, X819). In these volumes, clerks had listed details of incoming prisoners on the dates they arrived between April 1847 and October 1869. This prison register for the period 1839-46 (call number: 2/8285) had not survived to a good enough quality for accurate transcription and was excluded from data collection. I photographed and then transcribed these records in full into a tabular form, with minor standardisation of abbreviations and irregular spellings. Where multiple records existed for one person I combined information from two separate archival records into one line of the dataset. Where I could not verify that two people with the same name were the same person, I listed them as separate entries. Barring errors in entry at the time of record creation, the studied population represents the entire population of prisoners incarcerated at Cockatoo Island between April 1847 and October 1869 when the prison closed.

  16. o

    Coronavirus (COVID-19) in Prisons in the United States, April - June 2020

    • openicpsr.org
    delimited, spss +1
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Kaplan; Sebastian Hoyos-Torres; Oren Gur; Connor Concannon; Nick Jones (2020). Coronavirus (COVID-19) in Prisons in the United States, April - June 2020 [Dataset]. http://doi.org/10.3886/E119901V1
    Explore at:
    stata, delimited, spssAvailable download formats
    Dataset updated
    Jun 14, 2020
    Dataset provided by
    Philadelphia District Attorney's Office
    University of Pennsylvania
    City University of New York. John Jay College of Criminal Justice
    Authors
    Jacob Kaplan; Sebastian Hoyos-Torres; Oren Gur; Connor Concannon; Nick Jones
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 14, 2020 - Jun 24, 2020
    Area covered
    United States
    Description

    Summary: This is a collection of publicly reported data relevant to the COVID-19 pandemic scraped from state and federal prisons in the United States. Data are collected each night from every state and federal correctional agency’s site that has data available. Data from Massachusetts come directly from the ACLU Massachusetts COVID-19 website (https://data.aclum.org/sjc-12926-tracker/), not the Massachusetts DOC website. Data from a small number of states come from Recidiviz (https://www.recidiviz.org/) whose team manually collects data from these states. Not all dates are available for some states due to websites being down or changes to the website that cause some data to be missed by the scraper.The data primarily cover the number of people incarcerated in these facilities who have tested positive, negative, recovered, and have died from COVID-19. Many - but not all - states also provide this information for staff members. This dataset includes every variable that any state makes available. While there are dozens of variables in the data, most apply to only a small number of states or a single state.The data is primarily at the facility-date unit, meaning that each row represents a single prison facility on a single date. The date is the date we scraped the data (we do so each night between 9pm-3am EST) and not necessarily the date the data was updated. While many states update daily, some do so less frequently. As such, you may see some dates for certain states contain the same values. A small number of states do not provide facility-level data, or do so for only a subset of all the variables they make available. In these cases we have also collected state-level data and made that available separately. Please note: When facility data is available, the state-level file combines the aggregated facility-level data with any state-level data that is available. You should therefore use this file when doing a state-level analysis instead of aggregating the facility-level data, as some states report values only at the state level (these states may still have some data at the facility-level), and some states report cumulative numbers at the state level but do not report them at the facility level. As a result, when we identify this, we typically add the cumulative information to the state level file. The state level file is still undergoing quality checks and will be released soon.These data were scraped from nearly all state and federal prison websites that make their data available each night for several months, and we continue to collect data. Over time some states have changed what variables are available, both adding and removing some variables, as well as the definition of variables. For all states and time periods you are using this data for, please carefully examine the data to detect these kinds of issues. We have spent extensive time doing a careful check of the data to remove any issues we find, primarily ones that could be caused by a scraper not working properly. However, please check all data for issues before using it. Contact us at covidprisondata@gmail.com to let us know if you find any issues, have questions, or if you would like to collaborate on research.

  17. e

    The costs of imprisonment: A longitudinal study - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). The costs of imprisonment: A longitudinal study - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/4967baf0-21ae-5a2c-bb17-c9330391e0b3
    Explore at:
    Dataset updated
    Dec 19, 2023
    Description

    The 1922 Prison System Enquiry Committee Report said that: 'In order to judge our Prison system rightly it is necessary to know what kind of people become prisoners... How many go to prison? For what length of sentence?' These questions persist, and are especially relevant for today's prison crisis. This project will assess nearly 100 years of historical data to explore, for the first time, how prison numbers were largely dictated by the repeat incarceration of recidivist's offenders with short sentences. It questions how the prison authorities attempted to manage increasing numbers of offenders by using early release schemes (licenses) in the nineteenth and twentieth centuries (licenses have only recently become available, generous access granted by The National Archives). This project will explore whether short sentences contributed to repeat offending, and whether early release schemes accelerated or inhibited recidivism. It investigates the financial costs of imprisonment to the country (and the human costs to those imprisoned) and does this over a significant period of time (allowing an examination of how repeated incarcerations affected the whole of an offender's criminal career). It concludes by asking what lessons can be learnt for today's debates about sentencing offenders and managing the prison population? Data was derived from the following sources: PCOM 3 (1853-1887, 1902-08, 1912-42) – these files contained 45,000 licenses and also the registers of license holders. They listed the prisoner’s name, sentence, where/when convicted, dates and conditions of the current license; previous convictions, age, previous occupation, when and from where the prisoner was released; and most had photographs of the prisoner. The National Archives granted us access to these records pre public release (they are now available on Find-My-Past and Ancestry). Criminal Registers 1853-1892 (contained offenders tried for indictable crimes, whether they were found guilty, details of the offence, and sentence imposed). Where possible we traced these offences in the Quarter Sessions Calendars in order to trace the antecedent criminal history. From these main sources, we were then able to trace prisoners released on license using a wide variety of other extant sources. These sources provided us with a considerable amount of additional information on offenders who were released on license: Census returns from 1841-1911 censuses (which gave details of the residence, family status, and occupation, of each person we will be searching for). Online Birth, Marriage and Death indices (which detailed if and when our offender was married, and had children; and, of course, when they died). Military records (mainly referring to World War One; these included service records - which in turn included disciplinary breaches - medal indices and pensions details. Metropolitan Police records including Habitual Criminal Registers (MEPO 6) which contain details of criminals as defined by sections 5-8 of the Prevention of Crimes Act 1871. From the sources above we constructed approximately 650 life grids. These were divided into an early (1853-55 n=62), middle (1871-73 n=201), and late (1885-1887 n=184) tranche, for 356 men and 288 women. Each life-grid charted offending/life histories for each offender. Studies funded by Leverhulme Trust (F/00130/H)) and ESRC (RES-062-23-0416) used life grids and `whole-life’ research methods and the method is now well-tested. The life-grid data was then entered into excel and SPSS in order to produce quantifiable data on - the progress of their criminal careers, their periods of incarceration, their employment careers, life events such as marriage, death of parents, and other significant life events. We had over two hundred thousand fields of data at the conclusion of our data collection/analysis. By analysing each of the life grids we were able to see the relationships and connections between life events and offending post-imprisonment (both short and long periods of custody, whilst on licence, and after license had expired.

  18. i

    Public Safety Recidivism Data - Dataset - The Indiana Data Hub

    • hub.mph.in.gov
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Public Safety Recidivism Data - Dataset - The Indiana Data Hub [Dataset]. https://hub.mph.in.gov/dataset/public-safety-recidivism-data
    Explore at:
    Dataset updated
    Jan 23, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset provides information on the number of individuals released between the years of 2011-2015 and the number of individuals re-incarcerated. Below are a couple of items to note about the dataset: Recidivism is defined as a return to incarceration within three years of the formerly incarcerated individuals date of release from a state correctional institution

  19. g

    Prison Rape Elimination Act Data Series | gimi9.com

    • gimi9.com
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Prison Rape Elimination Act Data Series | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_prison-rape-elimination-act-data-series-92997/
    Explore at:
    Dataset updated
    Apr 2, 2025
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The Bureau of Justice Statistics (BJS) collects and analyzes data on the incidence and effects of sexual violence in prisons and jails. The data, in various datasets, are collected from individuals currently and formerly in federal, state, county, and municipal facilities. The data are collected using a multiple-measure, multiple-mode data collection strategy. Data sets in this series include surveys and other statistical studies, including the National Inmate Survey (NIS), the Former Prisoner Survey (FPS), and the National Survey of Youth in Custody (NSYC).

  20. a

    New Hampshire Correctional Institutions

    • hub.arcgis.com
    • nhgeodata.unh.edu
    • +2more
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Hampshire GRANIT GIS Clearinghouse (2018). New Hampshire Correctional Institutions [Dataset]. https://hub.arcgis.com/datasets/9b4e69b6386345149d5c91f4dc8d7ff7
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    New Hampshire GRANIT GIS Clearinghouse
    Area covered
    Description

    Jails and Prisons (Correctional Institutions). The Jails and Prisons sub-layer is part of the Emergency Law Enforcement Sector and the Critical Infrastructure Category. A Jail or Prison consists of any facility or location where individuals are regularly and lawfully detained against their will. This includes Federal and State prisons, local jails, and juvenile detention facilities, as well as law enforcement temporary holding facilities. Work camps, including camps operated seasonally, are included if they otherwise meet the definition. A Federal Prison is a facility operated by the Federal Bureau of Prisons for the incarceration of individuals. A State Prison is a facility operated by a state, commonwealth, or territory of the US for the incarceration of individuals for a term usually longer than 1 year. A Juvenile Detention Facility is a facility for the incarceration of those who have not yet reached the age of majority (usually 18 years). A Local Jail is a locally administered facility that holds inmates beyond arraignment (usually 72 hours) and is staffed by municipal or county employees. A temporary holding facility, sometimes referred to as a "police lock up" or "drunk tank", is a facility used to detain people prior to arraignment. Locations that are administrative offices only are excluded from the dataset. This definition of Jails is consistent with that used by the Department of Justice (DOJ) in their "National Jail Census", with the exception of "temporary holding facilities", which the DOJ excludes. Locations which function primarily as law enforcement offices are included in this dataset if they have holding cells. If the facility is enclosed with a fence, wall, or structure with a gate around the buildings only, the locations were depicted as "on entity" at the center of the facility. If the facility's buildings are not enclosed, the locations were depicted as "on entity" on the main building or "block face" on the correct street segment. Personal homes, administrative offices, and temporary locations are intended to be excluded from this dataset; however, some personal homes of constables are included due to the fact that many constables work out of their homes. TGS has made a concerted effort to include all correctional institutions. This dataset includes non license restricted data from the following federal agencies: Bureau of Indian Affairs; Bureau of Reclamation; U.S. Park Police; Federal Bureau of Prisons; Bureau of Alcohol, Tobacco, Firearms and Explosives; U.S. Marshals Service; U.S. Fish and Wildlife Service; National Park Service; U.S. Immigration and Customs Enforcement; and U.S. Customs and Border Protection. This dataset is comprised completely of license free data. The Law Enforcement dataset and the Correctional Institutions dataset were merged into one working file. TGS processed as one file and then separated for delivery purposes. With the merge of the Law Enforcement and the Correctional Institutions datasets, NAICS Codes & Descriptions were assigned based on the facility's main function which was determined by the entity's name, facility type, web research, and state supplied data. In instances where the entity's primary function is both law enforcement and corrections, the NAICS Codes and Descriptions are assigned based on the dataset in which the record is located (i.e., a facility that serves as both a Sheriff's Office and as a jail is designated as [NAICSDESCR]="SHERIFFS' OFFICES (EXCEPT COURT FUNCTIONS ONLY)" in the Law Enforcement layer and as [NAICSDESCR]="JAILS (EXCEPT PRIVATE OPERATION OF)" in the Correctional Institutions layer). Records with "-DOD" appended to the end of the [NAME] value are located on a military base, as defined by the Defense Installation Spatial Data Infrastructure (DISDI) military installations and military range boundaries. "#" and "*" characters were automatically removed from standard fields that TGS populated. Double spaces were replaced by single spaces in these same fields. Text fields in this dataset have been set to all upper case to facilitate consistent database engine search results. All diacritics (e.g., the German umlaut or the Spanish tilde) have been replaced with their closest equivalent English character to facilitate use with database systems that may not support diacritics. The currentness of this dataset is indicated by the [CONTDATE] field. Based on the values in this field, the oldest record dates from 04/26/2006 and the newest record dates from 10/19/2009

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). Prison Inmates in India [Dataset]. https://www.kaggle.com/datasets/thedevastator/prison-inmates-in-india-demographics-crimes-and
Organization logo

Prison Inmates in India

Demographics, Age, Education, Caste, Wages, Rehabilitation, Technical Info

Explore at:
48 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 4, 2023
Dataset provided by
Kaggle
Authors
The Devastator
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Area covered
India
Description

Prison Inmates in India

Demographics, Age, Education, Caste, Wages, Rehabilitation, Technical Info

By Rajanand Ilangovan [source]

About this dataset

This dataset provides a detailed view of prison inmates in India, including their age, caste, and educational background. It includes information on inmates from all states/union territories for the year 2019 such as the number of male and female inmates aged 16-18 years, 18-30 year old inmates and those above 50 years old. The data also covers total number of penalized prisoners sentenced to death sentence, life imprisonment or executed by the state authorities. Additionally, it provides information regarding the crimehead (type) committed by an inmate along with its grand total across different age groups. This dataset not only sheds light on India’s criminal justice system but also highlights prevelance of crimes in different states and union territories as well as providing insight into crime trends across Indian states over time

More Datasets

For more datasets, click here.

Featured Notebooks

  • 🚨 Your notebook can be here! 🚨!

How to use the dataset

This dataset provides a comprehensive look at the demographics, crimes and sentences of Indian prison inmates in 2019. The data is broken down by state/union territory, year, crime head, age groups and gender.

This dataset can be used to understand the demographic composition of the prison population in India as well as the types of crimes committed. It can also be used to gain insight into any changes or trends related to sentencing patterns in India over time. Furthermore, this data can provide valuable insight into potential correlations between different demographic factors (such as gender and caste) and specific types of crimes or length of sentences handed out.

To use this dataset effectively there are a few important things to keep in mind: •State/UT - This column refers to individual states or union territories in India where prisons are located •Year – This column indicates which year(s) the data relates to •Both genders - Female columns refer only to female prisoners while male columns refers only to male prisoners •Age Groups – 16-18 years old = 21-30 years old = 31-50 years old = 50+ years old •Crime Head – A broad definition for each type of crime that inmates have been convicted for •No Capital Punishment – The total number sentenced with capital punishment No Life Imprisonment – The total number sentenced with life imprisonment No Executed– The total number executed from death sentence Grand Total–The overall totals for each category

By using this information it is possible to answer questions regarding topics such as sentencing trends, types of crimes committed by different age groups or genders and state-by-state variation amongst other potential queries

Research Ideas

  • Using the age and gender information to develop targeted outreach strategies for prisons in order to reduce recidivism rates.
  • Creating an AI-based predictive model to predict crime trends by analyzing crime head data from a particular region/state and correlating it with population demographics, economic activity, etc.
  • Analyzing the caste of inmates across different states in India in order to understand patterns of discrimination within the criminal justice system

Acknowledgements

If you use this dataset in your research, please credit the original authors. Data Source

License

License: Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original.

Columns

File: SLL_Crime_headwise_distribution_of_inmates_who_convicted.csv | Column name | Description | |:--------------------------|:---------------------------------------------------------------------------------------------------| | STATE/UT | Name of the state or union territory where the jail is located. (String) | | YEAR | Year when the inmate population data was collected. (Integer) ...

Search
Clear search
Close search
Google apps
Main menu