Facebook
TwitterIn 2023, there were about ******* homeless people estimated to be living in the United States, the highest number of homeless people recorded within the provided time period. In comparison, the second-highest number of homeless people living in the U.S. within this time period was in 2007, at *******. How is homelessness calculated? Calculating homelessness is complicated for several different reasons. For one, it is challenging to determine how many people are homeless as there is no direct definition for homelessness. Additionally, it is difficult to try and find every single homeless person that exists. Sometimes they cannot be reached, leaving people unaccounted for. In the United States, the Department of Housing and Urban Development calculates the homeless population by counting the number of people on the streets and the number of people in homeless shelters on one night each year. According to this count, Los Angeles City and New York City are the cities with the most homeless people in the United States. Homelessness in the United States Between 2022 and 2023, New Hampshire saw the highest increase in the number of homeless people. However, California was the state with the highest number of homeless people, followed by New York and Florida. The vast amount of homelessness in California is a result of multiple factors, one of them being the extreme high cost of living, as well as opposition to mandatory mental health counseling and drug addiction. However, the District of Columbia had the highest estimated rate of homelessness per 10,000 people in 2023. This was followed by New York, Vermont, and Oregon.
Facebook
TwitterThis database contains the data reported in the Annual Homeless Assessment Report to Congress (AHAR). It represents a point-In-time count (PIT) of homeless individuals, as well as a housing inventory count (HIC) conducted annually.
The data represent the most comprehensive national-level assessment of homelessness in America, including PIT and HIC estimates of homelessness, as well as estimates of chronically homeless persons, homeless veterans, and homeless children and youth.
These data can be trended over time and correlated with other metrics of housing availability and affordability, in order to better understand the particular type of housing resources that may be needed from a social determinants of health perspective.
HUD captures these data annually through the Continuum of Care (CoC) program. CoC-level reporting data have been crosswalked to county levels for purposes of analysis of this dataset.
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.sdoh_hud_pit_homelessness
What has been the change in the number of homeless veterans in the state of New York’s CoC Regions since 2012? Determine how the patterns of homeless veterans have changes across the state of New York
homeless_2018 AS (
SELECT Homeless_Veterans AS Vet18, CoC_Name
FROM bigquery-public-data.sdoh_hud_pit_homelessness.hud_pit_by_coc
WHERE SUBSTR(CoC_Number,0,2) = "NY" AND Count_Year = 2018
),
veterans_change AS ( SELECT homeless_2012.COC_Name, Vet12, Vet18, Vet18 - Vet12 AS VetChange FROM homeless_2018 JOIN homeless_2012 ON homeless_2018.CoC_Name = homeless_2012.CoC_Name )
SELECT * FROM veterans_change
Facebook
TwitterThis dataset contains estimates of homelessness, as well as estimates of chronically homeless persons, homeless veterans, and homeless children and youth provided by The U.S. Department of Housing and Urban Development. The estimates cover the period of years 2007-2017 and are at national, state and Continuums of Care (CoC) Point-In-Time (PIT) level.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph displays the top 15 states by an estimated number of homeless people in the United States for the year 2025. The x-axis represents U.S. states, while the y-axis shows the number of homeless individuals in each state. California has the highest homeless population with 187,084 individuals, followed by New York with 158,019, while Hawaii places last in this dataset with 11,637. This bar graph highlights significant differences across states, with some states like California and New York showing notably higher counts compared to others, indicating regional disparities in homelessness levels across the country.
Facebook
TwitterPoint in Time Count Numbers for 2007 to 2018 from HUD, which counts the number of people experiencing homelessness at the federal, state, and local level. https://www.hudexchange.info/resource/5783/2018-ahar-part-1-pit-estimates-of-homelessness-in-the-us/
Facebook
TwitterThis dataset includes the daily number of families and individuals residing in the Department of Homeless Services (DHS) shelter system and the daily number of families applying to the DHS shelter system.
This dataset includes data starting from 01/03/2021. For older records, please refer to https://data.cityofnewyork.us/d/dwrg-kzni
Facebook
TwitterThis data tracks the number of beds available for runaway and homeless youth and young adults as well as the number and percent vacant. Data include Crisis Shelters, Crisis Shelters HYA (Homeless Young Adults), Transitional Independent Living, and Transitional Independent Living HYA. For more information about programs, visit https://www1.nyc.gov/site/dycd/services/services.page and https://discoverdycd.dycdconnect.nyc/home. For the RHY Data Collection, please follow this link.
Facebook
TwitterList of centers where homeless people are provided with hot meals, showers, medical help and a place to sleep
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This dataset includes Point-in-Time (PIT) data collected in Cambridge between 2012 and 2025. The PIT count is a count of sheltered and unsheltered homeless persons on a single night in January. The U.S. Department of Housing and Urban Development (HUD) requires that communities receiving funding through the Continuum of Care (CoC) Program conduct an annual count of homeless persons on a single night in the last 10 days of January, and these data contribute to national estimates of homelessness reported in the Annual Homeless Assessment Report to the U.S. Congress. This dataset is comprised of data submitted to, and stored in, HUD’s Homelessness Data Exchange (HDX).
This dataset includes basic counts and demographic information of persons experiencing homelessness on each PIT date from 2012-2025. The dataset contains three rows for each year, including one row for each housing type: Emergency Shelter, Transitional Housing, or Unsheltered. The dataset also includes housing inventory counts of the number of shelter and transitional housing units available on each of the PIT count dates.
Information about persons staying in emergency shelters and transitional housing units is exported from the Homeless Management Information System (HMIS), which is the primary database for recording client-level service records. Information about persons in unsheltered situations is compiled by first conducting an overnight street count of persons observed sleeping outdoors on the PIT night to establish the total number of unsheltered persons. Demographic information for unsheltered persons is then extrapolated by utilizing assessment data collected by street outreach workers during the 7 days following the PIT count.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset includes the daily number of families and individuals residing in the Department of Homeless Services (DHS) shelter system and the daily number of families applying to the DHS shelter system.
This is a dataset hosted by the City of New York. The city has an open data platform found here and they update their information according the amount of data that is brought in. Explore New York City using Kaggle and all of the data sources available through the City of New York organization page!
This dataset is maintained using Socrata's API and Kaggle's API. Socrata has assisted countless organizations with hosting their open data and has been an integral part of the process of bringing more data to the public.
Cover photo by Matt Collamer on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.
B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from: * Case interviews * Laboratories * Medical providers These multiple streams of data are merged, deduplicated, and undergo data verification processes.
Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.
Gender * The City collects information on gender identity using these guidelines.
Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives. * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.
Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. https://www.sfdph.org/dph/files/PoliciesProcedures/COM9_SexualOrientationGuidelines.pdf">Learn more about our data collection guidelines pertaining to sexual orientation.
Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.
Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.
Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.
Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.
C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023.
D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).
This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cases on each date.
New cases are the count of cases within that characteristic group where the positive tests were collected on that specific specimen collection date. Cumulative cases are the running total of all San Francisco cases in that characteristic group up to the specimen collection date listed.
This data may not be immediately available for recently reported cases. Data updates as more information becomes available.
To explore data on the total number of cases, use the ARCHIVED: COVID-19 Cases Over Time dataset.
E. CHANGE LOG
Facebook
TwitterPresents the number of individuals for each shelter facility type by borough and community district
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in PowerBi,R and Loocker studio:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Ff21bb298c472dbc4bed21ef6dda71d5e%2Fgraph1.jpg?generation=1715375554075996&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fea25ef2b4f987b1c37d85ce0b24180ce%2Fgraph2.jpg?generation=1715375559925771&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F69022bdb532b6b315c2ac7261d211868%2Fgraph3.png?generation=1715375565218326&alt=media" alt="">
This topic page studies available data and empirical evidence on homelessness, focusing specifically on how it affects people in high-income countries. Homeless people are among the most vulnerable groups in high-income countries.
You can read our topic page on Extreme Poverty if you are interested in a broader perspective on economic deprivation and a perspective beyond high-income countries.
Homeless people in the US What data is available? One of the most common ways to measure homelessness is through so-called 'point-in-time' counts of people who are sleeping in shelters or on the streets. These are figures that are intended to reflect the number of people who are homeless 'on any given night'.
The main source of point-in-time estimates in the US is the Department of Housing and Urban Development, which releases the Annual Homeless Assessment Report to Congress (AHARC). They calculate 'point-in-time' estimates by counting homeless people in late January of each year.
The main underlying sources of data used to produce the figures published in the AHARC are (i) registries from shelters and (ii) counts and estimates of sheltered and unsheltered homeless persons provided by care organizations, as part of their applications for government funding.
The counts from the care organizations (called 'Continuums of Care' in the US) come from active counts that are undertaken at the community level, by walking around the streets, using pre-established methodologies.1
In these figures, 'Sheltered Homelessness' refers to people who are staying in emergency shelters, transitional housing programs, or safe havens. 'Unsheltered Homelessness', on the other hand, refers to people whose primary nighttime residence is a public or private place not designated for, or ordinarily used as, a regular sleeping accommodation for people – for example, the streets, vehicles, or parks.2
Facebook
TwitterThis dataset includes the daily number of families and individuals residing in the Department of Homeless Services (DHS) shelter system and the daily number of families applying to the DHS shelter system prior to 3/1/2021. For the latest records, please refer to https://data.cityofnewyork.us/Social-Services/DHS-Daily-Report/k46n-sa2m
Facebook
TwitterIndividuals and families placed in HRA housing systems in pursuant to local law 19. For Local Law 19 of 1999 Report - Monthly Placements, follow this link. For Local Law 19 of 1999 - Annual Report DHS Shelter, follow this link.
Facebook
TwitterThis dataset displays demographics for the families and individuals residing in the Department of Homeless Services (DHS) shelter system.
Facebook
TwitterThis dataset includes the daily number of families and individuals residing in the Department of Homeless Services (DHS) shelter system and the daily number of families applying to the DHS shelter system.
Facebook
TwitterAbout Dataset
The dataset you provided, titled "Report Card Enrollment 2023-24 School Year," appears to be a comprehensive collection of information regarding student enrollment and demographics within educational institutions for the specified academic year. Here are some observations about the dataset:
Granularity: The dataset seems to be quite granular, providing detailed information not only about overall student enrollment but also about various demographic categories such as gender, race/ethnicity, English language learners, students with disabilities, and socioeconomic status.
Demographic Diversity: It captures the diversity of the student population by including counts for various racial/ethnic groups, as well as categories such as gender X, indicating a recognition of diverse gender identities.
Socioeconomic Indicators: The dataset includes indicators of socioeconomic status such as students in foster care, homeless students, and those from low-income families, which can provide insights into equity and access issues within the educational system.
Special Education and Gifted Programs: It tracks the enrollment of students with disabilities and those identified as highly capable, which are important metrics for evaluating the inclusivity and effectiveness of special education and gifted programs.
Geographical Context: The dataset includes information about the county, educational service district, and school district, providing a geographical context for the enrollment data.
Temporal Aspect: The "DataAsOf" column indicates that the data has a temporal aspect, suggesting that it may be periodically updated to reflect changes in enrollment and demographics throughout the academic year.
**columns : ** SchoolYear: Indicates the academic year for which the data is reported, in this case, it's 2023-24.
OrganizationLevel: Specifies the level of educational organization, which could be school, district, or any other relevant level within the educational system.
County: Refers to the county where the educational organization is located.
ESDName: Stands for Educational Service District Name, which represents the intermediate level of educational administration in some states.
ESDOrganizationID: ID assigned to the Educational Service District.
DistrictCode: Code assigned to the district within the educational system.
DistrictName: Name of the school district.
DistrictOrganizationId: ID assigned to the district organization.
SchoolCode: Code assigned to the school within the district.
SchoolName: Name of the school.
SchoolOrganizationID: ID assigned to the school organization.
CurrentSchoolType: Indicates the current type of the school, such as elementary, middle, or high school.
GradeLevel: Specifies the grade level(s) served by the school.
All Students: Total number of enrolled students in the school.
Female: Number of female students enrolled.
Gender X: Number of students who identify as gender X, indicating a non-binary or non-conforming gender identity.
Male: Number of male students enrolled.
American Indian/ Alaskan Native: Number of students identifying as American Indian or Alaskan Native.
Asian: Number of students identifying as Asian.
Black/ African American: Number of students identifying as Black or African American.
Hispanic/ Latino of any race(s): Number of students identifying as Hispanic or Latino of any race.
Native Hawaiian/ Other Pacific Islander: Number of students identifying as Native Hawaiian or other Pacific Islander.
Two or More Races: Number of students identifying as belonging to two or more races.
White: Number of students identifying as White.
English Language Learners: Number of students who are learning English as a second language.
Foster Care: Number of students in foster care.
Highly Capable: Number of students identified as highly capable or gifted.
Homeless: Number of students experiencing homelessness.
Low-Income: Number of students from low-income families.
Migrant: Number of students from migrant families.
Military Parent: Number of students with parents serving in the military.
Mobile: Number of students who frequently change residences.
Section 504: Number of students covered under Section 504 of the Rehabilitation Act, which provides accommodations for students with disabilities.
Students with Disabilities: Number of students with disabilities.
Non-English Language Learners: Number of students who are not learning English as a second language.
Non-Foster Care: Number of students who are not in foster care.
Non-Highly Capable: Number of students who are not identified as highly capable or gifted.
Non-Homeless: Number of students wh...
Facebook
TwitterDHS shelter buildings and types in NYC boroughs.
For Local Law 19 of 1999 Report - Monthly Placements, follow this link. For Local Law 19 of 1999 - Quarterly Unsheltered Street Homeless Individuals, follow this link.
Facebook
TwitterThe Local Employment Dynamics (LED) Partnership is a voluntary federal-state enterprise created for the purpose of merging employee, and employer data to provide a set of enhanced labor market statistics known collectively as Quarterly Workforce Indicators (QWI). The QWI are a set of economic indicators including employment, job creation, earnings, and other measures of employment flows. For the purposes of this dataset, LED data for 2018 is aggregated to Census Summary Level 070 (State + County + County Subdivision + Place/Remainder), and joined with the Continuum of Care Program grantee areas spatial dataset for FY2017. The Continuum of Care (CoC) Homeless Assistance Programs administered by HUD award funds competitively and require the development of a Continuum of Care system in the community where assistance is being sought. A continuum of care system is designed to address the critical problem of homelessness through a coordinated community-based process of identifying needs and building a system to address those needs. The approach is predicated on the understanding that homelessness is not caused merely by a lack of shelter, but involves a variety of underlying, unmet needs - physical, economic, and social. Funds are granted based on the competition following the Notice of Funding Availability (NOFA). Please note that this version of the data does not include Community Planning and Development (CPD) entitlement grantees. LED data for CPD entitlement areas can be obtained from the LED for CDBG Grantee Areas feature service. To learn more about the Local Employment Dynamics (LED) Partnership visit: https://lehd.ces.census.gov/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_LED for CoC Grantee Areas
Date of Coverage: CoC-2021/LED-2018
Facebook
TwitterIn 2023, there were about ******* homeless people estimated to be living in the United States, the highest number of homeless people recorded within the provided time period. In comparison, the second-highest number of homeless people living in the U.S. within this time period was in 2007, at *******. How is homelessness calculated? Calculating homelessness is complicated for several different reasons. For one, it is challenging to determine how many people are homeless as there is no direct definition for homelessness. Additionally, it is difficult to try and find every single homeless person that exists. Sometimes they cannot be reached, leaving people unaccounted for. In the United States, the Department of Housing and Urban Development calculates the homeless population by counting the number of people on the streets and the number of people in homeless shelters on one night each year. According to this count, Los Angeles City and New York City are the cities with the most homeless people in the United States. Homelessness in the United States Between 2022 and 2023, New Hampshire saw the highest increase in the number of homeless people. However, California was the state with the highest number of homeless people, followed by New York and Florida. The vast amount of homelessness in California is a result of multiple factors, one of them being the extreme high cost of living, as well as opposition to mandatory mental health counseling and drug addiction. However, the District of Columbia had the highest estimated rate of homelessness per 10,000 people in 2023. This was followed by New York, Vermont, and Oregon.