By Andy Kriebel [source]
The file contains data on births in the United States from 1994 to 2014. The data includes the following columns: year: The year of the observation. (Integer) month: The month of the observation. (Integer) date_of_month: The date of the observation. (Integer) day_of_week: The day of the week of the observation. (Integer) births: The number of births on the given day. (Integer)
The US Births dataset on Kaggle contains data on births in the United States from 1994 to 2014. The data is broken down by year, month, date of month, day of week, and births.
This dataset can be used to answer questions about when people are born, how common certain birthdays are, and any trends over time. For example, you could use this dataset to find out which day of the week has the most births or which month has the most births
- Determining which day of the year and what time of day that people are mostly born to help with staffing levels in maternity wards
- Identifying trends in baby names over time
- Predicting the number of births on a given day
This data set is a combined effort of the U.S. National Center for Health Statistics and the U.S. Social Security Administration, provided by FiveThirtyEight. It contains data on births in the United States from 1994 to 2014, with the following columns: year, month, date_of_month, day_of_week, births
->Thank you to FiveThirtyEight for providing this dataset!
License
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: US_births_1994-2014.csv | Column name | Description | |:------------------|:---------------------------------------------| | year | Year of the data. (Integer) | | month | Month of the data. (Integer) | | date_of_month | Day of the month of the data. (Integer) | | day_of_week | Day of the week of the data. (Integer) | | births | Number of births on the given day. (Integer) |
If you use this dataset in your research, please credit Andy Kriebel.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains counts of live births for California as a whole based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.
The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.
This dataset contains counts of live births for California counties based on information entered on birth certificates. Final counts are derived from static data and include out of state births to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all births that occurred during the time period.
The final data tables include both births that occurred in California regardless of the place of residence (by occurrence) and births to California residents (by residence), whereas the provisional data table only includes births that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by parent giving birth's age, parent giving birth's race-ethnicity, and birth place type. See temporal coverage for more information on which strata are available for which years.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number and percentage of live births, by month of birth, 1991 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Connecticut's Birth to Three System (B23) supports families with infants and toddlers that have developmental delays to learn new ways to make everyday activities enhance the child's development. Birth to Three is administered pursuant to Part C of the Individuals with Disabilities Education Act (IDEA). Once families with children below age 3 are referred, the child's development is evaluated for eligibility, and if eligible the family can receive supports until the child no longer has delays or until the child turns age 3. Because an infant can be referred within days of being born, a family may be enrolled for almost three full years. Connecticut's Birth to Three System publishes data annually by the fiscal and calendar year and longitudinally by birth cohort. CTData.org carries both sets of data, here and in 'Birth To Three Annual Data'. Birth cohort data looks at all children born in a particular year and tracks whether the family received B23 support. For example, the latest full year available in this dataset is for those children born in 2013 since they turned age 3 sometime in 2016. The 2013 data will tell you how many children there were whose families received support at some point during the first three years of the child's life. CTData calculates several indicators using total number of births in a town. This provides users with a general idea of the relative number of children in the community eligible for services. Using births is not perfect since families move in and out of town so it should not be used as an exact figure but as a general reference point. Below are how the indicators are calculated: % Referrals = Number referred divided by total number of births % Evaluations = Number evaluated divided by total number of births % Eligible = Number eligible divided by total number of births % Individual Family Service Plans (IFSP) = Number with IFSP divided by total number of births % Served = Number served divided by total number of births % Exited to Early Childhood Special Education = Number exited to early childhood special education divided by total number of births 'Referred that are Evaluated' represents the percent of children that were evaluated out of the total number of children referred to the Birth to Three System. 'Evaluated that are Eligible' represents the percent of children who were deemed eligible out of the total number of children that were evaluated. 'Eligible that Recieve IFSP' represents the percent of children whose family recieved an Individual Family Service Plan out of the total number of eligible children.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of babies born in the United States from 1995 to 2025. The x-axis represents the years, labeled from '95 to '25, while the y-axis shows the annual number of births. Over this 30-year period, birth numbers peaked at 4,316,233 in 2007 and reached a low of 3,596,017 in 2023. The data reveals relatively stable birth rates from 1995 to 2010, with slight fluctuations, followed by a gradual decline starting around 2017. The information is presented in a line graph format, effectively highlighting the long-term downward trend in U.S. birth numbers over the specified timeframe.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Yearly registered births – breakdown by Month
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Crude Birth Rate for the United States (SPDYNCBRTINUSA) from 1960 to 2023 about birth, crude, rate, and USA.
https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_6150f21b0892b3fdde546d2a1af2af82/view
According to the most recent data, more people died in Spain than were born in 2024, with figures reaching over 439,000 deaths versus 322,034 newborns. From 2006 to 2024, 2008 ranked as the year in which the largest number of children were born, with figures reaching over half a million newborns. The depopulation of a country The population of Spain declined for many years, a negative trend reverted from 2016 onwards, and was projected to grow by nearly two million by 2029 compared to 2024. Despite this expected increase, Spain has one of the lowest fertility rate in the European Union, with barely 1.29 children per woman according to the latest reports. During the last years, the country featured a continuous population density of approximately 94 inhabitants per square kilometer – a figure far from the European average, which stood nearly at nearly 112 inhabitants per square kilometer in 2021. Migration inflow: an essential role in the Spanish population growth One of the key points to balance out the population trend in Spain is immigration – Spain’s immigration figures finally started to pick up in 2015 after a downward trend that presumably initiated after the 2008 financial crisis, which left Spain with one of the highest unemployment rates in Europe.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 195 countries was 18.38 births per 1000 people. The highest value was in Niger: 45.03 births per 1000 people and the lowest value was in Hong Kong: 4.4 births per 1000 people. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset provides information about the distribution of birthdays across different days, months, and years. It contains records of the number of individuals who were born on a particular day, in a specific month, and in a particular year.
The data can be used to gain insights into patterns and trends in birthday distribution, which may have implications for a range of fields, including demography, public health, and marketing. The dataset may also be of interest to individuals curious about their own birthdays and how they compare to others.
With this dataset, researchers and analysts can explore questions such as: Are certain days, months, or years associated with higher or lower numbers of births? What factors might influence these patterns? What are the implications of these patterns for individuals and society as a whole?
These statistics are derived from two data sources: the Maternity Indicators dataset where a mother’s intention to breastfeed prior to birth is recorded and the National Community Child Health Database (NCCHD) where data for breastfeeding at birth and for babies turning 10 days, 6 weeks and 6 months is recorded and refers to records where there was any breastfeeding. Both data sources are provided to the Welsh Government by Digital Health and Care Wales (DHCW). The Maternity Indicators dataset was established in 2016. It combines records from a mother’s initial assessment with a child’s birth record and enables Welsh Government to monitor its initial set of outcome indicators and performance measures (Maternity Indicators). These were established to measure the effectiveness and quality of Welsh maternity services. The Maternity Indicators dataset allows us to analyse characteristics of the mother’s pregnancy and birth process, of which ‘intention to breastfeed’ is one. The process for producing this data is complex largely because there can be multiple initial assessment data and records for both initial assessments and births are not always complete. Full details of every data item available on both the Maternity Indicators dataset and National Community Child Health Database are available through the NHS Wales Data Dictionary: http://www.datadictionary.wales.nhs.uk/#!WordDocuments/datasetstructure20.htm The NCCHD was established in 2004 and consists of anonymised records for all children born, resident or treated in Wales and born after 1987. The database brings together data from local Community Child Health System databases which are held by local health boards (LHBs), and its main function is to provide an online record of a child’s health and care from birth to leaving school age. The statistics used in this release are based on the data recorded at birth and shortly after birth.
Birth Statistics (i) Number of Known Births for Different Sexes and Crude Birth Rate for the Period from 1981 to 2024 (ii) Percentage Distribution of Live Births by Birth Weight for the Period from 2012 to 2023
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This is a publication on maternity activity in English NHS hospitals. This report examines data relating to delivery and birth episodes in 2022-23, and the booking appointments for these deliveries. This annual publication covers the financial year ending March 2023. Data is included from both the Hospital Episodes Statistics (HES) data warehouse and the Maternity Services Data Set (MSDS). HES contains records of all admissions, appointments and attendances for patients admitted to NHS hospitals in England. The HES data used in this publication are called 'delivery episodes'. The MSDS collects records of each stage of the maternity service care pathway in NHS-funded maternity services, and includes information not recorded in HES. The MSDS is a maturing, national-level dataset. In April 2019 the MSDS transitioned to a new version of the dataset. This version, MSDS v2.0, is an update that introduced a new structure and content - including clinical terminology, in order to meet current clinical practice and incorporate new requirements. It is designed to meet requirements that resulted from the National Maternity Review, which led to the publication of the Better Births report in February 2016. This is the fourth publication of data from MSDS v2.0 and data from 2019-20 onwards is not directly comparable to data from previous years. This publication shows the number of HES delivery episodes during the period, with a number of breakdowns including by method of onset of labour, delivery method and place of delivery. It also shows the number of MSDS deliveries recorded during the period, with breakdowns including the baby's first feed type, birthweight, place of birth, and breastfeeding activity; and the mothers' ethnicity and age at booking. There is also data available in a separate file on breastfeeding at 6 to 8 weeks. The count of Total Babies includes both live and still births, and previous changes to how Total Babies and Total Deliveries were calculated means that comparisons between 2019-20 MSDS data and later years should be made with care. Information on how all measures are constructed can be found in the HES Metadata and MSDS Metadata files provided below. In this publication we have also included an interactive Power BI dashboard to enable users to explore key NHS Maternity Statistics measures. The purpose of this publication is to inform and support strategic and policy-led processes for the benefit of patient care. This report will also be of interest to researchers, journalists and members of the public interested in NHS hospital activity in England. Any feedback on this publication or dashboard can be provided to enquiries@nhsdigital.nhs.uk, under the subject “NHS Maternity Statistics”.
We conducted an unmatched case-control study of 1,225,285 infants from a North Carolina Birth Cohort (2003-2015). Ozone and PM2.5 during critical exposure periods (gestational weeks 3-8) were estimated using residential address and a national spatiotemporal model at census tract centroid. Here we describe data sources for outcome (i.e., congenital heart defects) and exposure (i.e., ozone and PM2.5) data. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: The North Carolina Birth Cohort data are not publicly available as it contains personal identifiable information. Data may be requested through the NCDHHS, Division of Public Health with proper approvals. Air pollutant concentrations for ozone and PM2.5 from the national spatiotemporal model are publicly available from EPA's website. Format: Birth certificate data from the State Center for Health Statistics of the NC Department of Health and Human Services linked with data from the Birth Defects Monitoring Program (NC BDMP) to create a birth cohort of all infants born in NC between 2003-2015. The NC BDMP is an active surveillance system that follows NC births to obtain birth defect diagnoses up to 1 year after the date of birth as well as identify infant deaths during the first year of life and include relevant information from the death certificate. A national spatiotemporal model provided data on predicted ozone PM2.5 concentrations over critical prenatal and time periods. The prediction model used data from research and regulatory monitors as well as a large (>200) array of geographic covariates to create fine scale spatial and temporal predictions. The model has a cross-validated R2 of 0.89 for PM2.5. Concentrations were predicted for daily throughout the study period at the centroid of each 2010 census tract in NC. This dataset is associated with the following publication: Arogbokun, O., T. Luben, J. Stingone, L. Engel, C. Martin, and A. Olshan. Racial disparities in maternal exposure to ambient air pollution during pregnancy and prevalence of congenital heart defects. AMERICAN JOURNAL OF EPIDEMIOLOGY. Johns Hopkins Bloomberg School of Public Health, 194(3): 709-721, (2025).
https://www.icpsr.umich.edu/web/ICPSR/studies/6630/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6630/terms
This data collection consists of three data files, which can be used to determine infant mortality rates. The first file provides linked records of live births and deaths of children born in the United States in 1990 (residents and nonresidents). This file is referred to as the "Numerator" file. The second file consists of live births in the United States in 1990 and is referred to as the "Denominator-Plus" file. Variables include year of birth, state and county of birth, characteristics of the infant (age, sex, race, birth weight, gestation), characteristics of the mother (origin, race, age, education, marital status, state of birth), characteristics of the father (origin, race, age, education), pregnancy items (prenatal care, live births), and medical data. Beginning in 1989, a number of items were added to the U.S. Standard Certificate of Birth. These changes and/or additions led to the redesign of the linked file record layout for this series and to other changes in the linked file. In addition, variables from the numerator file have been added to the denominator file to facilitate processing, and this file is now called the "Denominator-Plus" file. The additional variables include age at death, underlying cause of death, autopsy, and place of accident. Other new variables added are infant death identification number, exact age at death, day of birth and death, and month of birth and death. The third file, the "Unlinked" file, consists of infant death records that could not be linked to their corresponding birth records.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Birth Rate: per 1000 Population: Gujarat data was reported at 19.300 NA in 2020. This records a decrease from the previous number of 19.500 NA for 2019. Vital Statistics: Birth Rate: per 1000 Population: Gujarat data is updated yearly, averaging 22.300 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 25.500 NA in 1998 and a record low of 19.300 NA in 2020. Vital Statistics: Birth Rate: per 1000 Population: Gujarat data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH002: Vital Statistics: Birth Rate: by States.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Births that occurred by hospital name. Birth events of 5 or more per hospital location are displayed
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides an extensive view of global population statistics and health metrics across various countries from 2014 to 2024. It combines population data with vital health-related indicators, making it a valuable resource for understanding trends in population growth and health outcomes worldwide. Researchers, data scientists, and policymakers can utilize this dataset to analyze correlations between population dynamics and health performance at a global scale.
Key Features: - Country: Name of the country. - Year: Year of the data (2014–2024). - Population: Total population for the respective year and country. - Country Code: ISO 3-letter country codes for easy identification. - Health Expenditure (health_exp): Percentage of GDP spent on healthcare. - Life Expectancy (life_expect): Average life expectancy at birth in years. - Maternal Mortality (maternal_mortality): Maternal deaths per 100,000 live births. - Infant Mortality (infant_mortality): Deaths of infants under 1 year per 1,000 live births. - Neonatal Mortality (neonatal_mortality): Deaths of newborns (0–28 days) per 1,000 live births. - Under-5 Mortality (under_5_mortality): Deaths of children under 5 years per 1,000 live births. - HIV Prevalence (prev_hiv): Percentage of the population living with HIV. - Tuberculosis Incidence (inci_tuberc): Estimated new and relapse TB cases per 100,000 people. - Undernourishment Prevalence (prev_undernourishment): Percentage of the population that is undernourished.
Use Cases: - Health Policy Analysis: Understand trends in healthcare expenditure and its relationship to health outcomes. - Global Health Research: Investigate global or regional disparities in health and nutrition. - Population Studies: Analyze population growth trends alongside health indicators. - Data Visualization: Build visual dashboards for storytelling and impactful data representation.
By Andy Kriebel [source]
The file contains data on births in the United States from 1994 to 2014. The data includes the following columns: year: The year of the observation. (Integer) month: The month of the observation. (Integer) date_of_month: The date of the observation. (Integer) day_of_week: The day of the week of the observation. (Integer) births: The number of births on the given day. (Integer)
The US Births dataset on Kaggle contains data on births in the United States from 1994 to 2014. The data is broken down by year, month, date of month, day of week, and births.
This dataset can be used to answer questions about when people are born, how common certain birthdays are, and any trends over time. For example, you could use this dataset to find out which day of the week has the most births or which month has the most births
- Determining which day of the year and what time of day that people are mostly born to help with staffing levels in maternity wards
- Identifying trends in baby names over time
- Predicting the number of births on a given day
This data set is a combined effort of the U.S. National Center for Health Statistics and the U.S. Social Security Administration, provided by FiveThirtyEight. It contains data on births in the United States from 1994 to 2014, with the following columns: year, month, date_of_month, day_of_week, births
->Thank you to FiveThirtyEight for providing this dataset!
License
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: US_births_1994-2014.csv | Column name | Description | |:------------------|:---------------------------------------------| | year | Year of the data. (Integer) | | month | Month of the data. (Integer) | | date_of_month | Day of the month of the data. (Integer) | | day_of_week | Day of the week of the data. (Integer) | | births | Number of births on the given day. (Integer) |
If you use this dataset in your research, please credit Andy Kriebel.