63 datasets found
  1. World Happiness Index and Inflation Dataset

    • kaggle.com
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agra Fintech (2025). World Happiness Index and Inflation Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/11174951
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 26, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Agra Fintech
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Context

    Happiness and well-being are essential indicators of societal progress, often influenced by economic conditions such as GDP and inflation. This dataset combines data from the World Happiness Index (WHI) and inflation metrics to explore the relationship between economic stability and happiness levels across 148 countries from 2015 to 2023. By analyzing key economic indicators alongside social well-being factors, this dataset provides insights into global prosperity trends.

    Content

    This dataset is provided in CSV format and includes 16 columns, covering both happiness-related features and economic indicators such as GDP per capita, inflation rates, and corruption perception. The main columns include:

    Happiness Score & Rank (World Happiness Index ranking per country) Economic Indicators (GDP per capita, inflation metrics) Social Factors (Freedom, Social Support, Generosity) Geographical Information (Country & Continent)

    Acknowledgements

    The dataset is created using publicly available data from World Happiness Report, Gallup World Poll, and the World Bank. It has been structured for research, machine learning, and policy analysis purposes.

    Inspiration

    How do economic factors like inflation, GDP, and corruption affect happiness? Can we predict a country's happiness score based on economic conditions? This dataset allows you to analyze these relationships and build models to predict well-being trends worldwide.

  2. f

    Data from: Facial Expression Image Dataset for Computer Vision Algorithms

    • salford.figshare.com
    Updated Apr 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ali Alameer; Odunmolorun Osonuga (2025). Facial Expression Image Dataset for Computer Vision Algorithms [Dataset]. http://doi.org/10.17866/rd.salford.21220835.v2
    Explore at:
    Dataset updated
    Apr 29, 2025
    Dataset provided by
    University of Salford
    Authors
    Ali Alameer; Odunmolorun Osonuga
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset for this project is characterised by photos of individual human emotion expression and these photos are taken with the help of both digital camera and a mobile phone camera from different angles, posture, background, light exposure, and distances. This task might look and sound very easy but there were some challenges encountered along the process which are reviewed below: 1) People constraint One of the major challenges faced during this project is getting people to participate in the image capturing process as school was on vacation, and other individuals gotten around the environment were not willing to let their images be captured for personal and security reasons even after explaining the notion behind the project which is mainly for academic research purposes. Due to this challenge, we resorted to capturing the images of the researcher and just a few other willing individuals. 2) Time constraint As with all deep learning projects, the more data available the more accuracy and less error the result will produce. At the initial stage of the project, it was agreed to have 10 emotional expression photos each of at least 50 persons and we can increase the number of photos for more accurate results but due to the constraint in time of this project an agreement was later made to just capture the researcher and a few other people that are willing and available. These photos were taken for just two types of human emotion expression that is, “happy” and “sad” faces due to time constraint too. To expand our work further on this project (as future works and recommendations), photos of other facial expression such as anger, contempt, disgust, fright, and surprise can be included if time permits. 3) The approved facial emotions capture. It was agreed to capture as many angles and posture of just two facial emotions for this project with at least 10 images emotional expression per individual, but due to time and people constraints few persons were captured with as many postures as possible for this project which is stated below: Ø Happy faces: 65 images Ø Sad faces: 62 images There are many other types of facial emotions and again to expand our project in the future, we can include all the other types of the facial emotions if time permits, and people are readily available. 4) Expand Further. This project can be improved furthermore with so many abilities, again due to the limitation of time given to this project, these improvements can be implemented later as future works. In simple words, this project is to detect/predict real-time human emotion which involves creating a model that can detect the percentage confidence of any happy or sad facial image. The higher the percentage confidence the more accurate the facial fed into the model. 5) Other Questions Can the model be reproducible? the supposed response to this question should be YES. If and only if the model will be fed with the proper data (images) such as images of other types of emotional expression.

  3. A

    ‘World Happiness Report 2019’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘World Happiness Report 2019’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-world-happiness-report-2019-f29c/e8e08550/?iid=004-258&v=presentation
    Explore at:
    Dataset updated
    Nov 20, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘World Happiness Report 2019’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/PromptCloudHQ/world-happiness-report-2019 on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    The data has been released by SDSN and extracted by PromptCloud's custom web crawling solution.

    Context

    The World Happiness Report is a landmark survey of the state of global happiness that ranks 156 countries by how happy their citizens perceive themselves to be. This year’s World Happiness Report focuses on happiness and the community: how happiness has evolved over the past dozen years, with a focus on the technologies, social norms, conflicts and government policies that have driven those changes.

    Content

    What is Dystopia?

    Dystopia is an imaginary country that has the world’s least-happy people. The purpose in establishing Dystopia is to have a benchmark against which all countries can be favorably compared (no country performs more poorly than Dystopia) in terms of each of the six key variables, thus allowing each sub-bar to be of positive (or zero, in six instances) width. The lowest scores observed for the six key variables, therefore, characterize Dystopia. Since life would be very unpleasant in a country with the world’s lowest incomes, lowest life expectancy, lowest generosity, most corruption, least freedom, and least social support, it is referred to as “Dystopia,” in contrast to Utopia.

    What are the residuals?

    The residuals, or unexplained components, differ for each country, reflecting the extent to which the six variables either over- or under-explain average 2016-2018 life evaluations. These residuals have an average value of approximately zero over the whole set of countries. Figure 2.7 shows the average residual for each country if the equation in Table 2.1 is applied to average 2016- 2018 data for the six variables in that country. We combine these residuals with the estimate for life evaluations in Dystopia so that the combined bar will always have positive values. As can be seen in Figure 2.7, although some life evaluation residuals are quite large, occasionally exceeding one point on the scale from 0 to 10, they are always much smaller than the calculated value in Dystopia, where the average life is rated at 1.88 on the 0 to 10 scale. Table 7 of the online Statistical Appendix 1 for Chapter 2 puts the Dystopia plus residual block at the left side, and also draws the Dystopia line, making it easy to compare the signs and sizes of the residuals in different countries.

    Why do we use these six factors to explain life evaluations?

    The variables used reflect what has been broadly found in the research literature to be important in explaining national-level differences in life evaluations. Some important variables, such as unemployment or inequality, do not appear because comparable international data are not yet available for the full sample of countries. The variables are intended to illustrate important lines of correlation rather than to reflect clean causal estimates, since some of the data are drawn from the same survey sources, some are correlated with each other (or with other important factors for which we do not have measures), and in several instances there are likely to be two-way relations between life evaluations and the chosen variables (for example, healthy people are overall happier, but as Chapter 4 in the World Happiness Report 2013 demonstrated, happier people are overall healthier). In Statistical Appendix 1 of World Happiness Report 2018, we assessed the possible importance of using explanatory data from the same people whose life evaluations are being explained. We did this by randomly dividing the samples into two groups, and using the average values for .e.g. freedom gleaned from one group to explain the life evaluations of the other group. This lowered the effects, but only very slightly (e.g. 2% to 3%), assuring us that using data from the same individuals is not seriously affecting the results.

    Data source: http://worldhappiness.report/ed/2019/

    More such datasets can be downloaded from DataStock.

    --- Original source retains full ownership of the source dataset ---

  4. Growth skills

    • kaggle.com
    Updated Nov 17, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salman Ahmad (2021). Growth skills [Dataset]. https://www.kaggle.com/salmanahmad1980/child-growth-measurements
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 17, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Salman Ahmad
    Description

    We gathered this data so that we can perform different analysis on how a child is developing from birth to adult. how many changes a single human being can have during its growth time This dataset has multiple growth related measurements and data from their parents about how their child is growing by the time. We wouldn't be here without the help of others. We thanks all of the people of united states who got involve in this research and gave responses to our queries. This dataset and its future working will be because of these people. Let me know if you have any query regarding this dataset, i'll be happy to help you out

  5. A

    ‘World Happiness Report’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘World Happiness Report’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-world-happiness-report-c57e/53168a89/?iid=009-678&v=presentation
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Analysis of ‘World Happiness Report’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/unsdsn/world-happiness on 12 November 2021.

    --- Dataset description provided by original source is as follows ---

    Context

    The World Happiness Report is a landmark survey of the state of global happiness. The first report was published in 2012, the second in 2013, the third in 2015, and the fourth in the 2016 Update. The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.

    Content

    The happiness scores and rankings use data from the Gallup World Poll. The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for the years 2013-2016 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.

    Inspiration

    What countries or regions rank the highest in overall happiness and each of the six factors contributing to happiness? How did country ranks or scores change between the 2015 and 2016 as well as the 2016 and 2017 reports? Did any country experience a significant increase or decrease in happiness?

    What is Dystopia?

    Dystopia is an imaginary country that has the world’s least-happy people. The purpose in establishing Dystopia is to have a benchmark against which all countries can be favorably compared (no country performs more poorly than Dystopia) in terms of each of the six key variables, thus allowing each sub-bar to be of positive width. The lowest scores observed for the six key variables, therefore, characterize Dystopia. Since life would be very unpleasant in a country with the world’s lowest incomes, lowest life expectancy, lowest generosity, most corruption, least freedom and least social support, it is referred to as “Dystopia,” in contrast to Utopia.

    What are the residuals?

    The residuals, or unexplained components, differ for each country, reflecting the extent to which the six variables either over- or under-explain average 2014-2016 life evaluations. These residuals have an average value of approximately zero over the whole set of countries. Figure 2.2 shows the average residual for each country when the equation in Table 2.1 is applied to average 2014- 2016 data for the six variables in that country. We combine these residuals with the estimate for life evaluations in Dystopia so that the combined bar will always have positive values. As can be seen in Figure 2.2, although some life evaluation residuals are quite large, occasionally exceeding one point on the scale from 0 to 10, they are always much smaller than the calculated value in Dystopia, where the average life is rated at 1.85 on the 0 to 10 scale.

    What do the columns succeeding the Happiness Score(like Family, Generosity, etc.) describe?

    The following columns: GDP per Capita, Family, Life Expectancy, Freedom, Generosity, Trust Government Corruption describe the extent to which these factors contribute in evaluating the happiness in each country. The Dystopia Residual metric actually is the Dystopia Happiness Score(1.85) + the Residual value or the unexplained value for each country as stated in the previous answer.

    If you add all these factors up, you get the happiness score so it might be un-reliable to model them to predict Happiness Scores.

    Start a new kernel

    --- Original source retains full ownership of the source dataset ---

  6. Personal Well-being (Happiness) by Borough

    • data.europa.eu
    unknown
    Updated Oct 31, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Personal Well-being (Happiness) by Borough [Dataset]. https://data.europa.eu/data/datasets/subjective-personal-well-being-borough?locale=sv
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Oct 31, 2021
    Dataset authored and provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    Description

    Estimates of personal well-being from the Annual Population Survey (APS) Well-being dataset. Data shows life satisfaction, how worthwhile people feel, whether people were happy yesterday, and how anxious people were yesterday.

    Subjective personal well-being average scores by borough and region, covering life satisfaction, happiness, worthwhileness and anxiety.

    For more information visit the well-being pages of the ONS website.

    This dataset is included in the Greater London Authority's Night Time Observatory. Click here to find out more.
  7. N

    Dataset for Happy Valley, OR Census Bureau Income Distribution by Gender

    • neilsberg.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for Happy Valley, OR Census Bureau Income Distribution by Gender [Dataset]. https://www.neilsberg.com/research/datasets/b3b5eea1-abcb-11ee-8b96-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Happy Valley
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Happy Valley household income by gender. The dataset can be utilized to understand the gender-based income distribution of Happy Valley income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Happy Valley, OR annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars)
    • Happy Valley, OR annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Happy Valley income distribution by gender. You can refer the same here

  8. w

    Subjective wellbeing, 'Happy Yesterday', standard deviation

    • data.wu.ac.at
    • cloud.csiss.gmu.edu
    • +2more
    html, sparql
    Updated Feb 26, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Housing, Communities and Local Government (2018). Subjective wellbeing, 'Happy Yesterday', standard deviation [Dataset]. https://data.wu.ac.at/odso/data_gov_uk/ZGJlMWMxZDEtYmFmNC00ZjBiLTk0NWItMTExOGEzY2Y3YmM0
    Explore at:
    html, sparqlAvailable download formats
    Dataset updated
    Feb 26, 2018
    Dataset provided by
    Ministry of Housing, Communities and Local Government
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Standard deviation of responses for 'Happy Yesterday' in the First ONS Annual Experimental Subjective Wellbeing survey.

    The Office for National Statistics has included the four subjective well-being questions below on the Annual Population Survey (APS), the largest of their household surveys.

    • Overall, how satisfied are you with your life nowadays?
    • Overall, to what extent do you feel the things you do in your life are worthwhile?
    • Overall, how happy did you feel yesterday?
    • Overall, how anxious did you feel yesterday?

    This dataset presents results from the third of these questions, "Overall, how happy did you feel yesterday?". Respondents answer these questions on an 11 point scale from 0 to 10 where 0 is ‘not at all’ and 10 is ‘completely’. The well-being questions were asked of adults aged 16 and older.

    Well-being estimates for each unitary authority or county are derived using data from those respondents who live in that place. Responses are weighted to the estimated population of adults (aged 16 and older) as at end of September 2011.

    The data cabinet also makes available the proportion of people in each county and unitary authority that answer with ‘low wellbeing’ values. For the ‘happy yesterday’ question answers in the range 0-6 are taken to be low wellbeing.

    This dataset contains the standard deviation of the responses, alongside the corresponding sample size.

    The ONS survey covers the whole of the UK, but this dataset only includes results for counties and unitary authorities in England, for consistency with other statistics available at this website.

    At this stage the estimates are considered ‘experimental statistics’, published at an early stage to involve users in their development and to allow feedback. Feedback can be provided to the ONS via this email address.

    The APS is a continuous household survey administered by the Office for National Statistics. It covers the UK, with the chief aim of providing between-census estimates of key social and labour market variables at a local area level. Apart from employment and unemployment, the topics covered in the survey include housing, ethnicity, religion, health and education. When a household is surveyed all adults (aged 16+) are asked the four subjective well-being questions.

    The 12 month Subjective Well-being APS dataset is a sub-set of the general APS as the well-being questions are only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. This reduces the size of the achieved sample to approximately 120,000 adult respondents in England.

    The original data is available from the ONS website.

    Detailed information on the APS and the Subjective Wellbeing dataset is available here.

    As well as collecting data on well-being, the Office for National Statistics has published widely on the topic of wellbeing. Papers and further information can be found here.

  9. f

    Data_Sheet_3_Money Does Not Always Buy Happiness, but Are Richer People Less...

    • figshare.com
    docx
    Updated Jun 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Kudrna; Kostadin Kushlev (2023). Data_Sheet_3_Money Does Not Always Buy Happiness, but Are Richer People Less Happy in Their Daily Lives? It Depends on How You Analyze Income.docx [Dataset]. http://doi.org/10.3389/fpsyg.2022.883137.s003
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    Frontiers
    Authors
    Laura Kudrna; Kostadin Kushlev
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Do people who have more money feel happier during their daily activities? Some prior research has found no relationship between income and daily happiness when treating income as a continuous variable in OLS regressions, although results differ between studies. We re-analyzed existing data from the United States and Germany, treating household income as a categorical variable and using lowess and spline regressions to explore nonlinearities. Our analyses reveal that these methodological decisions change the results and conclusions about the relationship between income and happiness. In American and German diary data from 2010 to 2015, results for the continuous treatment of income showed a null relationship with happiness, whereas the categorization of income showed that some of those with higher incomes reported feeling less happy than some of those with lower incomes. Lowess and spline regressions suggested null results overall, and there was no evidence of a relationship between income and happiness in Experience Sampling Methodology (ESM) data. Not all analytic approaches generate the same results, which may contribute to explaining discrepant results in existing studies about the correlates of happiness. Future research should be explicit about their approaches to measuring and analyzing income when studying its relationship with subjective well-being, ideally testing different approaches, and making conclusions based on the pattern of results across approaches.

  10. N

    Happy, TX annual income distribution by work experience and gender dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Happy, TX annual income distribution by work experience and gender dataset: Number of individuals ages 15+ with income, 2023 // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/happy-tx-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Happy
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time, Number of males working full time for a given income bracket, Number of males working part time for a given income bracket, Number of females working full time for a given income bracket, Number of females working part time for a given income bracket
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To portray the number of individuals for both the genders (Male and Female), within each income bracket we conducted an initial analysis and categorization of the American Community Survey data. Households are categorized, and median incomes are reported based on the self-identified gender of the head of the household. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Happy. The dataset can be utilized to gain insights into gender-based income distribution within the Happy population, aiding in data analysis and decision-making..

    Key observations

    • Employment patterns: Within Happy, among individuals aged 15 years and older with income, there were 199 men and 188 women in the workforce. Among them, 150 men were engaged in full-time, year-round employment, while 61 women were in full-time, year-round roles.
    • Annual income under $24,999: Of the male population working full-time, none fell within the income range of under $24,999, while 3.28% of the female population working full-time was represented in the same income bracket.
    • Annual income above $100,000: 22.67% of men in full-time roles earned incomes exceeding $100,000, while none of women in full-time positions earned within this income bracket.
    • Refer to the research insights for more key observations on more income brackets ( Annual income under $24,999, Annual income between $25,000 and $49,999, Annual income between $50,000 and $74,999, Annual income between $75,000 and $99,999 and Annual income above $100,000) and employment types (full-time year-round and part-time)
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income brackets:

    • $1 to $2,499 or loss
    • $2,500 to $4,999
    • $5,000 to $7,499
    • $7,500 to $9,999
    • $10,000 to $12,499
    • $12,500 to $14,999
    • $15,000 to $17,499
    • $17,500 to $19,999
    • $20,000 to $22,499
    • $22,500 to $24,999
    • $25,000 to $29,999
    • $30,000 to $34,999
    • $35,000 to $39,999
    • $40,000 to $44,999
    • $45,000 to $49,999
    • $50,000 to $54,999
    • $55,000 to $64,999
    • $65,000 to $74,999
    • $75,000 to $99,999
    • $100,000 or more

    Variables / Data Columns

    • Income Bracket: This column showcases 20 income brackets ranging from $1 to $100,000+..
    • Full-Time Males: The count of males employed full-time year-round and earning within a specified income bracket
    • Part-Time Males: The count of males employed part-time and earning within a specified income bracket
    • Full-Time Females: The count of females employed full-time year-round and earning within a specified income bracket
    • Part-Time Females: The count of females employed part-time and earning within a specified income bracket

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Happy median household income by race. You can refer the same here

  11. F

    South Asian Facial Expression Images Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). South Asian Facial Expression Images Dataset [Dataset]. https://www.futurebeeai.com/dataset/image-dataset/facial-images-expression-south-asian
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    South Asia
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the South Asian Facial Expression Image Dataset, meticulously curated to enhance expression recognition models and support the development of advanced biometric identification systems, KYC models, and other facial recognition technologies.

    Facial Expression Data

    This dataset comprises over 2000 facial expression images, divided into participant-wise sets with each set including:

    Expression Images: 5 different high-quality images per individual, each capturing a distinct facial emotion like Happy, Sad, Angry, Shocked, and Neutral.

    Diversity and Representation

    The dataset includes contributions from a diverse network of individuals across South Asian countries, such as:

    Geographical Representation: Participants from South Asian countries, including India, Pakistan, Bangladesh, Nepal, Sri Lanka, Bhutan, Maldives, and more.
    Participant Profile: Participants range from 18 to 70 years old, representing both males and females in 60:40 ratio, respectively.
    File Format: The dataset contains images in JPEG and HEIC file format.

    Quality and Conditions

    To ensure high utility and robustness, all images are captured under varying conditions:

    Lighting Conditions: Images are taken in different lighting environments to ensure variability and realism.
    Backgrounds: A variety of backgrounds are available to enhance model generalization.
    Device Quality: Photos are taken using the latest mobile devices to ensure high resolution and clarity.

    Metadata

    Each facial expression image set is accompanied by detailed metadata for each participant, including:

    Participant Identifier
    File Name
    Age
    Gender
    Country
    Expression
    Demographic Information
    File Format

    This metadata is essential for training models that can accurately recognize and identify expressions across different demographics and conditions.

    Usage and Applications

    This facial emotion dataset is ideal for various applications in the field of computer vision, including but not limited to:

    Expression Recognition Models: Improving the accuracy and reliability of facial expression recognition systems.
    KYC Models: Streamlining the identity verification processes for financial and other services.
    Biometric Identity Systems: Developing robust biometric identification solutions.
    Generative AI Models: Training generative AI models to create realistic and diverse synthetic facial images.

    Secure and Ethical Collection

    Data Security: Data was securely stored and processed within our platform, ensuring data security and confidentiality.
    Ethical Guidelines: The biometric data collection process adhered to strict ethical guidelines, ensuring the privacy and consent of all participants.
    Participant Consent: All participants were informed of the purpose of collection and potential use of the data, as agreed through written consent.

    Updates and Customization

    We understand the evolving nature of AI and machine learning requirements. Therefore, we continuously add more assets with diverse conditions to this off-the-shelf facial expression dataset.

    Customization & Custom Collection

  12. G

    Happiness index by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2016). Happiness index by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/happiness/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    Nov 18, 2016
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2013 - Dec 31, 2024
    Area covered
    World, World
    Description

    The average for 2024 based on 138 countries was 5.56 points. The highest value was in Finland: 7.74 points and the lowest value was in Afghanistan: 1.72 points. The indicator is available from 2013 to 2024. Below is a chart for all countries where data are available.

  13. Ranking of happiest countries worldwide 2024, by score

    • statista.com
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Ranking of happiest countries worldwide 2024, by score [Dataset]. https://www.statista.com/statistics/1225047/ranking-of-happiest-countries-worldwide-by-score/
    Explore at:
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Finland was ranked the happiest country in the world, according to the World Happiness Report from 2025. The Nordic country scored 7.74 on a scale from 0 to 10. Two other Nordic countries, Denmark and Iceland, followed in second and third place, respectively. The World Happiness Report is a landmark survey of the state of global happiness that ranks countries by how happy their citizens perceive themselves to be. Criticism The index has received criticism from different perspectives. Some argue that it is impossible to measure general happiness in a country. Others argue that the index places too much emphasis on material well-being as well as freedom from oppression. As a result, the Happy Planet Index was introduced, which takes life expectancy, experienced well-being, inequality of outcomes, and ecological footprint into account. Here, Costa Rica was ranked as the happiest country in the world. Afghanistan is the least happy country Nevertheless, most people agree that high levels of poverty, lack of access to food and water, as well as a prevalence of conflict are factors hindering public happiness. Hence, it comes as no surprise that Afghanistan was ranked as the least happy country in the world in 2024. The South Asian country is ridden by poverty and undernourishment, and topped the Global Terrorism Index in 2024.

  14. The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Oct 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven R. Livingstone; Steven R. Livingstone; Frank A. Russo; Frank A. Russo (2024). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [Dataset]. http://doi.org/10.5281/zenodo.1188976
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Steven R. Livingstone; Steven R. Livingstone; Frank A. Russo; Frank A. Russo
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Description

    The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) contains 7356 files (total size: 24.8 GB). The dataset contains 24 professional actors (12 female, 12 male), vocalizing two lexically-matched statements in a neutral North American accent. Speech includes calm, happy, sad, angry, fearful, surprise, and disgust expressions, and song contains calm, happy, sad, angry, and fearful emotions. Each expression is produced at two levels of emotional intensity (normal, strong), with an additional neutral expression. All conditions are available in three modality formats: Audio-only (16bit, 48kHz .wav), Audio-Video (720p H.264, AAC 48kHz, .mp4), and Video-only (no sound). Note, there are no song files for Actor_18.

    The RAVDESS was developed by Dr Steven R. Livingstone, who now leads the Affective Data Science Lab, and Dr Frank A. Russo who leads the SMART Lab.

    Citing the RAVDESS

    The RAVDESS is released under a Creative Commons Attribution license, so please cite the RAVDESS if it is used in your work in any form. Published academic papers should use the academic paper citation for our PLoS1 paper. Personal works, such as machine learning projects/blog posts, should provide a URL to this Zenodo page, though a reference to our PLoS1 paper would also be appreciated.

    Academic paper citation

    Livingstone SR, Russo FA (2018) The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLoS ONE 13(5): e0196391. https://doi.org/10.1371/journal.pone.0196391.

    Personal use citation

    Include a link to this Zenodo page - https://zenodo.org/record/1188976

    Commercial Licenses

    Commercial licenses for the RAVDESS can be purchased. For more information, please visit our license page of fees, or contact us at ravdess@gmail.com.

    Contact Information

    If you would like further information about the RAVDESS, to purchase a commercial license, or if you experience any issues downloading files, please contact us at ravdess@gmail.com.

    Example Videos

    Watch a sample of the RAVDESS speech and song videos.

    Emotion Classification Users

    If you're interested in using machine learning to classify emotional expressions with the RAVDESS, please see our new RAVDESS Facial Landmark Tracking data set [Zenodo project page].

    Construction and Validation

    Full details on the construction and perceptual validation of the RAVDESS are described in our PLoS ONE paper - https://doi.org/10.1371/journal.pone.0196391.

    The RAVDESS contains 7356 files. Each file was rated 10 times on emotional validity, intensity, and genuineness. Ratings were provided by 247 individuals who were characteristic of untrained adult research participants from North America. A further set of 72 participants provided test-retest data. High levels of emotional validity, interrater reliability, and test-retest intrarater reliability were reported. Validation data is open-access, and can be downloaded along with our paper from PLoS ONE.

    Contents

    Audio-only files

    Audio-only files of all actors (01-24) are available as two separate zip files (~200 MB each):

    • Speech file (Audio_Speech_Actors_01-24.zip, 215 MB) contains 1440 files: 60 trials per actor x 24 actors = 1440.
    • Song file (Audio_Song_Actors_01-24.zip, 198 MB) contains 1012 files: 44 trials per actor x 23 actors = 1012.

    Audio-Visual and Video-only files

    Video files are provided as separate zip downloads for each actor (01-24, ~500 MB each), and are split into separate speech and song downloads:

    • Speech files (Video_Speech_Actor_01.zip to Video_Speech_Actor_24.zip) collectively contains 2880 files: 60 trials per actor x 2 modalities (AV, VO) x 24 actors = 2880.
    • Song files (Video_Song_Actor_01.zip to Video_Song_Actor_24.zip) collectively contains 2024 files: 44 trials per actor x 2 modalities (AV, VO) x 23 actors = 2024.

    File Summary

    In total, the RAVDESS collection includes 7356 files (2880+2024+1440+1012 files).

    File naming convention

    Each of the 7356 RAVDESS files has a unique filename. The filename consists of a 7-part numerical identifier (e.g., 02-01-06-01-02-01-12.mp4). These identifiers define the stimulus characteristics:

    Filename identifiers

    • Modality (01 = full-AV, 02 = video-only, 03 = audio-only).
    • Vocal channel (01 = speech, 02 = song).
    • Emotion (01 = neutral, 02 = calm, 03 = happy, 04 = sad, 05 = angry, 06 = fearful, 07 = disgust, 08 = surprised).
    • Emotional intensity (01 = normal, 02 = strong). NOTE: There is no strong intensity for the 'neutral' emotion.
    • Statement (01 = "Kids are talking by the door", 02 = "Dogs are sitting by the door").
    • Repetition (01 = 1st repetition, 02 = 2nd repetition).
    • Actor (01 to 24. Odd numbered actors are male, even numbered actors are female).


    Filename example: 02-01-06-01-02-01-12.mp4

    1. Video-only (02)
    2. Speech (01)
    3. Fearful (06)
    4. Normal intensity (01)
    5. Statement "dogs" (02)
    6. 1st Repetition (01)
    7. 12th Actor (12)
    8. Female, as the actor ID number is even.

    License information

    The RAVDESS is released under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, CC BY-NC-SA 4.0

    Commercial licenses for the RAVDESS can also be purchased. For more information, please visit our license fee page, or contact us at ravdess@gmail.com.

    Related Data sets

  15. w

    London Happiness Scores, Borough

    • data.wu.ac.at
    • gimi9.com
    • +1more
    xls
    Updated Sep 26, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    London Datastore Archive (2015). London Happiness Scores, Borough [Dataset]. https://data.wu.ac.at/schema/datahub_io/Y2RiMmFkOTAtMmU2Mi00OGY5LTkxZjEtZjJmZWIwMTE2MDE5
    Explore at:
    xls(168960.0)Available download formats
    Dataset updated
    Sep 26, 2015
    Dataset provided by
    London Datastore Archive
    License

    http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence

    Description

    TAKING PART SURVEY

    This data shows satisfaction with life in general across a number of groups. The exact question posed to repondents was: 'Taking all things together, how happy would you say you are'. The scale for answers is between 1 (very unhappy) to 10 (extremely happy).

    Breakdowns presented include age, gender, ethnicity, employment status, having children, tenure, social interactions, satisfaction with neighbourhood and donating to charity.

    Read summary report of the key findings for 2010/11.

    See all the Charts online

    https://s3-eu-west-1.amazonaws.com/londondatastore-upload/Taking-Part-2010-11-chart1.jpg" alt="Happiness Charts" width="910" height="423" />

    The borough level data shows combined scores from 3 years of the survey, excluding 2009/10 when there was no happiness question in the survey. The combined score was calculated by totalling all valid repsonses across these three years. The base is the total number of valid responses over the whole period ('valid' excludes people who refused the question or answered 'dont know').

    This piece of research is related to London Ward Well-being Scores and Subjective Personal Well-being, Borough

  16. S

    Chinese Natural Speech Complex Emotion Dataset

    • scidb.cn
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaolong Wu; Mingxing Xu; Askar Hamdulla; Thomas Fang Zheng (2025). Chinese Natural Speech Complex Emotion Dataset [Dataset]. http://doi.org/10.57760/sciencedb.20968
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    Science Data Bank
    Authors
    Xiaolong Wu; Mingxing Xu; Askar Hamdulla; Thomas Fang Zheng
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Although Chinese speech affective computing has received increasing attention, existing datasets still have defects such as lack of naturalness, single pronunciation style, and unreliable annotation, which seriously hinder the research in this field. To address these issues, this paper introduces the first Chinese Natural Speech Complex Emotion Dataset (CNSCED) to provide natural data resources for Chinese speech affective computing. CNSCED was collected from publicly broadcasted civil dispute and interview television programs in China, reflecting the authentic emotional characteristics of Chinese people in daily life. The dataset includes 14 hours of speech data from 454 speakers of various ages, totaling 15777 samples. Based on the inherent complexity and ambiguity of natural emotions, this paper proposes an emotion vector annotation method. This method utilizes a vector composed of six meta-emotional dimensions (angry, sad, aroused, happy, surprise, and fear) of different intensities to describe any single or complex emotion. The CNSCED released two subtasks: complex emotion classification and complex emotion intensity regression. In the experimental section, we evaluated the CNSCED dataset using deep neural network models and provided a baseline result. To the best of our knowledge, CNSCED is the first public Chinese natural speech complex emotion dataset, which can be used for scientific research free of charge.

  17. N

    Happy, TX annual median income by work experience and sex dataset: Aged 15+,...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Happy, TX annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/happy-tx-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Happy
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Happy. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Happy, the median income for all workers aged 15 years and older, regardless of work hours, was $39,041 for males and $23,667 for females.

    These income figures highlight a substantial gender-based income gap in Happy. Women, regardless of work hours, earn 61 cents for each dollar earned by men. This significant gender pay gap, approximately 39%, underscores concerning gender-based income inequality in the town of Happy.

    - Full-time workers, aged 15 years and older: In Happy, among full-time, year-round workers aged 15 years and older, males earned a median income of $46,500, while females earned $45,391, resulting in a 2% gender pay gap among full-time workers. This illustrates that women earn 98 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Happy.

    Interestingly, when analyzing income across all roles, including non-full-time employment, the gender pay gap percentage was higher for women compared to men. It appears that full-time employment presents a more favorable income scenario for women compared to other employment patterns in Happy.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Happy median household income by race. You can refer the same here

  18. d

    Data from: We happy few: using structured population models to identify the...

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated Feb 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robin E. Snyder; Stephen P. Ellner (2016). We happy few: using structured population models to identify the decisive events in the lives of exceptional individuals [Dataset]. http://doi.org/10.5061/dryad.3b56d
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 19, 2016
    Dataset provided by
    Dryad
    Authors
    Robin E. Snyder; Stephen P. Ellner
    Time period covered
    2016
    Description

    R scripts for figures in Snyder, Ellner, Am. Nat. 2016Snyder, Ellner, Am. Nat. 2016 presents methods for analyzing structured population models (integral projections models or matrix models) to determine what makes an individual more likely to become of the few who dominate reproductive output. It assumes that all individuals are identical: some are lucky, most are not. These files contain all that is necessary to generate the figures in that paper. They include both the functions and data that define the models and the analysis scripts. Each figure caption references the R script which generated it.SnyderEllnerAmNat2016Scripts.zip

  19. The People and Nature Surveys for England: Adults' Data Y4Q2 (July 2023 -...

    • gov.uk
    Updated Feb 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural England (2024). The People and Nature Surveys for England: Adults' Data Y4Q2 (July 2023 - September 2023) [Dataset]. https://www.gov.uk/government/statistics/the-people-and-nature-surveys-for-england-adults-data-y4q2-july-2023-september-2023
    Explore at:
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Natural England
    Area covered
    England
    Description

    The Adults’ People and Nature Survey for England gathers information on people’s experiences and views about the natural environment, and its contributions to our health and wellbeing.

    Data is published quarterly as Accredited Official Statistics. Since June 2023 we no longer publish the full dataset on gov.uk. The full dataset will instead be published via https://beta.ukdataservice.ac.uk/datacatalogue/series/series?id=2000123" class="govuk-link">UK Data Service.

    Our statistical practice is regulated by the Office for Statistics Regulation (OSR). OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/the-code/" class="govuk-link">Code of Practice for Statistics that all producers of official statistics should adhere to. You can read about how Official Statistics in Defra comply with these standards on the Defra Statistics website.

    You are welcome to contact us directly at people_and_nature@naturalengland.org.uk with any comments about how we meet these standards. Alternatively, you can contact OSR by emailing regulation@statistics.gov.uk or via the OSR website.

    To receive updates on the survey, including data releases and publications, sign-up via the https://people-and-nature-survey-defra.hub.arcgis.com/" class="govuk-link">People and Nature User Hub.

  20. World Happiness Report- 2024

    • kaggle.com
    Updated May 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jaina (2024). World Happiness Report- 2024 [Dataset]. https://www.kaggle.com/datasets/jainaru/world-happiness-report-2024-yearly-updated/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 15, 2024
    Dataset provided by
    Kaggle
    Authors
    jaina
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Context:

    The World Happiness Report is a landmark survey of the state of global happiness . The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.

    Content:

    Here's a brief explanation of each column in the dataset: 1. Country name: Name of the country. 2. Regional indicator: Region to which the country belongs. 3. Ladder score: The happiness score for each country, based on responses to the Cantril Ladder question that asks respondents to think of a ladder, with the best possible life for them being a 10, and the worst possible life being a 0. 4. Upper whisker: Upper bound of the happiness score. 5. Lower whisker: Lower bound of the happiness score. 6. Log GDP per capita: The natural logarithm of the country's GDP per capita, adjusted for purchasing power parity (PPP) to account for differences in the cost of living between countries. 7. Social support: The national average of binary responses(either 0 or 1 representing No/Yes) to the question about having relatives or friends to count on in times of trouble. 8. Healthy life expectancy: The average number of years a newborn infant would live in good health, based on mortality rates and life expectancy at different ages. 9. Freedom to make life choices: The national average of responses to the question about satisfaction with freedom to choose what to do with one's life. 10. Generosity: The residual of regressing the national average of responses to the question about donating money to charity on GDP per capita. 11. Perceptions of corruption: The national average of survey responses to questions about the perceived extent of corruption in the government and businesses. 12. Dystopia + residual: Dystopia is an imaginary country with the world’s least-happy people, used as a benchmark for comparison. The dystopia + residual score is a combination of the Dystopia score and the unexplained residual for each country, ensuring that the combined score is always positive. Each of these factors contributes to the overall happiness score, but the Dystopia + residual value is a benchmark that ensures no country has a lower score than the hypothetical Dystopia. 13. Positive affect: The national average of responses to questions about positive emotions experienced yesterday. 14. Negative affect: The national average of responses to questions about negative emotions experienced yesterday.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agra Fintech (2025). World Happiness Index and Inflation Dataset [Dataset]. http://doi.org/10.34740/kaggle/dsv/11174951
Organization logo

World Happiness Index and Inflation Dataset

A Comprehensive Dataset on Happiness, GDP, and Inflation Trends (2015-2023)

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Mar 26, 2025
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Agra Fintech
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Area covered
World
Description

Context

Happiness and well-being are essential indicators of societal progress, often influenced by economic conditions such as GDP and inflation. This dataset combines data from the World Happiness Index (WHI) and inflation metrics to explore the relationship between economic stability and happiness levels across 148 countries from 2015 to 2023. By analyzing key economic indicators alongside social well-being factors, this dataset provides insights into global prosperity trends.

Content

This dataset is provided in CSV format and includes 16 columns, covering both happiness-related features and economic indicators such as GDP per capita, inflation rates, and corruption perception. The main columns include:

Happiness Score & Rank (World Happiness Index ranking per country) Economic Indicators (GDP per capita, inflation metrics) Social Factors (Freedom, Social Support, Generosity) Geographical Information (Country & Continent)

Acknowledgements

The dataset is created using publicly available data from World Happiness Report, Gallup World Poll, and the World Bank. It has been structured for research, machine learning, and policy analysis purposes.

Inspiration

How do economic factors like inflation, GDP, and corruption affect happiness? Can we predict a country's happiness score based on economic conditions? This dataset allows you to analyze these relationships and build models to predict well-being trends worldwide.

Search
Clear search
Close search
Google apps
Main menu